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Abstract

It is known from biological data that the response patterns of
interneurons in the olfactory macroglomerulus (MGC) of insects are of
central importance for the coding of the olfactory signal. We propose an
analytically tractable model of the MGC which allows us to relate the
distribution of response patterns to the architecture of the network.

1. Introduction

The processing of pheromone odors in the antennal lobe of several insect species relies on
a number of response patterns of the antennal lobe neurons in reaction to stimulation with
pheromone components and blends. Antennal lobe interneurons receive input from different
receptor types, and relay this input to antennal lobe projection neurons via excitatory as
well as inhibitory synapses. The diversity of the responses of the interneurons and
projection neurons as well the long response latencies of these neurons to pheromone
stimulation or electrical stimulation of the antenna, suggest a polysynaptic pathway



between the receptor neurons and these projection neurons (for a review see (Kaissling,
1990; Masson and Mustaparta, 1990)).

Figure 1: With courtesy of John Hildebrand, by permission from Oxford University
Press, from: Christensen, Mustaparta and Hildebrand: Discrimination of sex
pheromone blends in the olfactory system of the moth, Chemical Senses, Vol 14,
no 3, pp 463-477, 1989.

In the MGC of Manduca sexta, antennal lobe interneurons respond in various ways to
antennal stimulation with single pheromone components or the blend: pheromone



generalists respond by either excitation or inhibition to both components and the blend:
they cannot discriminate the components; pheromone specialists respond (i) to one
component but not to the other by either excitation or inhibition, (ii) with different
response patterns to the presence of the single components or the blend, namely with
excitation  to one component, with inhibition to the other component and with a mixed
response to the blend. These neurons can also follow pulsed stimulation up to a cut-off
frequency (Figure 1).
A model of the MGC (Linster et al, 1993), based on biological data (anatomical and
physiological) has demonstrated that the full diversity of response patterns can be
reproduced with a random architecture using very simple ingredients such as spiking
neurons governed by a first order differential equation, and synapses modeled as simple
delay lines. In a model with uniform distributions of afferent, inhibitory and excitatory
synapses, the distribution of the response patterns depends on the following network
parameters: the percentage of afferent, inhibitory and excitatory synapses, the ratio of the
average excitation of any interneuron to its spiking threshold, and the amount of feedback
in the network.
In the present paper, we show that the behavior of such a model can be described by a
statistical approach, allowing us to search through parameter space and to make predictions
about the biological system without exhaustive simulations. We compare the results
obtained with simulation of the network model to the results obtained analytically by the
statistical approach, and we show that the approximations made for the statistical
descriptions are valid.

2. Simulations and comparison to biological data

In (Linster et al, 1993), we have used a simple neuron model: all neurons are spiking
neurons, governed by a first order differential equation, with a membrane time constant and
a probabilistic threshold Θ. The time constant represents the decay time of the membrane
potential of the neuron. The output of each neuron consists of an all-or-none action
potential with unit amplitude that is generated when the membrane potential of the cell
crosses a threshold, whose cumulative distribution function is a continuous and bounded
probabilistic function of the membrane potential. All sources of delay and signal
transformation from the presynaptic neuron to its postsynaptic site are modeled by a
synaptic time delay. These delays are chosen in a random distribution (gaussian), with a
longer mean value for inhibitory synapses than for excitatory synapses. We model two
main populations of olfactory neurons: receptor neurons which are sensitive to the main
pheromone component (called A) or to the minor pheromone component (called B) project
uniformly onto the network of interneurons; two types of interneurons (excitatory and
inhibitory) exist: each interneuron is allowed to make one synapse with any other
interneuron.

The model exhibits several behaviors that agree with biological data, and it allows us to
state several predictive hypotheses about the processing of the pheromone blend. We
observe two broad classes of interneurons: selective (to one odor component) and non-
selective neurons (in comparison to Figure 1). Selective neurons and non-selective neurons
exhibit a variety of response patterns, which fall into three classes: inhibitory, excitatory
and mixed (Figure 2). Such a classification has indeed been proposed for olfactory antennal
lobe neurons (local interneurons and projection neurons) in the specialist olfactory system



in Manduca (Christensen and Hildebrand, 1987) and for the cockroach (Burrows et al, 1982;
Boeckh and Ernst, 1987).
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Figure 2: Response patterns of interneurons in the model presented, in response to
stimulation with single components A and B, and with a blend with equal
component concentrations. Receptor neurons fire at maximum frequency during the
stimulations. The interneuron in the upper row is inhibited by stimulus A, excited
by stimulus B, and has a mixed response (excitation followed by inhibition) to the
blend: in reference to Figure 1, this is a pheromone specialist receiving mixed input
from both types of receptor neurons. These types of simple and mixed responses can
be observed in the model at low connectivity, where the average excitation received
by an interneuron is low compared to its spiking threshold. The neuron in the middle
row responds with similar mixed responses to  stimuli A, B and A+B. The neuron in
the lower row responds to all stimuli with the same oscillatory response, here the
average excitation received by an interneuron approaches or exceeds the spiking
threshold of the neurons. Network parameters: 15 receptor neurons; 35 interneurons;
40% excitatory interneurons; 60% inhibitory interneurons; afferent connectivity
10%; membrane time constant 25 ms; mean inhibitory synaptic delays 100 ms;
mean excitatory synaptic delays 25 ms, spiking threshold 4.0, synaptic weights +1
and -1.

In our model, as well as in biological systems (Christensen and Hildebrand 1988,
Christensen et al., 1989) we observe a number of local interneurons that cannot follow



pulsed stimulation beyond a neuron-specific cut-off frequency. This frequency depends on
the neuron response pattern and on the duration of the interstimulus interval.
Therefore, the type of response pattern is of central importance for the coding of the
olfactory signal. Thus, in order to be able to relate the coding capabilities of a (model or
biological) network to its architecture, we have investigated the distribution of response
patterns both analytically and by simulations.

3. Analytical approach

In order to investigate these questions in a more rigorous way, some of us (C.L., D.M.,
G.D., L.P.) have designed a simplified, analytically tractable model.
We define two layers of interneurons: those which receive direct afferent input from the
receptor neurons (layer 1), and those which receive only input from other interneurons
(layer 2). In order to predict the response pattern of any interneuron as a function of the
network parameters, we make the following assumptions: (i) statistically, all interneurons
within a given layer receive the same synaptic input, (ii) the effect of feedback loops from
layer 2 can be neglected, (iii) the response patterns have the same distribution  for
stimulations either by the blend or by pure components. Assumption (i) is correct because
of the uniform distribution of synapses in the network of interneurons. Assumption (ii) is
valid at low connectivity: if the average amount of excitation received by an interneuron is
low as compared to its spiking threshold, its firing probability is low; therefore, the effect
of the excitation from the receptors is vanishingly small beyond two interneurons: we thus
neglect the effect of signals sent from layer 2. Thus, feedback is present within layer 1, and
layer 2 receives only feedforward connections. Assumption (iii) is plausible if we suppose
that the natural pheromone blend is more relevant for the system than the single
components of the blend. We further assume in the analytical approach (as in the
simulations) that the synaptic delays are longer on the average for inhibitory synapses than
for excitatory synapses .
An interneuron can thus respond with four types of patterns: non-response, which means
that it does not have a presynaptic neuron (this response pattern can only occur in layer 2,
at low connectivity); excitation, meaning that an interneuron receives only afferent input
from receptor neurons or from excitatory interneurons; inhibition, meaning that an
interneuron receives only input from inhibitory interneurons (this can occur in layer 2
only); and mixed responses, covering all other combinations of presynaptic input.
We consider a network of N + Nr neurons, N (number of interneurons) and Nr (number of
receptor neurons) being random variables, N + Nr being fixed. We define the probability ni
that a neuron is an inhibitory interneuron, and the probability ne that it is an excitatory
interneuron. Any interneuron has a probability c to make one synapse (with synaptic
weight +1 or -1) with any other interneuron and a probability (1 - c) not to make a synapse
with this interneuron; cr is the afferent connectivity: any receptor neuron has a probability
cr to connect once to any interneuron, and a probability (1 - cr) not to connect to this
interneuron. Then na = 1 - (1 - cr)Nr is the probability that an interneuron belongs to layer
1, and the number of interneurons in layer 1 obeys a binomial distribution with expectation
value N na and variance N na (1 – na). In the following, the fixed number of interneurons in
layer 1 will be taken equal to its expectation value. Similarly, the number of interneurons
in layer 2 is taken to be N (1 - na).
Because of the assumptions made above,  in both layers, we  take into account for each
interneuron the N na c synapses from presynaptic neurons of layer1. In layer 1, these



neurons respond with excitatory or mixed responses. Pe
1 = nena N c is the probability that

an interneuron in layer 1 responds with an excitation, and Pm
1 = 1 - nena N c is the

probability that an interneuron in layer 1 receives mixed synaptic input.
In layer 2, we have to consider two cases: (i) at low connectivity, if
N c na < 1, P0

2 = 1 - N c na is the probability that an interneuron of layer 2 does not
receive a synapse, thus does not respond to stimulation,  Pe

2 = N c nane is the probability
that a neuron in layer 2 responds with excitation,  Pi

2 = N c nani is the probability that an
interneuron responds with inhibition; (ii) at higher connectivity, N c na > 1,  P0

2 = 0,
 Pe

2 = ne na N c and  Pi
2 = ni na N c. In both cases (i) and (ii), the probability that an

interneuron in layer 2 has a mixed response pattern is  Pm
2 = 1 - P0

2 - Pe
2
 - Pi

2.
Thus, an interneuron in the model responds with excitation with probability
Pe

  = na Pe
1 + (1 - na) Pe

2
, with inhibition with probability Pi

  = na Pi
1 + (1 - na) Pi

2
 and has

a mixed response with probability Pm
  =na  Pm

1 + (1 - na) Pm
2
.
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Figure 4: Analytically derived distribution of the response patterns in a typical
network (35 interneurons, 15 receptor neurons, 40% excitation, 60% inhibition,
spiking threshold 4.0); the curves show the percentage of interneurons in the model
which respond with a given pattern, as a function of the connectivity c. In this case,
the average excitation an interneuron receives from other interneurons is 3.15 at
c=0.3.

Figure 4 shows the distribution of the response patterns computed analytically for a typical
set of parameters. In order to perform comparisons between computed pattern distributions
and pattern distributions obtained from simulations with the model, we designed an
automatic classifier for the response patterns, based on the perceptron learning rule and the
pocket algorithm (Gallant 1986). The classifier is trained to classify the responses of
individual interneurons, based on their membrane potential, into 5 typical response classes:
non-response, pure excitation, pure inhibition, simple mixed response and oscillatory



responses. Figure 5 shows the simulation results for the same set of parameters as for
Figure 4. The agreement between the two curves shows that the approximations which we
have made in order to describe the analytical model are valid.
Figure 6 shows how the mixed responses in the simulations divide into simple mixed and
oscillatory responses. When the validity limit of the approximations made in the analytical
approach is reached, all neurons fire at maximum frequency and the network oscillates.
Therefore, the analytical model describes satisfactorily the whole range of connectivity in
which the pattern distribution does not reduce to oscillations. The oscillation frequency is
determined by the mean synaptic delays and by the membrane time constants; more detailed
results on the oscillatory behavior will be published in a future paper.
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Figure 5: Distribution of the response patterns obtained from simulations of the
model with the set of parameters described above. The curves show the percentages
of interneurons that respond with a given pattern, as a function of connectivity c.
For each value of c, 100 simulation runs with three different stimulation inputs have
been averaged.
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Figure 6: Distribution of simple mixed and oscillatory responses in the simulation
model. With the set of parameters chosen, condition ne c ≈ Θ is satisfied for c≈0.3.



4. Conclusion

In the olfactory system of insects and mammals, a number of response patterns are
observed, which are of central importance for the coding of the olfactory signal. In the
present paper, we show that, under some constraints, an analytical model can predict the
existence and the distribution of these response patterns. We further show that the
transition between non-oscillatory and oscillatory regimes is governed by a single
parameter (ne c / Θ). It is thus possible, to explore the parameter space without exhaustive
simulations, and to relate the coding capabilities of a model or biological network to its
architecture.
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