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Speech Synthesis from ultrasound and
optical images of the speaker’s vocal tract

Thomas Hueber

Abstract— The goal of my placement at the Elec-
tronic Lab of ESPCI 1, in collaboration with LTCI of
Télecom Paris, was to investigate the feasibility of a
silent speech interface using ultrasound imaging and a
profile video of a speaker’s head. A method for image
preprocessing is proposed, based on the anisotropic
diffusion filter. A new algorithm for the extraction
of ultrasound image features, called EigenTongues is
proposed. A method to describe lip profile , based on
curvature computation, is introduced. Mel frequency
cepstral coefficients are chosen for speech description.
Finally, machine learning techniques are used to
model the visual-acoustic link between image features
and speech signal features.

I. INTRODUCTION

THERE has been interest recently in the idea of
a sensor-based system allowing speech com-

munication via standard articulators, but without
glottal activity ; that is, a silent speech interface.

The Ouisper project2, on which I worked, pro-
poses to build a device for production of intelligible
speech, from ultrasound and optical imagery of the
tongue and lips - without activation of the vocal
chords.

Three parters are involved in this project :

• Laboratoire d’Electronique of ESPCI
• Laboratoire du Traitement et Communication

de l’Information (LTCI) of l’ENST, Paris
• Vocal Tract Visualisation Laboratory (VTVL),

University of Maryland Dental School

Two distinct types of application can be envi-
sioned :

1Ecole Supérieure de Physique et Chimie Industrielles de la
Ville de Paris

2Oral Ultrasound Synthetic Speech

• an alternative to tracheo-oesophagal speech
(TES) for persons having undergone a tra-
cheotomya and a prosthesis for patients who
have lost the use of their vocal chords.

• a "silent telephone" for use in situations where
quiet must be maintained

The general operation of the Ouisper approach is
illustrated by the following diagram .

Fig. 1. Operation of the Ouisper system

Currently, the only other system under devel-
opment for this type of application is one using
electromyography [Jorgensen et al., 2003], recently
developed by the NASA Ames Lab in the United
States.

Promising results using the Ouisper technique,
have already been published in IEEE conferences
by my placement director, Professor Bruce Denby,
initiator of the project, in [Denby et al., 2006] and
[Denby et Stone, 2004].

The first section briefly presents the architecture,
the workings and the main pathology of the voice
organ. The second section describes data acquisi-
tion. The third section exposes the new methods I
proposed to extract features from vocal tract images.
Section four is devoted to speech signal description.
Finally, machine learning techniques, used to model
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Fig. 2. Voice organ

the visual-acoustic link between visual features and
speech signal features, are introduced in the last
section.

II. GENERAL PRESENTATION OF THE VOICE
ORGAN

A. Workings of the voice organ

The voice organ is the part of the human body
responsible for the generation of sound, usually in
the form of speech or singing. It is comprised of
the larynx and the vocal tract. Figure 2 is a sagittal
cut of the voice organ.

The human voice produces sounds in the follow-
ing manner :

• Air pressure from the lungs creates a steady
flow of air through the trachea, larynx and
pharynx (back of the throat).

• The vocal chords in the larynx vibrate, creating
fluctuations in air pressure that are known as
sound waves.

• Resonances in the vocal tract modify these
waves according to the position and shape of
the lips, jaw, tongue, soft palate, and other
speech organs, creating formant regions and
thus different qualities of sonorant (voiced)
sound.

• The mouth and nose openings radiate the
sound waves into the environment.

B. Main voice organ pathology

Because of the medical applications of the Ouis-
per Project, this section decribes one of the main
pathologies of the voice organ, larynx cancer, with
focus on its treatment. Age, smoking, alcohol and
exposition to dangerous material, are risk factors
to get cancer of the larynx. Cancer of the larynx
may be treated with a laryngectomy 3 During a
laryngectomy, the surgeon may need to make a
stoma 4. The stoma is a new airway through an
opening in the front of the neck. Air enters and
leaves the trachea and lungs through this opening.
After a total laryngectomy, the stoma is permanent.
In this case, the patient has to learn to speak in a
new way, by using the tracheoesophageal puncture
speech. For tracheoesophageal puncture (TEP), the
surgeon makes an opening between the trachea
and the esophagus. A valve fits into this opening.
Patients can cover their stoma with a finger and
force air into the esophagus through the valve.
Unfortunately, many patients are unable to use this
method. They choose to use a mechanical larynx,
called electrolarynx. This machine, transmits a vi-
bration noise to the throat which the patient forms
into words with his lips, teeth, and tongue. However,
speech produced by these different methods is not
natural. Patient have to make a big effort to speak.
The Ouisper project wants to provide an alternative
device, able to produce high quality speech, by
using ultrasound and optical imagery of the vocal
tract. Imagery techniques of the vocal track are
described in the next section.

III. DATA ACQUISITION

A. Ultrasound Principles

Ultrasound imagery is a medical imaging tech-
nique that uses high frequency sound waves and
their echoes. Ultrasound is an ultra high-frequency
sound wave emanating from a piezoelectric crystal5

that produces an image by using the reflective
properties of sound waves. Several crystal elements

3surgery to remove part or all of the larynx.
4This surgery is called a tracheostomy.
5A piezoelectric crystal converts electricity into mechanical

vibrations (i.e., sound waves) and vice versa.
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are fit in a transducer probe which is the main
part of the ultrasound system. The transducer probe
makes sound waves which travel into the body and
hit a boundary between tissues. Some of the sound
waves get reflected back to the probe, while some
continue until they reach another boundary and get
reflected. The time an echo takes to return to the
transducer is converted to distance. The distance
and intensity of the echos are displayed as a two
dimensional image.

B. Voice organ ultrasound imagery

The Vocal Tract Visualisation Lab (VTVL), in-
volved in the Ouisper Project is specialized in
ultrasound imaging of the vocal tract. When using
ultrasound imagery to visualise the vocal tract,
the transducer is placed beneath the chin. During
speech, the lips, mouth, chin and jaw, move and
specific techniques must be used to maintain the
transducer close to the voice organ.

The HATS 6 [Stone, 2003] system developed by
M.Stone’s team allows the visualisation of the vocal
tract during speech. This system is illustrated by the
following diagram 3.

Fig. 3. Head and Transducer Support System - HATS

This specific acquisition system is designed to
keep contact between the chin and the transducer,

6HATS : Head and Transducer Support System

during voice organ motions. This system provides
real-time images of the vocal tract during phonation.
In addition to ultrasound images, the HATS system
provides a profile view of the speaker. A typical
image given by VTVL, is shown below in figure 4.

Fig. 4. Ultrasound image of the vocal tract

Different structures can be identified in the ultra-
sound image :

• The upper tongue surface : The sound wave
travels upward through the tongue body until
it reaches and reflects back downward from the
upper tongue surface.

• The hyoïde bone and mandible bone : These
structures refract the sound before it reaches
the tongue surface and create an "acoustic
shadow" (black region) at both edges of the
image.

• The palate bone : the palatal shape should
be visible in a frame in which a swallow is
occurring.

• Muscle, fat and connective tissue interfaces :
The tongue contains considerable amounts of
fat, which may refract the sound enough that
the returning echo is significantly attenuated.

The HATS system is a powerful tool for speech
research since it gives multimodal data of the voice
organ during speech. Optical images (a profile
view of the speaker’s head), ultrasound images and
speech are acquired simultaneously. One hour of
acquisition has been made by VTVL, for this study.
The ability to produce such data allows to consider
a modeling of the relation between voice organs
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motion and speech signal.

IV. OPTICAL AND ULTRASOUND VOCAL TRACT
IMAGE PROCESSING

Relevant information must be extracted from
optical and ultrasound images.

A. Ultrasound images processing

1) Preprocessing: To limit useless computation
cost, the ultrasound images are reduced to a 50 by
50 grid, superimposed on the original fan-shaped
data field and enclosing region of interest, as shown
in figure 5.

Fig. 5. Ultrasound image reducing

Ultrasound images are characterized by a specific
noise, called speckle, which is a multiplicative
and locally correlated noise. This noise plagues
ultrasound image interpretation and description.
For images that contain speckle, an enhancement
goal is to remove the speckle without destroying
important image features. Speckle filters can be
classified in two types. The classic filter, introduced
by Lee [Lee, 1980], Kuan [Kuan et al., 1985] and
Lopes [Lopès et al., 1990], forms an output image
by computing a linear combination of the center
pixel intensity in a filter window with the average
intensity of the window. So, the filter achieves
a balance between straightforward averaging (in
homogeneous regions) and the identity filter (where
edges and point features exist).This balance depends
on the local coefficient of variation inside the mov-
ing window defined by :

γ2(s) =
1
|ηs|

∑
p∈ηs

(Ip − Īs)2

(Īs)2
(1)

where ηs is the filter window centered on s and Īs

pixel mean intensity on this window.

The second type of speckle adapted filter
is the anisotropic diffusion filter, introduced by
[Perona et Malik, 1990]. Perona & Malik formulate
the anisotropic diffusion filter as a diffusion pro-
cess that encourages intraregion smoothing while
inhibiting interregion smoothing. Mathematically,
the process is defined as follows :

∂I

∂t
= div(c(|∇I|)∇I) (2)

where ∇ is the gradient operator,div the divergence
operator, || denotes the magnitude, t refers to the
iteration step c(x) the diffusion function which is
a monotonically decreasing function of the image
gradient magnitude:

g(s) =
1

1 + (λs)2
(3)

where λ is an edge magnitude parameter. In the
anisotropic diffusion method, the gradient magni-
tude is used to detect an image edge or boundary
as a step discontinuity in intensity. If |∇u| � λ
then g(|∇u|) → 0 and we have an all-pass filter;
if |∇u| � λ then g(|∇u|) → 1 and we achieve
isotropic diffusion. The advantages of anisotropic
diffusion include intra-region smoothing and edge
preservation.

In [Yu et Acton, 2002], Yu combined the Lee
and Perona & Malik approach by proposing a
new anisotropic diffusion method for smoothing
speckled imagery. Yu merged equations 4 and 2 in
a new partial differential equation :

∂I

∂t
=

1
|η̄s|

div[c(γt)∇I] (4)

where γt can be called an "instantaneous coefficient
of variation".

This filter has been implemented and applied
on reduced ultrasound images of the vocal tract.
Results are illustrated by figure 6.

2) The EigenTongues approach: In
[M.Li et al., 2003], Li presents Edge Track, a
program for tongue edge extraction from ultrasound
images of the vocal tract. In [Denby et al., 2006],
Denby uses a similar algorithm to extract tongue
edge in each frame of the data set. Denby considers
that the most relevant information in ultrasound
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(a) Original Image (b) Filtered Image - 5 iterations

(c) Filtered Image - 20 iterations (d) Filtered Image - 40 iterations

Fig. 6. Results of the Anisotropic Diffusion Filter

frame sequence is tongue motion. However, other
structures seem to move during speech, and their
position could be important for visual-acoustic
modeling. That’s why, a new approach, based on a
global image description, has been proposed. This
method is inspired from Turk’s work, described in
[Turk et Pentland, 1991].

Let a reduced image I(x, y) be a two-
dimensional N by N array of intensity values or
a vector of dimension N2. A reduced vocal tract
image describes a vector of dimension 2500, or
equivalently, a point in a 2500-dimensional space. A
ensemble of images is a collection of points in this
huge space. Filtering has reduced random behav-
ior between closed images in the video sequence.
Thus, all frames of the sequence are quite similar.
They will not be randomly distributed in this huge

space, and can be described by a relatively low-
dimensional subspace. The main idea of the method
is to use a principle components analysis to find the
vector which best accounts for the distribution of
the vocal tract image, within the entire image space.
These principle components are vectors which de-
fine the subspace of the vocal tract image. We
call this space the TongueSpace. Each vector of
length N2 = 2500, describes a 50 by 50 image,
and is a linear combination of the original vocal
tract images. We call them EigenTongues, as Turk’s
vectors are called EigenFaces. Some examples of
EigenTongues are shown in figure 7.

We show that a new image, which has not partic-
ipated in the TongueSpace building can be encoded
by a small number of its first coordinates in this
space. Figure 8 illustrates an original frame and its
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Fig. 7. EigenTongues

re-synthesis by using only its 40 first coordinates in
the TongueSpace.

Fig. 8. Description of a new image with 40 EigenTongues

The 40 first coordinates of an image in the
TongueSpace seem to be relevant visual features.

B. Optical image processing

Edge extraction of the lips profile is simply done
by a Sobel method. In [Denby et al., 2006], by
working on a 90 degrees rotated frame, Denby
can consider the lips edge as a function, and find
the lower and upper lips by searching its maxima.
However, this method is not speaker independant,
as show in figure 9. Because a lips profile can not
always be considered as a function, a new approach
has been proposed. In [Feldman et Singh, 2005],
Feldman used the Turning angle to easily com-
pute the curvature of a two-dimensional curve. The

Fig. 9. Lips profile particularity

approach is based on Attneave’s idea, that infor-
mation along a visual contour is concentrated in
regions of high magnitude of curvature, rather than
distributed uniformly [Attneave, 1954]. The lower
and upper lips belong to high curvature regions, and
the turning angle curve gives speaker-independant
and relevant features for lips profile description, as
shown in figure 10.

Fig. 10. Lips profile description thanks to turning angle
computation

Visual features have been extracted from ultra-
sound and optical images of (part of) the voice
organ.

V. FEATURES EXTRACTION FROM SPEECH
SIGNAL

In [Denby et al., 2006], Denby use the Line
Spectrum Frequencies (LSF) [Zheng et al., 1998]
representation of the speech signal. High quality
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speech synthesis can be achieve only with a good
fundamental frequency estimation. However, the
Ouisper device is a silent speech communication
interface, and requires no vocalisation, no glottis
activity, and thus no information on fundamental
frequency. The LTCI laboratory is the originator
of the ALISP system (Automatic Language In-
dependent Speech Processing) [Cernocky, 1998],
[Mosbah, 2005] which allows high quality speech
synthesis based on a statistical segmentation of a
large speech corpus [Bimbot et al., ], and a con-
catenative high-quality re-synthesis of speech. In
order to embed the ALISP system in the Ouis-
per project, Mel Frequency Cepstral Coefficients
[Davis et Mermelstein, 1980] are introduced here.

Many experiments have shown that the ear’s
perception of the frequency components in the
speech does not follow the linear scale but the
mel-frequency scale, which should be understood
as a linear frequency spacing below 1kHz and
logarithmic spacing above 1kHz. The common used
formula to approximately reflex the relation be-
tween the mel-frequency and the physical frequency
is given by,

M =
1000
log2

∗ log(1 +
f

1000
) (5)

where f is frequency in Hz.
The system diagram to compute the MFCC and

classification scheme is shown in Figure 11 and is
briefly explained below.

A segment of speech is hamming windowed and
transformed to the frequency domain via the fast
Fourier transform, and then the magnitude spectrum
of the utterance is passed through a bank of trian-
gular shaped filters whose center frequencies are
spaced along the perceptually motivated mel fre-
quency scale. The energy output from each filter is
then log-compressed and transformed to the cepstral
domain via the DCT.

MFCC’s coefficients are known to be relevant and
robust features of the speech signal.

VI. VISUAL-ACOUSTIC MODELING

Visual and acoustical features are extracted from
video and audio sequences of the data set provided

Fig. 11. Mel Frequency Cepstral Coefficients computation
diagram

by VTVL. A vector x of 50 visual features describes
each frame and a vector y of 12 MFCC coefficients
simultaneously describes the correspondent speech
signal. A neural network, called multi layer percep-
tron (MLP) is used to perform the mapping between
the 50 input variables and the 12 MFCC’s.

A. Non-linear modeling with neural networks

Neural networks are non-linear statistical data
modeling tools. They can be used to model complex
relationships between inputs and outputs. A neural
network is composed of a large number of highly
interconnected processing elements, called artificial
neurones, working together to solve specific prob-
lems, such as non-linear regression problems.

Artificial neurones are functions from many di-
mensions to one dimension. They receive one or
more inputs and sum them to produce an output.
This output is passed through a non-linear function
called activation function. A graphical representa-
tion of an artificial neurone is shown in figure 12.
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MLP consists of multiple layers of artificial neu-

Fig. 12. Graphical representation of an artificial neurone

rones, usually interconnected in a feed-forward way.
Each neuron in one layer has directed connections
to the neurons of the subsequent layer, as shown in
figure 13.

Fig. 13. Multi Layer Perceptron

During the supervised training, a learning set of
example (x,y) pairs is given to the network which
adjusts its parameters to find the function f such
as y = f(x). In the test, MLP is normally able to
predict output from new examples. The reader is
invited to consult [Dreyfus et al., 2004] for more
information about neural networks.

For visual-acoustic modeling with neural MLP,
we use in this study, 71 595 learning examples and
878 test examples. For MFCC’s prediction, we use
12 networks with 20 hidden neurones and 50 inputs.

B. Results

Two methods can be used to evaluate the quality
of the modeling. The first one is the computation

. α . α

MFCC1 0.17 MFCC2 0.13

MFCC3 0.14 MFCC4 0.11

MFCC5 0.12 MFCC6 0.11

MFCC7 0.12 MFCC8 0.13

MFCC9 0.13 MFCC10 0.11

MFCC11 0.10 MFCC12 0.10

TABLE I
MFCC COEFFICIENTS PREDICTION USING A MULTI LAYER

PERCEPTRON

of the mean square error between model predictions
and true values on the test database, called α. The
second one is a scatter plot "Predicted value vs.
Original value". Both methods are used to describe
the result of this study. Table I presents alpha
values, for each acoustic feature (i.e each MFCC).

Scatter plots are displayed in Figure 14.

Fig. 14. Scatter plot of test results for the MFCC’s. Horyzontal
axis : True MFCC ; vertically : Predicted MFCC’s

MFCC’s 4,5,6,7-11 appear to be the easiest to
learn from the image of the vocal tract. The model
we propose is able to predict acoustical description
of speech with a 10 % to 20 % error.

VII. CONCLUSION

In [Denby et al., 2006], Denby presents a mod-
eling of LSF coefficient from tongue contours and
lip profile features. This model is not sufficient
for learning the LSF of silent and fricative speech
frames. In this study, it has been shown that MFCC
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coefficients can be predicted with new lips profile
features and the EigenTongues new approach, with
no distinction on type of speech frame (voiced or
unvoiced). The ALISP system will soon be used for
speech synthesis from predicted MFCC coefficients
sequences. This will be one of my first jobs during
my PhD on the Ouisper project.
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