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Abstract. Natural speech is produced by the vocal organs of a par-
ticular talker. The acoustic features of the speech signal must therefore
be correlated with the movements of the articulators (lips, jaw, tongue,
velum,...). For instance, hearing impaired people (and not only them)
improve their understanding of speech by lip reading. This chapter is an
overview of audiovisual speech processing with emphasis on some exper-
iments concerning recognition, speaker verification, indexing and corpus
based synthesis from tongue and lips movements.

1 Introduction

A talking face is more intelligible, expressive, recognisable, attractive than
acoustic speech alone. Natural speech is produced by the vocal organs of a par-
ticular talker. The acoustic features of the speech signal must therefore be cor-
related with the movements of the articulators (lips, jaw, tongue, velum,...). For
instance, hearing impaired people (and most of us) improve their understanding
of speech by lip reading. Lip reading also increases understanding in adverse en-
vironment. All these reasons motivate the research done on audiovisual speech
processing.

This chapter is an overview of audio-visual speech processing. The combined
use of facial and speech information improves speech recognition, identity ver-
ification and robustness to forgeries. Multi-stream models of the synchrony of
visual and acoustic information have applications in the analysis, coding, recog-
nition and synthesis of talking faces. SmartPhones, VisioPhones, WebPhones,
SecurePhones, Visio-Conferences, Virtual Reality worlds are gaining popularity.
This defines several applications of audiovisual speech processing, e.g:

– Audio-Visual speech recognition : Automatic lip-reading to help understand-
ing in adverse environment like a cocktail party, . . .

– Audio-Visual speaker verification : Detection of forgeries
– Speech driven animation of the face : Could we look and sound like somebody

else ?
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– Speaker indexing : Who is talking in a video sequence ?
– OUISPER : a silent speech interface : Corpus based synthesis from tongue

and lips movements

This chapter reviews some of the signal processing techniques which have been
developped and experimented for these applications. It is organised as follows :
features extraction techniques, for face and speech are first analysed, followed by
an overview of modelling and classification techniques. It is shown within this
chapter how similar techniques may be used in the framework of five different
applications. The experimental results of these applications are detailed and
finally, conclusions and perspectives are given.

2 Features Extraction

Audiovisual applications analyse video data and take benefit from information
extracted from the two available signals: the audio and the visual signals. Fea-
tures extraction from these two signals is the preliminary step to any further
analysis. The most common features used in the five applications mentionned
previously are detailed here. Apart from the description of the features, this sec-
tion also addresses issues related to temporal and spatial segmentation, to the
sampling of signals and to the dimension of features vectors.

2.1 Temporal Segmentation

One of the main difference between the audio and the visual signal extracted
from a video stream is the temporal sampling : while the visual stream is di-
vided into frames which could be directly handled, audio samples are generally
grouped together to form larger units which allow to extract reliable features.
Audio samples can be grouped using a sliding analyis window (e.g of 10ms). This
window moves over the signal (overlapping may be allowed) and each position
leads to the extraction of relevant audio features to characterize the temporal
segment attached to the window.

As speech oriented applications are considered, the basic signal unit is the
phone (or a subword based unit as speech synthesis is concerned). Phonetic
segmentation is generally performed in the same time as their recognition. For
example, phones are modeled into three to five states within a Hidden Markov
Models (HMM) framework, and the features extracted from a sliding window are
used as observations to estimate the current state. Whenever the signal leaves
the last state of a given phone, a phonetic temporal boundary is added. More
details are further given concerning HMM and speech recognition in section 4.2.

Whenever phonetic modeling is adopted, all or a part of speech training
databases must be manually segmented into phones. Unfortunately, such a man-
ual phonetic segmentation of the speech signal is difficult and time consuming.
For applications where text output is not needed, an alternative segmental de-
composition of speech, called ALISP (Automatic Language Independant Speech
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Processing techniques), has been introduced in [1]. This decomposition is com-
puted in three main steps. First, speech signal is decomposed into variable length
units using the temporal decomposition algorithm described in [2]. This algo-
rithm is based on the detection of quasi-stationary segments in the parametric
representation of the signal. Then, unit classes are built by gathering together
acoustically similar speech segments using an unsupervised vector quantization
algorithm [3].

This decomposition is driven only by the data and is independent from the
language and from the text, but correspondence of ALISP segmentation with
phonetic transcriptions has been studied [4]. A consistent mapping was found,
which was however far from a one to one correspondence. Applications using the
ALISP segmentation are discussed later.

2.2 Managing Sampling Rates and Alignement

Two issues arise when first comparing an audio stream with a visual one: the
difference in sampling rates and the alignement. Concerning sample rates, any
easy solution to recover a common sampling rate is to choose for a reference
which may be the audio rate or the visual one. In the first case, the visual signal
must be over sampled. For instance, if a sliding window of 10ms is considered
to produce audio observations while video frames are observed every 40 ms,
interpolation must be provided to produce ”new” visual features leading to the
same number of frames per second (cf 4.2, 4.3).

Another problem is alignement. Audio and visual streams may not be synchro-
nised at a particular time due to co-articulation effects and articulator inertia. In
fact, the articulators sometimes move in anticipation of a phonetic event before
the phone is produced. In these cases, the visual information may be available be-
fore the acoustic evidence. Many methods for modelling audio-visual asynchrony
have been proposed and are detailed in section 3.

2.3 Spatial Segmentation

Priortoanyfeaturecomputationstage,videoframesareusuallyspatiallysegmented
inorder to focusonparticular regionsof interest.Applications reported in this chap-
termainlydealwithspeechprocessing.Mostoftheseregionsof interestaretherefore
related to faces; that is either faces or face features like eyes or lips.

In most of the cases, face features are localized within a face area which has
been previously determined. A complete survey about face detection may be
found in [5].

Two face detection systems have been experimented. The first one, the Viola
and Jones algorithm [6], may be qualified as a ”classical” one, considering that
its use is widely spread over the community. It is based on the estimation of a
”strong” classifier composed of a cascade of many weak classifiers, each of these
weak classifiers being attached to a particular Haar feature. A stage of learn-
ing is thus required to produce this ”strong” classifier. The nature of the data
included in the learning base then influences the type of faces which can be cor-
rectly detected afterwards. As a consequence, different cascades must be learnt
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to allow the detection of faces under different orientations. Typically, a cascade
is dedicated to frontal faces detection and another one to profile faces detection.
This system has been used in the framework of the VMike project concerning
audiovisual speech recognition (cf section 4.2). Faces are first extracted thanks
to a frontal cascade. A mouth cascade (that is to say a classifier which has been
learnt over a database containing samples of mouth), is applied on the lower
part of the detected face.

The second system may be considered as a probabilistic equivalent of the
Viola and Jones method [7]. While this system still relies on the estimation of a
strong classifier, the difference is that the underlying classifier function is then
used to estimate the distribution of the object of interest (faces in our case), that
is to model the generation of such objects within images (such a model is called
a ”generative model”). As this distribution is computed, many partitions of the
input images are considered and the patches they are composed of are assigned a
label (”object of interest” versus ”background”) depending on the estimation of
likelihoods. As for the Viola and Jones method, any object may be considered.
A two stage process then allows to detect faces and eyes within faces.

This algorithm has been applied prior to features extraction within the frame-
work of asynchrony detection 4.3 and within the framework of face verification.
Concerning the asynchrony detection application, eyes position allows to deter-
mine a region of interest where to look for the mouth knowing the geometrical
structure of the human face. Then, the actual mouth detection step is performed
using a Viola and Jones detector [6]: it was developped by Castrillón et al. [8]
and is freely available on the internet for download.

A different kind of face features is used on ultrasound images within the
framework of the OUISPER project (section 4.4). In that context, objects of
interest are the lips, the jaws and the tongue. A classical approach to characterize
such local objects is to extract their contours using automatic methods.

Fully automatic methods use classical edge-detection method, basically
Canny’s one or its variations to segment an object in the image. Such meth-
ods are easy to use and require no a priori knowledge on the object shape.
However, non relevant contours could also be extracted and a post-processing
is often needed to remove them. Furthermore, the parametrization of extracted
contour is a difficult task. Active contours (also known as Snakes), introduced by
Kass [9], are semi-automatic methods to track edges in image sequences. They
are based on the assumption that the edge is smooth and that the object is
well contrasted with respect to the background. Here, the contour is initialized
manually and its motion is driven by the image data, minimizing a potential,
which can embed a priori knowledge on the object shape and on its motion. In
order to track an object in sequence, the contour found in the current frame can
be used to initialize the contour in the next frame.

2.4 Faces Normalization and Selection

Once eyes position is obtained within a face, a geometrical normalization is
performed in order to make the line between the eyes horizontal. Then, a mask
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Fig. 1. Face detection and normalization

is applied in order to remove artifacts that might appear at the border of the
face. Finally, image pixels are normalized by histogram equalization. Figure 1
shows an example on a face from the BANCA database (see section 4.1).

Given that the rotation of the face, its (partial) occlusion or bad lightning
conditions can lead to a poor quality detected face whose features are not repre-
sentative of the person, a method has been designed to keep only the best faces.
This selection is obtained by removing all detection results that might lead to
degraded results regarding the aimed application (e.g: authentication). For each
frame f of the video, a reliability score r(f) is computed as the inverse of the eu-
clidean distance between the detected face and its projection into the eigenface
space (see figure 2).

Consequently, a threshold is applied on r(f) in order to keep only the best
faces within the video sequences:

Face f is selected if and only if r(f) > α · max
f ′∈Nf

r(f ′) . (1)

where Nf is the set of all faces detected in the video sequence. α = 2
3 has been

used in our experiments. Only the selected faces are then used for authentication.
Figure 3 shows an example of the application of this method.

2.5 Audio Features

Most speech recognition and speaker verification systems use short-term cepstral
features. The two most popular sets of features are cepstrum coefficients obtained
with a Mel-frequency cepstrum coefficient (MFCC) [10] analysis and the ones
whose computation relies on a perceptual linear predictive (PLP) [11] analysis.
In both cases, a short-term power spectrum is estimated on a fixed frame (20-30
milliseconds), with the most used frame rate being 100 hz.
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Fig. 2. Reliability based on the distance from face space

To get MFCC coefficients, a cosine transform is applied to the log power
spectrum. A root-linear prediction cepstral coefficient (LPCC) analysis is used
to obtain the PLP cepstrum parameters.

2.6 Visual Features

A difference must be made between local features which are attached to a par-
ticular set of points within the region of interest that must be characterized ;
and global which produce a new representation of the region of interest treating
it as a whole. Both features are detailed thereafter.

Local features. SIFT (Scale Invariant Feature Transform) descriptors [12] are
known to be among the best local descriptors [13]. Their extraction can be
coarsely summarized into three stages: extraction of keypoint candidates, filter-
ing and descriptors calculation.

Keypoint candidates extraction relies on the scale-space theoretical back-
ground [14,15]. Once these candidates are extracted, their location is refined
and their scale is determined. Keypoints are then filtered according to some con-
straints on contrast and geometrical properties (ratio of principal curvatures).
Each remaining keypoint is finally represented by a 128 dimensional vector by
computing gradient orientation and magnitude over its neighbourhood and by
quantizing values spatially (reducing to a 4x4 array) and regarding orientation
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Fig. 3. Face with maximum r (left), selected (center) and rejected face (right)

(8 bins). Each keypoint is also defined regarding three other data: its spatial
location, its scale and its orientation. SIFT descriptors have been used for face
verification (cf section 4.3).

Global features. Local methods require a precise localization of particular
points within the region of interest. Depending on illumination, occlusions, such
a localization may not be easily obtained. Global methods then allow to overcome
this drawback.

The first kind of global features rely on the Discrete Cosine Transformation
(DCT) which are used for asynchrony detection (cf section 4.3) and audiovisual
speech recognition (cf section 4.2). Their extraction is illustrated in figure 4.

Only the 28 coefficients corresponding to the low spatial frequency are kept,
as shown in figure 5.

The eigenfaces method [16] may also be used to code the relevant information
in the region of interest. The main principle is to project face images (viewed as
intensity vectors) in a space where data scattering is maximized. Such a space is
obtained by applying Principal Component Analysis (PCA) over a training set
composed of numerous face images. Its direction vectors are called eigenfaces as
they refer to eigenvectors of the training data covariance matrix.

Such a method may easily be extended to any visual object given that enough
learning data are available. It has thus been applied to lips (eigenlips) and
tongues (eigentongues) within the framework of our experiments concerning au-
diovisual speech recognition (OUISPER project).

The control points of the optimal snake are good features of the object edges.

2.7 Audiovisual Features and Decision Fusion

Each of the audiovisual applications detailed in the next sections are related to
an underlying decision process: transcribing speech, deciding whether a person
claiming he/she is person λ is effectively λ, deciding whether an audio stream
is synchronised with the visual one, etc. All these decision processes may take
benefit from considering in the same time audio features vectors and visual ones.
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Fig. 4. Visual speech features extraction. 1– Eyes detection. 2– Selection of the region
of interest where to look for the mouth. 3– Mouth detection. 4-5– DCT coefficients
computation.

Fig. 5. Visual speech features extraction. 28 low spatial frequency DCT coefficients
are extracted, in a zigzag manner.

Two main approaches may then be adopted. The first one is called early fusion
and is based on the computation of audiovisual features vectors from audio and
visual features vectors (for instance concatenation). The second one is called
late fusion and relies on the fusion at the decision level. Many different methods
may be applied to combine the outputs of all the classifiers used in the modeling
process [17]: majority voting, max, min, sum, . . .. We will also mention here the
use of Support Vector Machines SVMs to perform fusion at the score level (e.g
for audiovisual identity verification involving scores given by each modality.

Early and late fusion methods have been experimented within the framework
of several audiovisual applications and are detailed thereafter.

2.8 Dimension Reduction

The size of the learning databases required to compute models is a function of
the dimension of the feature vectors chosen to represent audio segments/visual



36 G. Chollet et al.

regions. As a consequence, handling high dimensional feature vectors may be
difficult if not enough learning data are available. Dimension reduction may
then be used to overcome this issue. Many methods are available: Principal
Component Analysis (PCA) or Linear Discriminant Analysis (LDA), . . . PCA
has already been presented within the section concerning eigenfaces.

LDA is much more appropriate for classification. Typically, its properties are
interesting for audiovisual speech recognition (cf section 4.2) since classes are
then known (phones). On the difference of PCA which tends only to maximize
intra-classes scattering, LDA also tends in the same time to minimize inter-
classes scattering.

Another method for dimension reduction is the Co-Inertia Analysis (CoIA
[18]).This method is a multivariate statistical analysis that aims at jointly trans-
forming two signal (the acoustic and the visual one when performing audiovisual
synchrony analysis) in order to maximise their covariance. Denoting X ∈ R

n and
Y ∈ R

m the acoustic and visual features vectors, CoIA can be summarized by the
following equation (a and b are column vectors of A and B optimal projection
matrices):

(a,b) = argmax
(a∈Rn,b∈Rm)

cov
(
at · X,bt · Y

)
(2)

Details for A and B calculation can be found in [18]. It will be shown in section
4.3 how to derive synchrony measures from A and B matrices using their first
K vectors.

3 Modeling and Classification

Once features vectors have been extracted from the audio and the video stream,
a modeling stage is applied to compute representations which will be used to
make the final decision. Most of the time these models are statistics. For in-
stance, Gaussian Mixture Models model the distribution of observation vectors
as a combination of gaussian distributions. These models may be used for model-
ing phones observation distribution, as the speech of a given speaker (see sections
4.2,4.3). Hidden Markov Models (HMMs) then allow to model a statistical pro-
cess involving different states.

These models are at the heart of many audiovisual applications and are de-
tailed in this section.

3.1 Gaussian Mixture Models

As already mentionned, GMM distribution is a mixture whose components are
classical Gaussian distributions. This results in the following form for the GMM
distribution:

p(X) =
K∑

k=1

wkNk(X, μ
k
, Γ

k
) =

K∑

k=1

wk(2π)−p/2
∥∥
∥Γ

k

∥∥
∥
−1/2

e−
1
2 (X−μ

k
)T Γ −1

k
(X−μ

k
)

(3)
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where K, X, wk, μ
k
, Γ

k
are respectively the number of components in the GMM,

the speech feature vector, the weight of the kth component in the mixture (i.e.
its probability of appearance), the mean vector and the covariance matrix of this
kth Gaussian component. Given a GMM to model the speech, a sequence of T
speech feature vectors will have the following likelihood:

p(X1, ..., XT ) =
t=1∏

T

p(Xt) (4)

This supposes that the speech feature vectors are independent given the GMM
model. Therefore the same likelihood will be obtained if we take a random order
of the same sequence of T vectors. Large GMM distributions have been used to
represent speech in general in speaker recognition systems [19]. The number of
components K can take large values, sometimes more than 2048.

Given a set of feature vectors the estimation of the GMM parameters, i.e. the
components weights wk and the mean and covariance matrices (μ

k
, Γ k) does not

have a direct analytical solution. The estimation of the distribution parameters
is then based on the Estimation-Maximization (EM) algorithm. It is an iterative
algorithm that adjusts in each iteration the model parameters while ensuring a
non-decrease of the likelihood of the training data.

In some cases, the amount of data available for training is not large enough to
estimate the GMM parameters. A constrained training is applied and is called
adaptation. Actually, starting from an existing GMM, the parameters are ad-
justed in order to better describe, based on a criterion, the training data. The
adjustment is constrained either by an a priori distribution function like in the
Maximum A Priori (MAP) or Bayesian adaptation or by a transformation func-
tion applied on the models parameters like in the Maximum Likelihood Linear
Regression (MLLR) adaptation. A unified adaptation theory has been proposed
in [20].

3.2 Hidden Markov Models

A Markov Model is a finite state machine composed of N states. It changes
state once every time unit. In Hidden Markov Models states are not observed
and each time a state is entered, it emits an observation according to a state-
specific probability distribution.

Formally, an HMM is defined as :

λ = (si, aij , bj)

si state ii=1,2,..,N

aij transition probability between i and j
bi(ok) emission probability of observation ok at state i

Looking at a series of observations O = o1, o2, ..oT does not directly indicate
the sequence of states S = s1, s2, .., sN which are hidden. However, knowing
the emission probabilities bi(ok) and the transition probabilities aij allows to



38 G. Chollet et al.

state 1 state 2 state 3

o1 o2 o3

p1(o1) p2(o2) p3(o3)

a12 a23

a33a22a11

Fig. 6. Example of a HMM model with three states

estimate the associated states sequence thanks to the Viterbi algorithm [21]. All
these probabilies are thus required to compute the sequence of hidden states.
The very first stage is then to estimate them using the Baum-Welch algorithm
over a training set.

3.3 HMMs Extensions

Two other kinds of statistical models may be derived from the classical HMMs
to facilitate audiovisual process modeling, namely the Multistream HMMs and
the coupled HMMs (CHMMs) [22,23,24].

Multistream HMMs may be considered as a late fusion method. In this ap-
proach, each modality (here the audio one and the visual one ) is independently
processed and pre-classified. The final classification is based on the fusion of the
outputs of both modalities. Multistream HMMs derive the most likely class by
taking the product of the likelihoods of the two single-modality classifier de-
cisions, using appropriate weights λ. The models for each mode are estimated
separately.

In the case of state-synchronous decision fusion, the scores (weighted likeli-
hoods) are multiplied after eachtime unit in order to find a new audio-visual
likelihood of the observation being generated by a state :

P (oav,t|s) = P (oa,t|s)λaP (ov,t|s)λv

An advantage of decision fusion over early fusion is the possibility of weight-
ing the importance of the two modes independently: the weights λa and λv may
be chosen so as to model the reliability of each modality. However, assigning
the good weights to different streams is a critical step and if the weights are
not chosen properly, the system might perform poorly. In fact, the weights can
be defined in a static manner by using a-priori knowledge or they can be esti-
mated and learned on a validation dataset. For a more complete description of
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this dynamic weighting technique, we refer the reader to [25] in which multi-
stream combination is used to improve the noise robustness of automatic speech
recognition (ASR) systems.

It has already been explained that audio and visual streams may not be
synchronised at a given time due to co-articulation effects and articulator inertia.
Many methods for modelling audio-visual asynchrony have been proposed in the
literature including multistream HMMs we presented above, product HMMs and
coupled HMMs. The product HMM is a generalisation of the state-synchronous
multistream HMMs that combines the stream log-likelihoods at an higher level.
A CHMM [24] can be considered as a set of HMMs in which each HMM is
dedicated to one stream. In the common topology of coupled HMM, the discrete
nodes at time t for each HMM are conditionned by the discrete nodes at time
t − 1 of all the HMMs of the set. Thanks to this property, CHMM can model
the audio and visual state asynchrony while preserving their natural correlation
over time.

4 Applications

Four main on-going experimentations will be detailed afterwards: audiovisual
speech recognition, audiovisual identity verification, speaker indexing, and
speech reconstruction from silent-speech. All these applications make use of the
features and models which have been presented in the previous section.

4.1 The BANCA Database

The BANCA database [26] has been used for our experiments concerning au-
diovisual speech recognition and for our audiovisual identity verification system.
Here is a brief overview of its content.

The BANCA database contains audiovisual recordings of 52 persons talking
in front of a camera equipped with a microphone. Two disjoint groups (G1 and
G2, of 26 persons each) are made of 13 females and 13 males. Each person
recorded 12 sessions divided in 3 different conditions. In each session, one true
and one false identity claims were recorded. The difference between true and false
identity claims only stays in what the person says: his/her name and address
and a personal PIN for true identity claims, and the name and address and the
personal PIN of the target for false identity claims.

Concerning identity verification, seven evaluation protocols for identity veri-
fication are defined for the BANCA database. The Pooled protocol, which con-
tains 232 client accesses and 312 impostor accesses per group, from any recording
conditions has been chosen for our evaluation.

4.2 Speech Recognition

Most state-of-the-art Automatic Speech Recognition (ASR) systems make use of
the acoustic signal only and ignore visual speech cues while visual information
has been shown to be helpful in improving the quality of speech recognizers,
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especially under noisy conditions [27,28,29]. The system described in this sec-
tion involves information extracted from both modalities to improve recognition
performances.

Audiovisual recognition units: Audio only ASR systems generally use
phones as basic recognition units. As the visual signal only provides partial in-
formation about the underlying sequence of phones as all the articulators are not
visible (usually only the lips), various sets of phones that are acoustically distinct
may be visually indistinguishable. A possible solution is to consider ”visemes”
(the linguistically minimal units which are visually distinguishable). However,
having different classes in the audio and the video system components compli-
cates audiovisual integration: identical classes for both modalities will then be
used afterwards and both components will recognize phones.

Audiovisual integration: The concept behind bimodal ASR is to combine
the information from each mode in order to increase performances which could
be obtained considering each mode separately [29,30,31]. Both early and late
fusion have been tested.

Early fusion: the vectors of each single mode are concatenated. Given time-
synchronous audio and visual feature vectors oa,t and ov,t, feature fusion con-
siders oav,t = [oa,t, ov,t] ∈ Rlav, where lav = la + lv as the joint audio-visual
observation. So a single classifier is trained on the concatenated vector. It is also
possible to process the concatenated vectors with any transformation (such as
Linear Discriminant Analysis LDA) in order to reduce the increased number of
coefficients and facilitate classification (see Figure 7).

Late fusion: as already explained, multistream HMMs derives the most likely
speech class by taking the product of the likelihoods produced using models
learned for each mode. The final likelihood is then:

P (oav,t|s) = P (oa,t|s)λaP (ov,t|s)λv

Experiments:

Data and features. This work is done within the framework of the VMike
project [32]. VMike is a video microphone, which includes both a microphone
and an optical retina. Experiments have been led on the BANCA database: 208
subjects were recorded in three different scenarios, controlled, degraded and ad-
verse over 12 different sessions. During each recording, the subject was prompted
to say a random 12 digit number, his/her name, address and date of birth. In the
scope of this work, only the 12 digit sequences of the scenario ”controlled” are
extracted. In order to test the performance of the developed audiovisual speech
system under noisy conditions, those utterances are combined with samples of
babble noise at several signal to noise ratios (SNR). The babble sample is taken
from the NOISEX database [33].

The retina has been simulated for evaluation. First, a detection algorithm is
applied on every frame and outputs the position of the mouth as an image of
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size 200x200 (thanks to the Viola&Jones mouth detector described in section
2.3). Horizontal and vertical projection profiles are then computed (cf fig. 8).

The 200 projections along the X axis and 200 projections along the Y axis
are concatenated to a single vector whose dimension is reduced to 40 using
an LDA after a feature mean normalization. So as to capture dynamic speech
information, each vector is then extended by concatenating its 7 chronologically
preceding and the 7 following vectors. The resulting 600 features per sample are
finally transformed into vectors of 40 using LDA.

In order to compare these features to state-of-the-art features, DCT coeffi-
cients of the detected mouths are also computed (these zones are firstly scaled
to a 64x64 image) and the 100 most energetic coefficients are then selected. The
same process as the one described for profiles features is then applied resulting
in a DCT feature vector of size 40. The computation of all the visual features is
summarized in figure 9:

Concerning the audio features, 13 feature-mean-normalized MFCC coefficients
are extracted and extended with first and second derivatives of each coefficient.
In order to obtain audio and visual features synchronicity, a simple element-wise
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Fig. 9. Visual features extraction process

linear interpolation of the visual features to the audio frame rate is applied. From
the up-sampled pictures the Discrete Cosine Transform (DCT) coefficients and
profiles are extracted.

Models and Fusion. The acoustic models are context-independent. Each mono-
phone consists of 3 states, which are modeled by 16 Gaussians each. The HTK
Toolkit [34] software is used for model training and testing.

For the feature fusion, the 39-dimensional audio vectors are simply concate-
nated with the 40-dimensional visual features (DCT or profiles respectively).
The combined vectors are then LDA transformed before being used for model
estimation. Decision fusion is obtained by combining separately trained mod-
els for the audio and the visual coefficients to two-stream models, with specific
weights on each stream. We assume state-synchronous fusion for combining the
stream likelihoods. The optimal weighting is found through by trial-and-error.

Results. Two speech recognizers are then evaluated : video-only and audio-visual.
The terminology for the different visual features is the following (see figure 9):
DCT/PRO and DCT2/PRO2 correspond to the features without and with dy-
namic concatenation respectively.

1. Visual-only speech recognition: the results of all four different para-
metrization experiments do not exceed 45% accuracy (Fig.10). Using 15 con-
secutive vectors to include feature dynamics, did not improve performance.
The results for single (DCT/PRO) and for concatenated (DCT2/PRO2)
vectors respectively do not differ significantly.

2. Audio-visual speech recognition: figure (a) in fig. 11 shows the perfor-
mance for all decision fusion recognizers at -5 db. Both DCT2 and PRO2
improve word recognition, but only DCT2 does so significantly compared to
the audio-only system. When feature fusion is applied (figure (b) in fig. 11)
under noisy conditions, the recognition is improved by up to 12 percent with
respect to audio-only recognition.
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Fig. 10. Visual-only ASR

4.3 Audiovisual Identity Verification

Biometrics identity verification systems have been proven to be much more effec-
tive when information extracted from several modalities are merged together [35].
The system presented in this section relies on the fusion of three different modal-
ities: the visual modality based on face verification, the audio one based on
speaker verification and the synchrony modality based on the analysis of the
correspondence between the audio and the visual stream (in a region located
around the lips). We will also deal with the issue of speech conversion which
may be considered as a high-effort attack against the verification system.

Face verification. Face verification may rely either on global face features (as in
the eigenfaces approach [16]) or on local ones (approach using facial keypoints).
The latter are able to capture geometrical relations between particular parts of
the face and are thus more efficient when geometrical distortions occur. On the
other hand, global features are easier to compute and takes the whole face into
account: no information is lost. We propose to benefit from the complementarity
of these two approaches in a fusion framework, where two algorithms based
on global and local features respectively will be fused at scores level. The first
algorithm uses classical eigenfaces global features (cf section 2.6) and the second
one involves local SIFT descriptors (cf section 2.6). The comparison stage is the
same for both type of features and is based on an SVD-matching process [36,37].

SIFT descriptors have already been used together with the SVD based match-
ing method in [38] which deals with object matching. Concerning face authenti-
cation in particular, SIFT descriptors have been tested in [39] where the match-
ing between two images relies on the minimum euclidian distance between their
SIFT descriptors. Unfortunately, this method relies on a manual registration of
the different images. The main advantage of our method is then to propose an
end-to-end system which does not suppose to know the position of faces before
applying verification.
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(a) Audio-visual decision-fusion results at
-5db

(b) Audio-visual parameter-fusion results

Fig. 11. Audiovisual ASR results

SVD-based matching method was introduced for spatial matching between
keypoints [36] and relies on the proximity and exclusion principles enunciated by
Ullman [40], which impose one-to-one correspondences.

Let us consider two sets of keypoints and R be the distance matrix between
them. The matching consists in searching for pairs (i, j) that minimize Rij .
Searching for one-to-one correspondences may be facilitated if some projection
matrix Q allows to make R closer to the identity matrix I. Such a problem is
referred as the orthogonal procrustes problem: find the orthogonal matrix Q that
minimizes ||R − IQ|| [41]. It is proven that Q can be computed as follows:

1. Compute R Singular Values Decomposition (SVD): R = UDV ′
2. Replace D by the identity I to get Q: Q = UV ′

The last step is then to extract good pairings (i, j) searching for the elements
of Q that are the greatest both of their row and their column.
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This main principle is further improved by using a gaussian-weighted distance
to compute the proximity matrix Gij = exp

(
−Rij/2σ2

)
where σ quantifies the

maximal tolerated distance between two keypoints. This parameter is known to
have very little influence on the final results [42] and will be set to 1/8 of the
width of the image as this value has been already successfully tested [42]. A first
extension was defined in [42] to take local descriptions around keypoints into
account. SVD is then performed on the matrix G defined as Gij = f(Cij)g(Rij)
where Cij denotes the correlation between gray-levels around i and j keypoints,
and where g is the gaussian function previously defined. Two different f functions
may be used [37]:

Exponential: f(Cij) = exp(−(Cij − 1)2/2γ2) . (5)
Linear: f(Cij) = (Cij + 1)/2 . (6)

where γ = 0.4 [37]. A second improvement has been experimented in [38] where
gray-level correlation is replaced with SIFT descriptors correlation (only the
linear form for f function is tested).

At test time, pairings (i, j) are filtered according to their associated correlation
Cij and the number of pairings with Cij > Corrth is taken as the authentication
score.

Considering a video as a set of faces, the same SVD matching process is used
to search for correspondences between two videos whatever face representation is
used (the global one based on eigenfaces or the local one using SIFT descriptors).
Concerning SIFT matching, our system is the same as the one in [38]. Position
vectors (used to compute R proximity matrix) include the spatial location, the
scale and the orientation of SIFT descriptors.

A {ε − λ} test will refer afterwards to an authentication test involving two
videos: V ε of a person ε claiming she/he is person λ and V λ, the enrollment
video of person λ. Let then NSIFT

f be the number of detected faces selected (cf
section 2.4) in each video. SIFT descriptors are extracted from each of these
faces. Resulting video representations will be denoted afterwards as follows:
{Sε

k}k∈[1...NSIFT
f ] and {Sλ

k}k∈[1...NSIFT
f ], where Sε

k = {sε,k
i }i∈[1...Nk

desc]
. Nk

desc rep-

resents the number of 128-dimensional SIFT descriptors sk
i extracted from face

k. Matching is performed between each pair (Sε
k,Sλ

l ) related to SIFT descriptors
extracted from faces k and l retained from V λ and V ε respectively. In this case,
Cij and Rij elements are computed between sk,ε

i and sl,λ
j descriptors. An authen-

tication score (i.e: the number of matchings between descriptors) is obtained for
each pair (Sε

k,Sλ
l ). These scores are firstly normalized according to the number

of SIFT descriptors and their mean then produces a single score:

S(V ε, V λ) =
1

(NSIFT
f )2

NSIFT
f∑

k=1

NSIFT
f∑

l=1

M(Sε
k, Sλ

l )
min(Nk

desc, N
l
desc)

. (7)

where M(Sε
k, Sλ

l ) is the number of matchings between Sε
k = {sε,k

i }i∈[1...Nk
desc]

and

Sλ
l = {sλ,l

i }i∈[1...N l
desc]

.



46 G. Chollet et al.

Let us consider the same {ε − λ} authentication test to set out the matching
process for global representations. The same number NPCA

f of detected faces
is kept in each video. Their eigenface features will be denoted afterwards as
{Eε

k}k∈[1...NPCA
f ] and {Eλ

k}k∈[1...NPCA
f ] respectively.

Pairwise matching is performed between each Eε
k and Eλ

k , that is between
faces directly. As these features treat faces as a whole, location information is
lost and the G matrix is reduced to its description part: Gij = f(Cij). These Cij

elements are computed between Eε
i and Eλ

j . This differs with SIFT matching
since a single authentication score will be obtained for each test:

S(V ε, V λ) = M(Eε, Eλ) . (8)

where M(Eε, Eλ) is the number of matchings between Eε = {Eε
k}k∈[1...NPCA

f ]

and Eλ = {Eλ
l }l∈[1...NP CA

f
].

Parameters have been set in the following manner during our experiments:
NSIFT

f = 5, NSIFT
f = 100, Ei ∈ R

97 (i.e we chose to keep the 97 most influent
directions to compute global representations), Corrth = 0.4. The f function is
linear for global matching and exponential for local matching. The form of f
function has been chosen by cross-validation between groups G1 and G2 of the
BANCA database.

Speaker verification. Speaker verification is based on GMM modeling (cf
section 3.1) of each speaker included in the BANCA database. To overcome
the lack of training data dedicated to each speaker, adaptation of a world (or
universal) model is performed using the MAP algorithm. The verification score
is computed as the following likelihood ratio :

S(V ε, V λ) =
1

Nx

∑

x

log
(

P (xε|λ)
P (xε|Ω)

)

where xε denotes an observation vector in the audio stream of V ε, Ω the world
model and Nx the number of observation vectors considered in the whole speech
sequence.

Synchrony modality

Speaker conversion and face animation can be considered as high-effort forg-
eries, which – if they are performed correctly – are very difficult to detect. But,
most of the current talking-face biometrics verification systems can be fooled
by much simpler attacks, e.g. replay attacks [43]. In this scenario, the impostor
previously acquired a biometric sample of his/her target. For instance, he could
have recorded his/her voice during a phone call and taken a picture of his/her
face without being noticed. Then, a basic idea would be to play the recording of
the voice through speakers while displaying the picture in front of the camera.
An example of the resulting acquired picture is shown in figure 12.

Therefore we introduced a new biometric modality based on a client-
dependent measure of the synchrony between acoustic and visual speech features.
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Fig. 12. Example of a simple replay attack

Audio and visual speech features are respectively MFCC and DCT coefficients
extracted as explained in sections 2.5 and 2.6. In order to equalize the sample
rates of acoustic and visual features (initially 100 Hz and 25 Hz respectively),
visual features are linearly interpolated.

Using the acoustic and visual features X and Y extracted from the enroll-
ment sequence, CoIA (cf section 2.8) is applied in order to compute the client-
dependent synchrony model (A,B).

At test time, acoustic and visual feature vectors Xε and Y ε of the test sequence
ε are extracted and a measure Sc of their synchrony is computed using the
synchrony model

(
Aλ,Bλ

)
of the claimed identity λ:

Sc(V ε, V λ) =
1
D

D∑

k=1

corr
(
aλ

k

t
Xε,bλ

k

t
Y ε

)
(9)

where D is the number of dimensions actually used to compute the correlation.
In our case we chose D = 3.

Scores fusion. The scores provided by each modality are finally fused in a late
fusion framework involving SVM (cf section 2.7). Results obtained on groups G1
and G2 of the BANCA database are depicted in figure 13 which validates the
initial idea of taking benefit from different modalities to improve performances.

It has already been explained that the synchrony modality is appropriate
whenever robustness to high-effort attacks is required. In order to test syn-
chrony modality superiority, some work has then been dedicated to generate
forgeries which would defeat traditional modalities. Speech conversion is one of
the possible high effort attack and will be adressed in the next section.
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Fig. 13. Performances of mono-modal and multimodal verification systems

Speaker conversion. Automatic voice conversion may be defined as the
process of transforming the characteristics of speech uttered by a source speaker,
such that a listener would believe the speech was pronounced by a target speaker.

Different kinds of information are included in the speech signal: environmental
noise, speech message, speaker identity. The question of voice conversion is firstly,
to establish the most characteristic features of a source individual to transform
them to their target counterpart. The analysis part of a voice conversion algo-
rithm focuses on the extraction of speaker identity. Secondly, it will calculate
the transformation function to apply. Both operations must be performed inde-
pendently of the environment and of the message. At last, a synthesis step will
be achieved to replace the source speaker characteristics by the target speaker
characteristics.

Consider a sequence Xs = [x1, x2, . . . xn] of spectral vectors pronounced by
the source speaker and a sequence pronounced by the target speaker composed
by the same words Yt = [y1, y2, . . . yn].

Voice conversion is based on the calculation of a conversion function F that
minimizes the mean square error:

εmse = E(‖y − F (x)‖2)

where E is the expectation.
Two steps are useful to build a conversion system: a training step and a

conversion step. In the training phase speech samples from the source and the
target speaker are analysed to extract the main features. Then these features
are time aligned and a conversion function is estimated to map the source and
the target features.

The aim of the conversion step is then to apply the estimated conversion
function rule to the source speech signal so that the new utterance sounds like
the speech of the target speaker. The last step is the re-synthesis of the signal in
order to reconstruct the speech segment of the source voice after the conversion.

The most representative techniques of voice conversion are based on vector
quantization [44], on Gaussian Mixture Models and derived [45,46,47,48], on
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Multiple Linear Regression [49] and on an indexation in a client memory [50].
Two of these conversion methods will be developed afterwards and their influence
on an automatic speaker recognition system will be evaluated.

The first one is based on ALISP (cf section 2.1) [50]. One hour of speech
pronounced by the target speaker is available. This speech signal is segmented
and vector quantization allows to extract 64 classes which will constitute the
target codebook. As this speech signal is now annotated regarding these 64
recognition units (or classes), a HMM may be trained and applied on the source
signal.

Once the source signal has been segmented, the synthesis stage is applied:
each segment is replaced by one of its closest counterpart in the same class (i.e
the one with the same index) among target classes. This counterpart is selected
comparing prosodic parameters (Harmonic plus Noise [48]) between the source
segment and all the segment contained in the target class (cf figure 14) thanks
to the Dynamic Time Warping (DTW).

Fig. 14. Conversion step

This technique of conversion provided interesting results on the NIST 2004
corpus [50], as the recognition rate effectively decreased when applying speech
conversion.

The second technique we experimented consists in modifying all the shape
of the source spectrum to correspond to the target spectrum [49]. The different
stages of this techniques are depicted in the figure 15. In the first time, the
source segment and the target segment (they contain the same utterance) are
aligned using DTW. Vector Quantization is then applied on each segment to
extract 64 classes. Mappings between source and target classes is then estimated
using DTW (mapping codebook). After a normalization stage over each class,
conversion matrices (from source class i to target class j, . . .) are then estimated
using Multiple Linear Regression. These matrices finally allow to transform a
new source segment so that it corresponds to target speech in the feature space.
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Fig. 15. Obtaining the Mapping Codebook

As in the previous conversion method a significant decrease of the automatic
speaker recognition is demonstrated on the DET curve (cf figure 16).

The impact of speech conversion over a speaker verification system has been
clearly established. The next stage will be to test whether a modality like the
synchrony could help to deal with such attacks.

4.4 OUISPER

The audio-visual speech based applications discussed before use the video stream
in addition to the audio stream to improve speech or speaker recognition. How-
ever, for some applications, the audio stream cannot be used at all: whenever
audio is too much corrupted by noise, or, at the opposite, in the context of
speech communication in situations where silence and privacy must be main-
tained. These applications address the issue of speech recognition and/or speech
reconstruction from silent-speech, that is normal speech without glottal activity.
Speech recognition from silent-speech using electromyographic sensors to moni-
tor the articulatory muscles has been introduced in [51]. In [52], an isolated word
recognition task from whispered speech is investigated using a special acoustic
sensor called non-audible microphone (NAM). In [53], Denby proposes to use
ultrasound acquisition of the tongue and video sequences of the lips as visual
inputs of an artificial neural network and predict a relative robust LSF (Line
Spectral Frequency) representation of voiced parts of speech. This envisioned
ultrasound-based speech synthetiser could be helpful for patient having under-
gone a laryngectomy because it could provide an alternative to the tracheo-
oesophageal speech. In [54], an approach based on visual speech recognition and
concatenative synthesis driven by ultrasound and optical images of the voice
organ is introduced. This system is based on the building of a one-hour audio-
visual corpus of phonetic units, which associates visual features extracted from
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Fig. 16. Results obtained using the Multiple Linear Regression approach

video to acoustic observations. Ultrasound and optical images are coded using a
PCA-based approach similar to the EigenFaces approach described previously.
As the visual and audio streams are synchronized, the initial phonetic segmen-
tation of the video sequences can be obtained from the temporal boundaries of
the phonemes in the audio signal. These labels are generated using speech forced
alignment techniques. Then, HMM-based stochastic models trained on these vi-
sual features sequences are used to predict phonetic targets from video-only data.
Finally, a Viterbi unit selection algorithm is used to find the optimal sequence
of acoustic units given this phonetic prediction. The system is already able to
perform phonetic transcription from visual speech data with over 50% correct
recognition. Figure 17 presents an overview of this system and figure 18 shows a
typical image of the database in which a lip profile image is embedded into the
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Fig. 17. Ouisper corpus-based synthesis system overview

ultrasound image. The use of a large word dictionary and the introduction of a
Language Model will help improving the rendered signal.

4.5 Speaker Indexing

One of the most promising on-going experiments concerns speaker indexing. The
goal of this application is to answer automatically the question: Who is speaking
in a video sequence ?, taking benefit from information extracted from the audio
channel and from the video stream. This application is clearly audiovisual and
is based on many of the tools detailed in the previous sections.

First, faces are located within each frame of the considered video. Given a
sliding temporal window, audio energy is computed. A visual feature vector is
then attached to each pixel within the image (its values over time). The audio
feature vectors are sampled to match with the frame rate and both vectors
are σ − μ normalized. Correlations between all these vectors (the single audio
vector and visual feature vectors attached to each pixel) are computed. The mean
correlation is then computed for each detected face and the one with the greatest
value is defined as locating the ‘current speaker’. First results are depicted in
figure 19.

While very simple, this first method has proven to perform quite well. Further
experiments are under way, focusing especially on the choice of appropriate visual
features. The idea would then be to fuse the obtained segmentation with face
tracking/recognition and the speaker segmentation to obtain better results and
to be able to extract voice-over speech segments.
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Fig. 18. Example of an ultrasound vocal tract image with embedded lip profile

Fig. 19. Some good localizations of the current speaker (green rectangles)

5 Conclusion and Perspectives

Speech is not only an acoustic signal. It is produced by a speaker moving his
articulators. The observation of these movements helps in all aspects of speech
processing: coding, recognition, synthesis, . . . This chapter described a few on-
going experiments exploiting the correlation between acoustic and visual features
of speech. It is demonstrated that the correlation of audio and visual information
can be exploited usefully in many applications.
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