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ABSTRACT 

 
The feasibility of a silent speech interface using ultrasound 
(US) imaging and lip profile video is investigated by 
examining the quality of line spectral frequencies (LSF) 
derived from the image sequences. It is found that the data 
do not at present allow reliable identification of silences and 
fricatives, but that LSF’s recovered from vocalized passages 
are compatible with the synthesis of intelligible speech. 

 

1. INTRODUCTION 
 
There has been interest recently in the idea of a sensor-
based system allowing speech communication via the 
standard articulators, but without glottal activity – that is, a 
silent speech interface. Possible applications include a silent 
cellphone, silent voice data entry system, or an alternative to 
tracheo-oesophagal speech (TES) for persons having 
undergone a tracheotomy. Approaches using ultrasound 
imaging [1] and electromyography [2] have appeared in the 
literature. X-rays and magnetic resonance imaging (MRI) 
[3-5], though of excellent spatial resolution, are probably 
not applicable here due to health and portability issues. This 
article addresses the viability of the ultrasound option by 
evaluating the quality of the imagery-extracted phonetic 
parameters using spectral distortion measurements and 
informal listening tests.  

The work is based on an ultrasound dataset with a lip 
profile image embedded in each frame, along with a 
synchronized audio track. Section 2 details data acquisition 
and preprocessing, while the machine learning approach 
used to map tongue and lip contours onto LSF’s is described 
in section 3. Problems encountered in an initial analysis pass 
– due to ambiguities between vocalized and unvocalized 
phones – are discussed in section 4, and some interpretative 
commentary given. Spectral distortion measurements and 
informal listening scores on voiced speech – the principal 
focus of this article – are presented in section 5. The article 
closes with conclusions and perspectives for the future.         
 

 
2. DATA ACQUISITION AND PREPROCESSING 

 
Data were taken using an Acoustic Imaging Performa 30 Hz 
ultrasound machine [6] with a 2 to 4 MHz, 96 element 
curvilinear array. The University of Maryland HATS system 
[7] was employed to immobilize the speaker’s head and 
support the transducer beneath the chin (ultimately, of 
course, a lighter, wearable system is envisaged). An 
example image is shown in figure 1.  
 

 
Figure 1. Example ultrasound image showing tongue contour  
(arrow; tongue tip is to the right) and embedded lip profile image 
(the insert at the lower left of the image). 
 

Tongue contours were extracted using a maximum 
smoothed spatial intensity gradient criterion, and were 
stored as the r values measured at 14 equally spaced fixed θ 
points (r=0 is at the center of the US probe). The lip 
contours were obtained by simple binarization of the profile 
image, and the x-y positions of the horizontal extrema of 
upper and lower lips, as well as that of the lip commissure, 
were then stored. The x-y coordinates of points a small 
distance above and below each of these points were also 
stored, in order to provide indicators of lip rounding and lip 
opening angle. The input to the machine learning algorithm 



thus consisted of the 14 tongue r values plus 9 x-y pairs for 
the lips, for a total of 32 inputs, as shown schematically in 
figure 2.  

 
Figure 2. Data from 2 frames, one marked by circles, the other by 
asterisks (tongue-lip distances are not to scale). To the left, the 14 
tongue contour r values; at right, the 9 lip contour x-y values.   
 

The speech corpus consisted of phonetically balanced 6-
sentence Rainbow and 9-sentence Grandfather passages, 
each repeated twice, for a total of 30 sentences. The 
resulting 149.7 seconds of speech was stored as 4491 .jpg 
ultrasound frames and 30 11025 Hz .wav audio files. LSF-
based synthesis is known to be more robust against 
distortion compared to using, for example, LPC coefficients 
[8]. Twelve target LSF’s were calculated for each 33.3 ms 
frame using linear predictive coding and a hanning window 
with a symmetric half-frame overlap. The residual signal 
from each frame was also retained.  

The speech corpus is not large enough to warrant more 
aggressive modelling using, for example, Hidden Markov 
Models. The focus of this article is to evaluate the capacity 
of the images to furnish viable phonetic information on a 
frame by frame basis. A larger corpus is under study. 
 

3. MACHINE LEARNING ALGORITHM 
 
Multilayer perceptrons (MLP) [9] were used to perform the 
mapping between the 32 input variables and the 12 LSF’s. 
A separate network was used for each LSF, rather than a 
single fully connected net, in order to reduce the number of 
adjustable parameters in the model. Before training, a 
variable selection procedure [10] removed between 1 and 5 
of the least salient inputs from each LSF network. Thirty-
one outlier frames in which the automatic contour finding 
had failed were removed from the training set. The training 
minimized a weighted least squares cost function given by     
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where e is the vector of LSF errors, and the matrix of 
weights W, 
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(i is the LSF index, j the frame number) originally 
introduced by Laroia et al. [11] for weighting spectral 
distortion measures, favors examples in which the LSF 
being trained is near a formant. This gave a small 
improvement in performance over an unweighted error. 

Following the methodology used in [12], model selection 
was performed with the the virtual leave one out [13] (also 
called PRESS statistic [14]) method, since it allows to use 
the entire data set for training (earlier tests with 90% train 
and 10% test gave similar results). Models of increasing 
complexity were trained, and the best model for each LSF 
retained. Typically, the selected networks contained fewer 
than 5 hidden units.      
 

4. DISAMBIGUATION 
 
A first training pass revealed that the system was unable to 
faithfully reproduce the larger excursions of the LSF values, 
remaining instead in mid-range, nearer the mean. To explore 
the problem, a k-means algorithm [15] automatically 
clustered the data into 150 classes of tongue/lip contours, 
and the LSF vectors associated with each class examined. It 
was discovered that many input contour classes contained 
two, or even three clusters of LSF vectors, corresponding to 
voiced speech, silences, and/or fricatives. The learning 
algorithm in those cases had simply learned the mean of the 
often rather diverse LSF vectors present in the class. A 
contour class containing all three types of LSF is shown in 
figure 3. 
 

 
Figure 3. Tongue/lip contour class 140: the LSF trajectories (lower 
part of figure) form 3 clusters. The pictogram (upper part) 
identifies these as voiced, silent, and fricative LSF trajectories. 
The algorithm learns the average of the 3 classes, leading to poorer 
performance.  
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That longer, intersyllabic silences exhibit ambiguity is 
not surprising, as the tongue and lips need not be in any 
particular position during such intervals (an unambiguous 
“rest” position of the tongue in very long silences was, 
however, observed). The implication is that users of a silent 
speech interface will have to learn to use some mechanism 
other than their glottis, presumably supplied by the 
interface, to control the excitation of their speech 
waveforms, much as is the case today for users of TES or 
electrolarynxes.  

What is more troublesome is ambiguity between voiced 
sounds and stops or fricatives, which are crucial to the 
production of intelligible speech. This result is unexpected, 
as stops/fricatives should in principle correspond to rather 
well defined configurations of the vocal apparatus. As the 
size of the corpus is not sufficient to study the phenomenon 
in detail, the decision was made to simply remove all 
silences, stops, and fricatives from the training set – leaving 
a total of 2559 voiced frames – and to concentrate upon the 
ability of the system to learn voiced speech. The selection of 
frames to remove was based on their Euclidean LSF 
distance from average silent and fricative frames. It is hoped 
that with a larger training set, more sophisticated image 
processing, and in the future the inclusion of additional 
sensors, the disambiguation of stops and fricatives will 
become possible.  
 

5. QUALITY ASSESSMENT 
 
The result of the training on voiced speech is shown in 
figure 4. LSF’s 2, and 4-8 appear to be the easiest to learn 
from the tongue and lip images. For the remaining LSF’s, 
essentially just the mean was learned. 
 

 
Figure 4. Scatter plot of training results for the 12 LSF’s. 
Horizontal axis: true LSF; vertically, learned LSF. 
 

The critical issue for a silent speech interface is 
intelligibility, which can only be evaluated using subjective 
listening tests carried out on synthesized passages. High 
quality synthesis will only be possible with a larger training 
corpus which allows the use of phonetic trajectory 
modelling. In this article, three simpler tests are employed in 

order to give some idea of the degree of intelligibility that 
one might expect in the final system.  

The tests chosen were: the mean RMS log spectral 
distortion, SD, due to the imperfect learning of the LSF’s; a 
differential mean opinion score (MOS) based on SD; and 
informal listening tests on LPC-reconstructed speech using 
residual and noise activations. The spectral distortion in dB 
is calculated in the classical way using:   
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where A, A’ are, respectively, the LPC polynomials derived 
from the original LSF’s and the learned LSF’s; and N = 
512, n0 = 6, n1 = 200, giving a frequency range of 129 – 
4307 Hz and a bin size of 21.5 Hz. The differential MOS 
score is evaluated with respect to a “transparent” 1 dB 
distortion using the empirical relation [16]:  
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For comparison, SD and MOS values were also calculated 
at two additional points: one from an early trial in which 
silences and fricatives were retained during training (but not 
in evaluating SD), and another using the fixed, mean values 
of the true LSF’s. The informal listening tests consisted of 
having  a few colleagues listen to the synthesis results and 
give their impressions. As the training did not produce 
LSF’s for silences and fricatives, artificial values were used, 
consisting of the mean LSF vector over silent frames for the 
silences (coupled with a factor of 2 reduction in amplitude), 
and a random choice of 5 fricative LSF vectors taken from 
the original training set. Results are summarized in Table I. 
In the last line of the table appears the comparison made 
using the true original LSF values (artificial silences and 
fricatives were not used in line 5a, in order to have one 
“perfect” file). Files used in the listening tests (lines 1, 3, 
and 5) may be consulted online [17].  

The results show that the machine learning substantially 
improved both numerical performance and listening 
intelligibility as compared to using the means, and that 
removing silences and fricatives further improved the 
results on voiced frames. The listening test for line 2, 
though not included in the table/website due to differing 
conditions, gave results slightly worse than those of line 3. 
At SD = 4dB, the learned vocal LSF’s are still far from 
“transparent,” but, if ∆MOS is any measure, should not lead 
to catastrophically lower intelligibility. This notion is 
supported by the listening tests, which suggest that from a 
perceptual standpoint, the learned LSF’s are almost as good 
as the original ones, at least for this type of test. In 

1 2 3 4 

5 6 7 8

9 10 11 12 



particular, using the learned LSF’s with the true residual 
gave very acceptable speech (line 3a). Of course, in a real 
silent speech interface, one will not have the residual, and 
the results obtained here using a noise activation are 
probably not yet good enough to be usable. There is also 
still the issue of the silences and fricatives. A more 
elaborate synthesis test on a larger corpus is being 
developed. 
 
Table I. Spectral distortion SD on voiced frames, ∆MOS, and 
informal listening test results. ∆MOS is measured with respect to a 
1 dB “transparent” benchmark. Artificial silences and fricatives 
were used on lines 1, 3, and 5b, as explained in the text. Files used 
in the line 1, 3, and 5 listening tests are consultable online [17]. 
(The listening test for line 2, not included on the website due to 
differing conditions, gave results somewhat worse than line 3.)    

Listening Test # Method SD  
dB 

∆ 
MOS Activ. Comments 

a: resid very distorted 1 mean LSF’s 5.7 –2.5 
b: noise modulated noise 

2 LSF’s learned  
on all frames 

4.9 –2.2 _ 

a: resid a bit worse than 5a 3 LSF’s learned  
on voiced frames 

4.0 –1.8 
b: noise a bit worse than 5b

4 “transparent” 1.0   0.0 – 
a: resid perfect 5 true LSF’s 

on all frames 
 

0.0 
 

+0.76 b: noise whispery;  
fair intelligibility  

 

 
6. CONCLUSIONS AND PERSPECTIVES 

 
It has been shown that sagittal ultrasound tongue contours 
and lip profile information are not at present sufficient for 
learning the line spectral frequencies of silent and fricative 
speech frames. On voiced speech, however, the machine 
learning results seem very promising, from a spectral 
distortion and informal listening test viewpoint. If 
disambiguation of silent and fricative frames can be 
achieved, via a larger training corpus and more 
sophisticated image and speech processing tools, it thus 
seems likely that a real time silent speech interface based on 
ultrasound and lip video will be feasible. Work on a much 
larger corpus is currently underway.    
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