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ABSTRACT

A machine learning technique is used to match
reconstructed tongue contours in 30 frame per second
ultrasound images to speaker vocal tract parameters
obtained from a synchronized audio track. Speech
synthesized using the learned parameters and noise as an
activation function displays many of the time and
frequency domain characteristics of the original audio, and
for isolated passages, is remarkably clear – although no
articulators other than the tongue are included.

1. INTRODUCTION

Although medical ultrasound has been used in articulatory
speech modelling research for many years [1,2,3], a voice
interface based on the technique would until now have
been considered far too cumbersome. Advances in
microelectronics, however, are changing this scenario.
Compact, real time interfaces using non-invasively sensed
articulatory cues could be used, for example, to enhance
speech quality in noisy environments; to directly
synthesize digital speech when audio silence is required;
or in prosthetic applications for handicapped individuals.

This article presents a first attempt to develop a
speech synthesizer driven by tongue contours acquired
with a real time medical ultrasound [4]. Extracted
contours, mapped onto vocal tract parameters and
combined with noise, yield a speech signal which already
reproduces many of the spectral and temporal
characteristics of the original recording, and in certain
passages is of remarkable fidelity. Experimental details,
data analysis techniques, a discussion of the results, and
future prospects are presented in the following sections.

2. DATA ACQUISITION

Data were taken on an Acoustic Imaging Performa 30 Hz
ultrasound machine [5] with a 2-4 MHz, 96 element
curvilinear array, using the HATS system [6] to
immobilize the speaker’s head and support the transducer
under the chin in a fixed position. The speech corpus

consisted of a 6-sentence passage called Rainbow and a 9-
sentence one called Grandfather, designed to contain
multiple examples of all English phonemes. A native
English speaker repeated each passage twice, creating a
total of 149.7 seconds of speech stored in 4491 .jpg
ultrasound frames and one 11025 Hz-sampled time-
synchronized .wav audio file for each of the 30 sentences.

3. EXTRACTION OF TONGUE CONTOURS

The ultrasound images were first reduced to a 14 (radial,
or time axis) by 40 (azimuthal angle) grid, superimposed
on the original fan-shaped data field and enclosing all
possible tongue contour points of interest. (The grid
simulates the readout one might obtain from a simple, 14
element probe – a point returned to in section 7).
Candidate contour points in each time bin were attributed
using a maximum smoothed spatial intensity gradient
criterion. Non-bifurcating contours were then constructed
by linking candidate points via a local smoothing
algorithm [7]. A final filtering step corrected contours by
requiring smoothness between consecutive frames in time
as well. A typical result is shown in figure 1, where an ‘r’
is pronounced.  

4. LEARNING VOCAL TRACT PARAMETERS

The vocal tract model of the GSM vocoder [8] was chosen
because of its readily available code and proven ability for
real time implementation - an important consideration in
this study. The 13 kbit/sec GSM codec transforms blocks
of 160, 13-bit speech samples (20 ms at 8000
samples/second) into 260 bits of coded information as
outlined in table I. A machine learning algorithm was
used to map the 14 tongue contour points onto a subset of
the codec parameters in each block.

To simplify the data handling, the .wav audio files
were downsampled to 160 samples per ultrasound frame
(i.e., 4800 samples/sec), so that the GSM codec could
output exactly one speech block per frame. This is of
course a compromise, as 1) undersampling the audio from
the original 11025 Hz causes some degradation of the
signal, and 2) the signal will seem ‘speeded up’ to the
GSM codec, which expects an  8 kHz sampling frequency.
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Figure 1. Fiducial region of ultrasound image containing
all tongue contours. Vertical axis is time, horizontal
angle. Only every other angle bin is used, giving a 14 by
40 grid. Candidate contour points are shown as stars, final
non-bifurcating tongue contour as solid line. Here, an ‘r’
is pronounced. Tongue tip is at right.

Tongue contours should in principle only provide
information on the 8 log-A ratios of the LPC filter.
However, the machine learning algorithm was extended
also to the 20 ms averages of the LTP lag and gain (≈
pitch period) and RPE (activation function) ssseq and
xmax variables, since, empirically, statistical correlations
between these additional variables and the LPC ones were
found to exist in the data. Only the 13 RPE residual
samples were entered as noise, leaving 12 GSM variables
to be learned from the tongue contours.

The algorithm chosen was a 14-20-20-12 multilayer
perceptron (MLP) trained with gradient backpropagation
[9]. Ninety percent of the data was used for training and
10% to assure that overtraining of network weights did
not occur. Variant MLP architectures, as well as tests with
different subsets of output variables, gave similar results.
Once learned, the GSM parameters and noise activation
function were used to write GSM audio files which were
then expanded, using the standard GSM decoder, into
output .wav files. These files incorporated training plus
test data; spot checks indicated that doing so introduced
no biases.

5. EVALUATION OF RESULTS

Listened to by themselves, the synthesized passages are
not recognizable; however, by alternating between original
and synthesized recordings, the listener can soon easily
pick out most of the correspondences. As the quality is
insufficient to allow the use of a measure such as PESQ

RPE-LTP GSM Vocoder bits/5 ms bits/20 ms
LPC filter 8 log-A ratios - 36

lag 7 28LTP filter
gain 2 8
ssseq 2 8
xmax 6 24

RPE
activation
function 13 resid. samp. 39 156

total 260
Table I. Contents of a 260-bit, 20 ms GSM speech block.

[10], it is more instructive here to examine the overall
temporal and frequential aspects of the signal and to give
a qualitative idea of the performance of the method on
different utterances.

Figure 2 presents the spectrogram of a sample
sentence from the Grandfather passage. One may make
the following observations:
• The learning algorithm is, with rare exceptions, able

to distinguish between speech and silence. This is an
important result which was far from obvious at the
outset of this study.

• The envelopes of the frequency spectra of the
synthesized utterances are in rough accord with those
of the original passage. Since the activation function
is noise, one does not expect, of course, to see in the
synthesized speech the banded harmonic structure
evident in the original signal.

Also shown in figure 2 is a decomposition of the sentence
into 5 segments labeled a to e. The content of these
segments is given below, where those utterances which
seem the most clear are printed in underlined capitals:

a) w   E    have    O   ften    U   rged hIm to …
b) …     WALK    m   ORE   …
c) … and sm   OKE       LESS    …
d) … but he    AL  ways    AN   sw   ERS   …
e) … b   ANANA       OIL    …

Thus, the MLP appears to have learned best the tongue
contours which are the most distinctive - ‘l’, ‘r’, ‘k’, as
well as many of the vowels - but does less well on the
phonemes for which it has little information, such as
plosives and fricatives. As a check of reproducibility, it
should be noted that the breakdown into ‘good’ and
‘incorrect’ segments is nearly identical in the two
repetitions of each passage.

One should also expect that certain phonemes cannot
be uniquely identified from only the rather crudely
measured tongue contours used in this study. This
corresponds to a situation in which the MLP is requested
to map nearly identical inputs onto different outputs.
Since backpropagation is a least-squared error
minimization algorithm, the MLP will in these cases give
output variables near the centroids of those of the
ambiguous output classes. This is consistent with the
observation that ‘incorrect’ synthesized utterances, rather
than being wildly inappropriate, tend for the most part to
have a neutral, droning quality.
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Figure 2. Spectrogram of a sample sentence from the
Grandfather passage. The segments a-e are described in
the text.

6. FUTURE IMPROVEMENTS

A number of possible future improvements seem clear:
• Choice of Vocoder. The GSM algorithm has been
useful for a first study, but in the long term it will be
preferable to match the vocoder used to the ultrasound
frame rate. This, in particular, will allow to sample the
audio at a more acceptable frequency than the 4800
samples/sec used thus far.
• Improved Contour Finding. Hand scanning reveals
the algorithm occasionally misses a point or two at the
base or tip of the tongue. Better performance, particularly
in the tip region, could have a significant effect.   
• Study of Activation Functions. The results
described used noise as an activation function. Additional
tests using a uniform voiced activation function improved
some utterances but degraded others. It would be
interesting to use different mixes of voiced and unvoiced
activations to see if a better overall result can be extracted.
• Trajectory Modelling. No attempt was made in the
presented results to ensure that the articulatory trajectories
obtained were physically reasonable and smooth; the
system simply outputs one GSM block per ultrasound
frame. Use of trajectory modelling [11] would almost
undoubtedly correct a number of poorly reconstructed
frames.
• Incorporation of other Articulatory Cues. A video
frame of the speaker’s lips was embedded in each
ultrasound frame. Lip information included with the
tongue contour would quite likely disambiguate the
output classes of certain utterances. Too, there is
occasionally other viable information in the ultrasound
image besides the tongue contour, corresponding to lip
movement, hyoid bone, teeth, muscles, etc., which might
be exploitable.
• Real Time Feedback. A speaker trying to make
himself understood in a noisy or distorting environment

modifies his delivery by speaking more slowly and
enunciating more clearly. This possibility is lost when
pre-recorded input files are used. It seems quite likely that
a speaker having real time feedback of how his voice
sounds at the receiving end could greatly improve the
‘signal to noise ratio’ over that observed in our tests.  

7. REAL TIME IMPLEMENTATION

Beyond the potential for operator feedback, a real  time
implementation – and one that can be made compact and
portable – is essential if an ultrasound speech synthesizer
is to become a workable tool. Although the analyses
presented here were done offline, contour finding and
MLP execution can be accomplished in a only few
milliseconds on a standard PC. Image acquisition is
already fast enough, and the GSM algorithm runs handily
on millions of cellphones every day. The required real
time implementation thus seems assured.

The issue of portability also appears to be well in
hand. Several ultrasound firms already offer PC-based
machines [12], or even complete ultrasound systems
packaged as peripherals to be connected to a standard PC
[13]. Our speech synthesizer, however, does not need to
be as complicated as a full ultrasound system, nor does it
require an entire PC to function. We have already
demonstrated that a simple ultrasound probe with 14
elements would be sufficient, and a study [14] has shown
that such a probe equipped with a readout system based
on Field Programmable Gate Arrays could indeed be built
as a portable, handheld real time device.

8. CONCLUSION

Experimental tests of speech synthesis from real time
ultrasound images of the tongue have been presented.  The
resulting speech is as yet of poor quality, but has many of
the desired properties and can hopefully be brought to a
usable level with some of the suggested improvements. If
so, it should be possible, using standard technology, to
realize a portable ultrasound speech interface, which could
be used to enhance standard speech in hostile
environments, produce speech output without glottal
activity, or post-treat the speech of certain handicapped
individuals to improve intelligibility.
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