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Abstract 
 

The statistical analysis of experimentally recorded brain activity patterns may require 

comparisons between large sets of complex signals in order to find meaningful similarities 

and differences between signals with large variability. High-level representations such as 

time-frequency maps convey a wealth of useful information, but they involve a large number 

of parameters that make statistical investigations of many signals difficult at present. In this 

paper, we describe a method that performs drastic reduction in the complexity of time-

frequency representations through a modelling of the maps by elementary functions. The 

method is validated on artificial signals and subsequently applied to electrophysiological brain 

signals (local field potential) recorded from the olfactory bulb of rats while they are trained to 

recognize odours. From hundreds of experimental recordings, reproducible time-frequency 

events are detected, and relevant features are extracted, which allow further information 

processing, such as automatic classification.  
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Symbols 

a Amplitude of a bump function 

br Centroid of group Gr 

B Number of bumps 

cft Wavelet time-frequency coefficient at frequency f and time t 

δf Estimated standard deviation of cft for each time t  

δx  Normalised distance in time between two bumps 

δt  Distance in time between two bumps 

δy  Normalised distance in frequency between two bumps 

δf  Distance in frequency between two bumps 

Dr Distance of a bump to its neighbours 

d Distance between two bumps 

F Ratio of intensity modelled by a bump to the total intensity of the map 
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ϕb(f, t) Bump function 

Gr Group of bumps 

{Gz} Set of groups 

Gz The most compact group relatively to Dr 

H Frequency extension of a time-frequency window  

lf half-length of the frequency axis of a half ellipsoid function 

lt half-length of the time axis of a half ellipsoid function 

λ Losses during normalisation  

L Time extension of a time-frequency window  

µf Frequency centre of a bump function 

µt Time centre of a bump function 

N Number of time-frequency maps 

Ω  Time-frequency map  

P Number of periods defining an oscillation 

ρ Modelling residual 

R Invariance rate of a group of bumps 

σt Standard deviation of the Gaussian envelope of a Morlet wavelet 

σf Standard deviation of the Gaussian frequency spectrum of a Morlet wavelet 

s Scale step 

S Sum of intensities of the pixels of a window  

sf  Standard deviation along the vertical (frequency) axis of a Gaussian function 

st Standard deviation along the horizontal (time) axis of a Gaussian function 

τ Time step 

Θ Threshold of neighbourhood distance 

w Wavelet function 

W Time-frequency window 

Wmax Time-frequency window containing the maximal amount of oscillatory activity 

zft Normalised time-frequency coefficient at frequency f and time t 
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1 Introduction and motivation 

The purpose of this paper is to provide a new method for comparing automatically complex 

signals, related to the investigation of brain activity patterns, which are usually analyzed 

“visually” in the time-frequency domain. The motivation is the extraction of differences and 

similarities between experimental signals with large variability. In such situations, the main 

problem is that of finding an appropriate data representation, which must be parsimonious 

enough for processing with present-day algorithms and computers, yet retain the information 

that is relevant for fast and reliable comparison and classification.  

The automatic analysis of time-varying signals has been spurred to a large extent by industrial 

applications such as automatic speech recognition. In that context, numerous data 

representations (see for instance Bogert, Healy & Tukey, 1963) and classification techniques 

(such as Hidden Markov Models, see for instance Rabiner, 1989) have been designed. 

However, those representations and methods are not especially useful for discovering 

structure in time-frequency patterns, which are ubiquitous in the investigation of brain 

dynamics; they are of great interest to neurobiologists, who have been actively investigating 

the possible functional significance, for cognition, of specific types of dynamics of neural 

assemblies. Those activities can be recorded either from the surface of the brain 

(electroencephalogram, hereinafter abbreviated to EEG) or from deep implanted electrodes 

(local field potentials, hereinafter abbreviated to LFPs). Typical challenging problems can be 

found in the Brain-Computer Interface (BCI) competition (Blankertz et al., 2004), in which 

electrophysiological signals must be classified using statistical methods that range from 

elementary, such as nearest-neighbour classifiers (Cincotti et al., 2002) and linear separators, 

to elaborate ones (neural networks, support vector machines). In EEG data analysis, source 

separation is performed by Independent Component Analysis (Makeig, Bell, Jung & 

Sejnowski, 1996), and distances between signals are computed separately from the frequency 

components and from the time components (Anemuller, Sejnowski & Makeig, 2003). 

However, to the best of our knowledge, no available method allows a full description of 

complex signals in both time and frequency domains in conjunction with pattern extraction, 

leading to statistical comparison between sets of signals. In neurobiology, this might be 

particularly useful for identifying specific dynamics of a given cognitive task, as will be 

exemplified below. 

The automatic analysis of large sets of time-frequency maps involves difficult problems 

related (i) to the large number of “pixels” in the maps, and (ii) to the inter-map variability due 
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to time jitter and other sources of noise. This makes automatic map comparisons very 

complex and time consuming, even with powerful computers. Moreover, it is desirable to use, 

as a starting point, the time-frequency representations that neurobiologists are familiar with, 

in order to take advantage of the expertise gained by the visual analysis of time-frequency 

maps. Image segmentation techniques, using the EM algorithm for instance (Kapur et al., 

1996) are not readily applicable to such analyses. We describe a method that models a time-

frequency map as a sum of appropriate elementary functions; that method is a 2-dimensional 

generalization of the Gaussian mesa function modelling technique described for one-

dimensional signals (electrocardiogram analysis) in (Dubois, 2004) and (Dubois, Quenet, 

Faisandier & Dreyfus, 2006). The method will be applied in this paper to the analysis of 

electrophysiological signals, but it could be used as well for any other problem that requires a 

simple description of a time-frequency map. 

Brain rhythms are traditionally described by different oscillatory regimes including theta (4-

10 Hz), beta (15-40 Hz) and gamma (40-90 Hz) rhythms. The functional importance of 

oscillatory activities for brain computation is still a central open problem. Experimentally, 

their possible role in perception can be assessed by finding specific and reproducible patterns 

of oscillatory activities in response to a large set of stimuli having the same behavioural 

significance. Interestingly, at least some specific stimulus-induced oscillatory regimes have 

been observed in mammals mainly in response to olfactory (Freeman & Scheider, 1982) and 

visual stimuli in the cat and monkey (Singer, 1993), and in human (Tallon-Baudry, Bertrand, 

Delpuech & Pernier, 1997; Tallon-Baudry, Bertrand, Peronnet & Pernier, 1998). In those 

experiments, induced oscillatory activity has been found mainly in the gamma band (around 

40 Hz), and interpreted as a neural correlate of the transient formation of neural assemblies 

related to information processing. Responses were investigated using Fast Fourier transforms, 

and, more recently, wavelet transforms. The latter technique is particularly powerful for 

studying transient phenomena without any prior knowledge of frequency bands of interest. 

Even though repeated presentation of the same stimulus generates similar neural responses, it 

is well known that the exact time course of the response exhibits jitter, i.e. varies from one 

trial to another. Although averaging is efficient in showing events that are perfectly time-

locked to the stimulus onset (evoked-activity), it blurs out events (induced-activity) that occur 

at variable intervals following stimulus onset (Tallon-Baudry, Bertrand, Delpuech & Pernier, 

1997; Tallon-Baudry, Bertrand, Peronnet & Pernier, 1998). That difficulty can be 

circumvented by selecting a time-frequency window, and performing an ANOVA test on the 

amplitude of the maximal activity (Gruber & Müller, 2005), or mean activity (Herrmann, 
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Mecklinger & Pfeifer, 1999) within the window; however, that requires assumptions that are 

not necessarily true, and, in addition, a fairly accurate prior knowledge of the time-frequency 

area of interest (see section 3.2.2). In addition, the measurement of the maximal activity does 

not take into account peaks of lower amplitude, which can also carry meaningful information. 

The purpose of the present paper is thus to describe a new method for signal analysis and 

modelling that addresses efficiently the problem of detecting automatically reproducible time-

frequency events in spite of inter-trial variability. The method relies on the analysis of Morlet 

wavelets coupled with modelling the time-frequency maps by specific functions called 

“bumps”, which provide very parsimonious representations. Furthermore, it provides a 

quantitative index of the reproducibility of events, termed “invariance rate”. 

The method is designed to be general-purpose. It was set up in the specific context of the 

analysis of LFP recordings of the olfactory bulb of rats that were trained to solve a Go/No Go 

task based on olfactory cues (see section 3.3); however, it has also been applied successfully 

to the analysis of electro-encephalographic data for early detection of Alzheimer’s disease 

(Vialatte et al., 2005a, 2005b).  

2 Presentation of the method 

The bump2 modelling of a time-frequency map aims at representing the map with a limited 

number of elementary functions. The purpose is to reduce the huge quantity of parameters 

(tens to hundreds of thousands) that describe a time-frequency map to a sum of parametric 

functions (a few functions with some tens of parameters). A parsimonious representation is 

then obtained, which is relevant for further analysis. The method is somewhat similar in spirit 

to the matching-pursuit type algorithms (Mallat & Zhang, 1993), applied to the modelling of 

the time-frequency maps instead of being applied directly to the signal; as mentioned above, 

the rationale for modelling the map is the fact that experts of the analysis of oscillatory signals 

in LFP’s are familiar with the time-frequency maps. 

In the present section, the time-frequency map of interest is first defined, and the 

preprocessing operations applied to the signal are described; the method of bump modelling is 

                                                
2 In the present paper, two-dimensional local functions are loosely referred to as “bumps”, although those 

functions do not comply with the mathematical definition of a bump function, i.e. an infinitely differentiable 

function that is constant outside a domain. Typically, the function 
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 if !1< x < 1,      f x( ) = 0 otherwise , is a bona fide bump function. 
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subsequently described. Finally, the resulting map representation is exploited for finding 

events that are invariant across experiments. A procedure for assessing quantitatively the 

invariance of bumps and their mutual distances will be emphasized. 

2.1 Time-frequency maps 

The continuous wavelet transform (Poularikas, 1996; Mallat, 1989) of a function g(τ) is 

defined as:  

  

W
g

s,t( ) = g(! )w* ! " t

s

#
$%

&
'(

d!
")

+)

*  

where w*(τ) is the complex conjugate of the “mother wavelet” function w(τ), and t and s are 

the translation and scale factors respectively. In practice, the signal g(τ) is sampled at a known 

frequency. The scale factor acts on the central frequency f of the Fourier spectrum of the 

wavelet: f will be loosely referred to as the “frequency” of the wavelet. 

A time-frequency map Ω is a convenient 3-dimensional representation of the result of the 

wavelet transformation of a sampled signal. The x-axis is τ, which takes on discrete values 

that are multiples of the sampling period; therefore, the horizontal axis is essentially time. The 

y-axis is the frequency axis: the discrete values of the scales are chosen in such a way that the 

frequency step, or log-frequency step, along that axis, has a pre-defined value. The magnitude 

cft of the wavelet transform of the signal for a given value of the frequency f and of the 

translation factor t is plotted along the z-axis. 

There is a wide variety of wavelets. In the present study, complex Morlet wavelets were 

investigated. Complex Morlet wavelets are appropriate for time-frequency analysis of 

electroencephalographic signals (Caplan, Madsen, Raghavachari & Kahana, 2001; Düzel, et 

al., 2003; Tallon-Baudry, Bertrand, Delpuech & Pernier, 1996). Complex Morlet wavelets 

(Kronland-Martinet, Morlet & Grossmann, 1987) of Gaussian shape in time (standard 

deviation
 
!

t
) are defined as:  

  
w t( ) = A.exp !t2 / 2"

t

2( ).exp 2i# ft( )  (1) 

where σt and f are appropriately chosen parameters; they cannot be chosen independently, 

since the product σt f determines the number of periods that are present in the wavelet. In the 
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present investigation, the wavelet family defined by 2πσt f = 7 was used (see Figure 1) as 

described in (Tallon-Baudry, Bertrand, Delpuech & Pernier, 1996). 

The Fourier spectrum of a Morlet wavelet is Gaussian with standard deviation σf, with: 

  

!
f
=

1

2"!
t

. (2) 

Thus, in the present investigation: 

  

!
f
=

1

2"!
t

=
f

7
 (3) 

Therefore, the higher the central frequency of the wavelet, the wider its frequency spectrum 

(the poorer its frequency resolution), as shown on Figure 2. 

In the experiments described in the present paper, the time step is one sampling period (0.5 

msec), and the frequency step is 1 Hz. A time-frequency map of a synthetic signal is shown 

on Figure 3. Its information content is quite large: in the above conditions, 1 second of signal 

gives rise to 86 x 2,000 = 172,000 values of cft. Comparing directly hundreds of such maps is 

thus essentially impossible. 

2.2 Pre-processing of time-frequency maps  

2.2.1 Undersampling of the time (translation) axis of the map 

LFP signals were sampled at 2 KHz, which provides an unnecessarily high resolution for our 

analysis between 15 and 100 Hz. Time-frequency maps were undersampled along the time 

axis by a factor of 10. That reduces the number of parameters to 17,200 coefficients for 1 

second of signal.  

2.2.2 Normalisation 

The second pre-processing step is the normalisation of the coefficients of the time-frequency 

map (also termed “z-score transformation”): this is mandatory because time-frequency maps 

of LFPs have much higher energy for low frequencies than for high frequencies. Since the 

bump modelling algorithm detects events of highest amplitudes first (as will be shown in 

section 2.3.3), non-normalised signals would favour low frequencies, which are not 

necessarily more relevant to brain computation than higher frequencies. 

Frequencies within the map are thus balanced by defining a normalised and centred variable 

zft as:   
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ft f

ft

f

c m
z

!

"
=  (4) 

where fm  and 
 
!

f
 are the estimated mean and standard deviation of cft for frequency f during 

a time window where the animal behaves freely. zft may be negative, for coefficients smaller 

than fm . That normalisation strategy is sometimes used for noise elimination in EEG time-

frequency maps: as an example, in (Kahana, Sekuler, Caplan, Kirschen & Madsen, 1999) 

coefficients cft whose normalized values zft are smaller than 1 are deleted. In our case, it is 

desirable to keep as much information as possible before the detection of the invariant parts of 

the maps, as described in section 2.4. In order to have only positive normalized values zft, the 

latter must be shifted in the positive direction. By adding 2 units to zft (i.e. shifting zft up by 

two standard deviations) and setting negative zft’s to zero, losses λ  (as defined by relation (5)) 

are negligible (on the order of 10-5). 

( ) ( )max max

min min

2 abs 2

2

f t
ft ft

f f t t

z z
!

= =

+ " +
= # #  (5) 

Figure 4 shows a typical histogram of zft: since no value of zft is smaller than -2, the 

distribution can be trimmed below -2 without any information loss. 

Note that this normalization procedure cannot be used for the detection of event-related 

desynchronization; in the present investigation, the time localization of desynchronized events 

was not of interest. If such is not the case, no offset is applied, and the positive and negative 

parts of the resulting map are modelled separately. 

2.2.3 Dealing with noise 

Various sources of noise or disturbances may be present:  

- noise arising from the signal recording technique, 

- artefacts arising from the time-frequency transformation. 

The first kind of noise is seldom present in LFP signals investigated in this paper, and can be 

eliminated using an amplitude threshold or through visual check. 

Artefacts arising from the transform must be taken into account. Essentially, wavelet 

transforms exhibit boundary effects at the ends of the signal; therefore, the part of the map 

that is analysed must be enclosed within a boundary zone where artefacts may appear, as 

described in section 2.3.1. 
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2.3 Bump modelling algorithm 

In the present section, the generation of a parsimonious representation of the map by bump 

modelling is described. A typical result of that procedure is shown on Figure 5, displaying 

(top) a time-frequency map of a signal recorded in an “expert” rat, and (bottom) the result of 

the bump modelling of the original map: that model is described by 35 parameters (5 

parameters per bump), while the original map is described by 9,000 values of the wavelet 

coefficients cft (90 frequency steps, 100 time steps). 

The purpose of the algorithm is to approximate a time-frequency map as a sum of known 

elementary parameterized functions ϕb called bumps. The parameters of the bumps are 

adapted in order to minimize the modelling error. For each signal, the algorithm features the 

following steps:  

- (i) Define the boundaries of the map in order to avoid finite-size effects. 

- (ii) Window the map in order to define the zones to be modelled. 

- (iii) Find the zone that contains the maximum amount of energy. 

- (iv) Adapt a bump to the selected zone, and withdraw it from the original map. 

- (v) Stop if the amount of information modelled by the bumps reaches a threshold, else 

iterate to (iii). 

- (vi) Prune the model for optimal information contents. 

2.3.1 Boundaries 

Due to the abrupt changes occurring at the beginning and at the end of the recordings, 

spurious frequencies are generated by the wavelet transform. Therefore, the section of 

recorded signal to be transformed started 750 msec before the part of the signal that was of 

interest and stopped 750 msec after the end of the signal of interest. After wavelet 

transformation, the two 750 msec parts of the signal that were likely to exhibit artefacts were 

removed from the map.   

2.3.2 Resolution and windowing 

As mentioned in section 2.1, the time extension of wavelets is frequency-dependent: for high 

frequencies, wavelets have a small time extension (high time resolution), but their frequency 

spectrum is large (low frequency resolution), whereas the inverse occurs at low frequencies. 

Time-frequency patterns to be modelled are thus characterised by: 
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- a frequency-dependent time resolution as defined by relation (2): 
  

!
t
=

7

2" f
,  

- a time duration, corresponding to the duration of a biologically relevant oscillation of the 

local field potential (LFP): such an oscillation is defined as a periodic LFP signal that 

lasts at least P time periods, with 3 ≤ P ≤ 4. In this paper, P = 4 time periods will be used. 

In all the following, the term “oscillation” will be used to refer to a biologically relevant 

oscillation. 

The height and width of the bumps, expressed in terms of numbers of “pixels” of the map (i.e. 

numbers of coefficients of the wavelet expansion of the signal, after preprocessing as 

described in section 2.2), depend on σt and P. Since time-frequency patterns organised in 

oscillations lasting 3 to 4 periods are searched for, sliding windows defined as follows will be 

used: 

- The time extension L of a window centred at frequency f is equal to the time duration of 

an oscillation: 

 

L =
P

f
 (6) 

Therefore, the ratio of the time extension of the window to the time resolution of a 

wavelet at that frequency is 
  

P f

!
t

=
8"

7
;  

- The frequency extension H of that window is such that its ratio to the frequency resolution 

of the wavelet is also equal to 8π/7:  
  

H

!
f

=
8"

7
, hence 

  
H =

2!

49
Pf  (7) 

Those values are computed for each point of the time-frequency map (inside the boundaries 

defined in section 2.3.1). Thus, for each point of the map, a time-frequency window centred at 

that point is obtained (Figure 6). 

Since windows that are centred on points that lie at a boundary of the map extend beyond the 

map, provision is made for time and frequency margins, as shown on Figure 6. 

2.3.3 Search for the zone containing the maximal amount of oscillatory activity 

The normalised intensities of the pixels contained in a window describe the amount of 

oscillatory activity within the window. The modelling algorithm searches for the window 
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Wmax containing the maximal amount of that activity: for each window W, the sum  S  of the 

intensities of the “pixels” 
  

S = z
ft

t , f !W

"  that it contains is computed; the summations run on all 

points within window W. The window 
  
W

max
 with maximal  S  is selected. 

2.3.4 Bump adaptation 

Within the selected window, a bump function ϕb(f, t) is adapted, starting with a bump 

extending over the whole area of the window. The definition of the bump functions will be 

given in section 3.1. As an illustration, consider a “half-ellipsoid” bump function (Figure 7), 

defined by 

  

!
b

f ,t( ) = a 1" v      for 0 # v #1

!
b

f ,t( ) = 0               for v >1
 

where 
  
v = e

f

2
+ e

t

2( )  with 
  
e

f
= f ! µ

f( ) / l
f
and 

  
e

t
= t ! µ

t
( ) / l

t
. 

 
µ

f
and 

 
µ

t
are the coordinates 

of the centre of the ellipsoid, lf and lt are the half-lengths of the principal axes along the 

frequency and time axes respectively, and a is the amplitude of the function. Thus, the bump 

function has five parameters, subject to the following constraints: 

- µf > 0, µt > 0 and such that the centre of the bump lies within the window, 

- 0 < lt < L, 0 < lf < H, where L and H are the height and width of the window, as defined by 

relations (6) and (7). 

- a > 0. 

During the adaptation phase, the parameters of the function are optimized under the above 

constraints with a second order gradient descent using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) method (see for instance (Press, Flannery, Teukolsky & Vetterling, 2002)). The cost 

function to be optimised is the modelling error of the bump, defined by the usual sum of 

squared errors: 

 
  

C =
1

2
z

ft
!"

b
f ,t( )( )

2

t , f #W

$ , 

where the summation runs on all pixels within the window W under consideration.  

For instance, if ϕb is a half ellipsoid function, C becomes: 
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t
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2

f ,t#W

$ , where the summation runs on all parameters within 

the window W under consideration, and a, lf, lt, µf, µt are the parameters of the function.  

Thus, the time-frequency patterns modelled by the bump are restricted to one “biologically 

relevant oscillation” with a duration of 4 periods or less. Longer oscillations will be modelled 

by two bumps or more, for reasons that will be explained below. The amplitude a is 

constrained to have positive values. In the following, the value of the cost function of a bump 

after adaptation is termed the modelling error of the bump. 

If, after adaptation, a bump happens to extend outside its window (e.g. because the centre of 

the adapted bump is away from the centre of the window), the window itself is shifted in 

order to follow the bump (within the limits of the map boundaries). When the bump is finally 

adapted, it is subtracted from the time-frequency map, and the process is iterated with the next 

bump.  

2.3.5 Termination criterion and model pruning 

As usual in signal modelling, a tradeoff must be performed between accuracy and relevance 

(also termed “bias-variance dilemma”): if the number of bumps in the model is too low, the 

latter will not be accurate; if it is too large, the noise will be modelled, hence irrelevant 

information will be built into the model. Two approaches may be taken: (i) design a model 

with the largest number of bumps compatible with a reasonable computation time, and then 

prune the model; or (ii) stop the modelling procedure when additional bumps contain an 

amount of information that is deemed negligible. In the present investigation, the former 

strategy was used. To that effect, the fraction of the total intensity of the map modelled by a 

given bump is computed: 

  

F = !
B

f ,t( )
f

"
t

" / z
ft

f

"
t

" , where the summations run on all points of the map. 

In the examples shown in section 3, the stopping criterion was the following: modelling was 

terminated after computing three bumps with F < 5.10-3; that led to a typical number of 

biologically relevant oscillations per map on the order of 40.The pruning strategy that is used 

after the termination criterion defines an acceptance threshold F* for F: all bumps that model 

a fraction F of the map that is smaller than F* are discarded; the definition of the threshold 

involves the invariance rate of the groups of bumps present in the model, as defined in 

section 2.4. The pruning procedure is described in Appendix 2. 
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2.4 Analysis of the invariance of the bumps 

As mentioned above, one of the purposes of the present investigation is the automatic 

extraction of spatio-temporal patterns that are common to different time-frequency maps, e.g. 

maps derived from LFP recordings of expert rats as compared to beginner rats. Therefore, 

after modelling the time-frequency maps of interest, it is important to find “invariant” bumps, 

i.e. bumps that are consistently found in similar maps (irrespective of their amplitudes). To 

that effect, bumps are clustered into groups of radius Θ in time-frequency space. The 

invariance rate of a group is defined as the proportion of modelled signals that have a bump 

within that group (or, equivalently, the probability of occurrence of a bump, in the time-

frequency maps under investigation, within a distance Θ of the centroid of the group). 

Therefore, the choice of the parameter Θ depends on the expected amount of jitter in the 

maps: a large value of Θ will generate large groups, hence will be appropriate if jitter is large, 

but the groups may encompass irrelevant events; conversely, if jitter is small, small values of 

Θ are more appropriate. The details of the procedure, and illustrations of the influence of Θ, 

are described in Appendix 1.  

3 Results 

3.1 Choice of the bump functions 

Different kinds of five, six and seven-parameter functions were tested for bump modelling. 

The most parsimonious functions that were tested are the Gaussian function and the half-

ellipsoid function, which have five parameters. 

- Gaussian function: 

  

!
b
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a

2"s
f
s

t

exp #
f # µ

f( )
2

2s
f

2

$

%

&
&
&

'

(

)
)
)

exp #
t # µ

t( )
2

2s
t

2

$

%

&
&

'

(

)
)

 

where µf and µt are the coordinates of the centre of the bump, sf and st are the standard 

deviations along the vertical and horizontal axes respectively, and a is the amplitude of the 

function. 

- Half ellipsoid function (shown on Figure 7): 
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coordinates of the centre of the ellipsoid, lf and lt are the half lengths of the principal axes, 

and a is the amplitude of the function  

The quality of the modelling of time-frequency maps, in terms of accuracy and number of 

bumps required, was assessed on real signals. Functions with more than five parameters 

provided more accurate modelling, with fewer bumps and a smaller modelling error, than the 

Gaussian and half-ellipsoid functions. However, the latter are more parsimonious for the 

application at hand. Half ellipsoids were chosen because they led to a smaller modelling error 

than Gaussians: the average modelling error, and the residuals defined by 
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, where 

  
!

B

b f ,t( )  denotes the b-th bump function involved in 

the model, are smaller for half ellipsoids (Figure 8). Therefore, the half ellipsoid function is 

appropriate for the signals under investigation. 

3.2 Validation of the method on artificial signals 

In order to validate the method, two types of signals (type A and type B) were generated, 

containing similar oscillations, at the same time-frequency locations, but with different 

probabilities of occurrence. Those signals contain three oscillations, denoted by a, b, and c, 

centred at points a (55 Hz; 1.5 s), b (80 Hz; 1.15 s) and c (30 Hz; 0.85 s) respectively. Those 

oscillations last 3.5 periods, and their amplitude U can take one of three values (0, 1, or 4) 

with the following probabilities: 

- Type A signals (Figure 9): 

  
Pr(U = 1 a) = 1  

  
Pr(U = 4 b) = 0.4 and Pr(U = 0 b) = 0.6  

  
Pr(U = 4 c) = 0.4 and Pr(U = 0 c) = 0.6  

In addition, jitter was generated by shifting the a components in time, with respect to 

point a, by random shifts s, uniformly distributed in [-50 msec, +50 msec]; b and c 

components were not shifted. 
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- Type B signals (Figure 10): 

  
Pr(U = 1 b) = 1 

  
Pr(U = 4 a) = 0.4 and Pr(U = 0 a) = 0.6  

  
Pr(U = 4 c) = 0.4 and Pr(U = 0 c) = 0.6  

In addition, jitter was generated by shifting the b components in time, with respect to 

point b, by random shifts s, uniformly distributed in [-50 msec, +50 msec]; a and c 

components were not shifted. 

A low-amplitude Gaussian white noise (mean 0, standard deviation 0.5) was added to the 

signals. 100 type A signals and 100 type B signals, 2.5 seconds in duration, were generated. 

Therefore, the bump modelling method is expected to find out automatically that a 

components are invariant in type A signals, and that b components are invariant in type B 

signals. On that basis, an automatic classifier discriminating type A signals from type B 

signals should be designed. Note that the problem is made difficult by the fact that the 

amplitude U of the discriminant features is small (U = 1) with respect to that of the irrelevant 

components (U = 4). 

3.2.1 Invariance rates 

Figure 11 shows that averaging over maps does not provide any relevant information: the c 

components appear prominently, although they are irrelevant for our purpose. 

Table 1 shows, for each oscillation and each signal type, the invariance rate computed for the 

group that is closest, in the time-frequency map, to the oscillation of interest. High invariance 

rates are obtained for the relevant oscillations, i.e. oscillation a for type A signals, and 

oscillation b for type B signals. More specifically, 47% of invariant bumps of type A signals 

model oscillation a, 23% of invariant bumps of type A signals model oscillation b, and 30% of 

invariant bumps of type A signals model oscillation c. If no noise and no jitter were present, 

the percentages would be 56%, 22% and 22% respectively. 

 

3.2.2 Relevance of ANOVA statistical tests 

As mentioned in section 1, analysis of variance is frequently used in the processing of time-

frequency maps, on order to determine whether a significant activity is present in some time-

frequency domain. The most popular algorithm to that effect is ANOVA. It is based on the 
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assumption of Gaussian distributions, an assumption whose validity is seldom checked, and 

which is frequently invalid. Typically, applying ANOVA to the artificial signals described in 

the present section gives extremely poor results. Alternatively, non-parametric tests such as 

the Wilcoxon rank sum test may provide satisfactory results, provided the windows are 

chosen from prior knowledge, and located very accurately in order to avoid boundary effects; 

when performed on the above signals with arbitrary windows (e.g. a regular grid), that test, 

although applicable in principle, provides unsatisfactory results. However, choosing windows 

from prior knowledge obviously generates “clustering fallacy” (see for instance Golovich et 

al. 1985). Therefore, ANOVA statistical tests are not an appropriate approach for the 

automatic determination of areas of interest and feature extraction; they may be useful for 

posterior confirmation, if necessary, provided the underlying gaussian assumptions are true. 

3.2.3 Automatic signal discrimination 

Type A and type B signals cannot be discriminated easily, since the oscillations are at the 

same time-frequency locations in both signals, differing only by their probabilities of 

occurrence. Moreover, background noise is present, together with jitter. Therefore, automatic 

classification can be expected to be a difficult task. In the present section, it is shown that 

bump modelling extracts the appropriate features for classification. 

A window of extension (30 Hz x 150 ms) was defined around each position a, b and c. The 

most natural feature, in the context of the present problem, is the number of bumps per 

window. However, the time shift of the bumps with respect to the centre of the windows is 

also a quantity of interest, since components a are shifted in type A signals while component b 

is shifted in type B signals. Therefore, the classifier is fed with two numbers per window: 

- the number of bumps within the window, 

- the normalised distance e between the centre of the window and the centre of the bump 

that is closest to the centre of the window: e = (bt – wt)/(L/2), where bt is the time location 

of the centre of the bump that is closest to the centre of the window, wt is the time location 

of the centre of the window, and L is the time extension of the window. If there is no 

bump within the zone, then e = 1. 

In the usual empirical risk minimization framework (Vapnik, 1995), neural network classifiers 

of increasing complexity were trained, starting from linear classifiers, i.e. multilayer 

Perceptrons with zero hidden unit (see for instance Dreyfus, 2005). The loss function was the 

squared modelling error. In view of the low complexity of the model and the large number of 
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examples, no regularization term was added to the cost function3. Model selection was 

performed by leave-one-out cross-validation (Stone, 1974), whereby each signal is withdrawn 

in turn, training is performed on the NS – 1 remaining signals, and the classification error of 

the left-out signal is computed. The procedure is iterated NS times, and the leave-one-out 

score, i.e. the error rate on the left-out examples, is computed as 

  

1

N
S

e
(!k )

k=1

N
S

"  

where e(-k) is the classification error (1 or 0) on example k when the latter is withdrawn from 

the training set. The leave-one-out score is an unbiased estimator of the generalization error 

(Vapnik, 1995). 

For each model complexity, procedure was iterated ten times with different parameter 

initializations; Table 2 shows that, as expected, the training error decreases steadily with 

increasing complexity, while the optimal generalization ability is obtained with 4 hidden 

neurons. 

As a baseline for assessing the relevance of the features derived from bump modelling, 

consider signal (1) shown on Figure 9 (type A signal with component a and c only), and signal 

(1) shown on Figure 10 (type B signal with components b and c only); they cannot be 

discriminated visually, since the discriminant features (oscillation a for type A and oscillation 

b for type B) are buried in noise. Such “difficult” signals occur with 

probability
  
P U = 0 b( )! U = 4 c( )"
#

$
% = P U = 0 b( )P U = 4 c( ) = 0.24 ; therefore, a classifier 

that would classify those signals randomly would have an error rate of 12%, assuming an 

error rate of 0 on all other signals. The classifier using the features derived from bump 

modelling does clearly better than that, which shows that the method provides relevant 

features even in a very difficult case. 

3.3 Results on real signals  

Signals recorded from the postero-ventral part of the olfactory bulb of rats were investigated, 

as described in (Ravel et al., 2003; Martin et al., 2004). In those experiments, freely behaving 

rats had to learn to discriminate between two odours, one associated with a palatable drink 

and the other with no reward or with an aversive drink (trained rats will be referred to as 

                                                
3 Similar results to those reported here were obtained with SVM classifiers, which have a built-in regularization 

term. 
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“expert rats”, other rats as “beginners” or “naïve rats”). By inspection of the time-frequency 

maps obtained by Morlet wavelet transforms of recorded signals, it was observed that odour 

sampling induced marked changes in both gamma and beta oscillatory frequencies, and that 

beta activity could represent a correlate of olfactory recognition. The demonstration of the 

existence of a statistically significant correlation would be of importance in assessing the 

hypothesis that some oscillatory regimes would play a functional role in cognition. 

A typical signal is shown on Figure 12. Sampling started 500 ms before odour onset, and 

stopped 1 second after odour onset. The signals were sampled at 2 kHz, filtered between 1 

and 300 Hz, and wavelet transformed between 10 and 100 Hz. 200 trials, recorded from five 

different rats performing the Go/No Go odour memory task described below were available. 

For each rat, 20 signals recorded before training, and 20 signals recorded after training, were 

present in the database. 

In section 3.3.1, we describe the design of a simple classifier, whose inputs are appropriate 

parameters of the bump model of a time-frequency map; we show that the classifier can 

discriminate recordings of expert rats from recordings of naïve rats, which demonstrates that 

the bump model extracts from the map the relevant features of the oscillatory activity related 

to the task. 

In section 3.3.2, we show an example of information that can be derived from the analysis of 

the bump models of time-frequency maps of signals recorded from expert rats. 

3.3.1 Beginner/expert rat discrimination 

In the present section, our classification method (described in section 3.2.3) is applied to 

discriminate beginners from expert rats on the basis of experimental recordings.  

Each olfactory bulb signal, recorded during odour stimulation, was modelled with bumps as 

described above. Twelve windows, covering the whole time-frequency area of our signals, 

were defined: each window was 700 ms in length, and 40 Hz in height. Those windows were 

centred at 35, 55 and 75 Hz, and at 200, 700, 1200 and 1700 msec. The number of bumps 

whose time-frequency centre lies within the limits of each window was computed, resulting in 

twelve values that were input to the classifier. Model selection was performed by leave-one-

out cross-validation, as described in section 3.2.3. 

Table 3 shows the classification results. The most appropriate classifier complexity is 3 

hidden neurons. To the best of our knowledge, no published results on the automatic 

classification of LFP signals in the olfactory bulb are available for comparison. Nevertheless, 

the relevance of the features extracted by bump modelling can be shown as follows: to serve 
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as a baseline, signals recorded from the same animals, and the same electrodes, during inter-

trial intervals (resting spontaneous activity), were classified. In those conditions, the smallest 

percentage of error rates is 40.0% in the validation set (Table 4, most appropriate classifier 

complexity is 2 hidden neurons); therefore, that classification is essentially random. 

Figure 13 shows pictorially the separation of the classes performed by the classifiers for 

signals recorded during odour stimulations and between odour stimulations. In those 

experiments, a single feature (number of bumps) was used for discrimination. Additional 

features (bump width, bump location, …) for improving the error rate are currently being 

considered.  

3.3.2 Physiological and medical relevance of bump models 

A detailed discussion of the physiological relevance and implications of the results obtained 

on LFP signals can be found in (Vialatte, 2005), and will be published elsewhere. An example 

of time-frequency map of a signal recorded from an expert rat in response to eugenol, and of 

its bump model, is shown on Figure 14. 

Figure 15 shows the invariant groups found from 182 recordings of naïve rats (left) and 166 

recordings from expert rats (right), in response to eugenol. All invariant groups are found in 

the beta band, which is in agreement with the results described in (Martin et al., 2004). For all 

odours on which experiments were performed, the significant differences between naïve and 

expert rats were found in the beta band, 0.3 to 0.6 seconds after the inception of the stimulus. 

Investigations of the responses to other odours are under way. 

Detailed discussions of the results obtained by bump modelling of EEG signals have been 

published in (Vialatte, 2005), (Vialatte et al., 2005a) and (Vialatte et al., 2005b). As an 

example, Figure 16 shows the bump model of an EEG signal recorded from a patient with 

mild cognitive impairment. It has been shown that the bump modelling of EEG signals is a 

promising candidate for population-wide early detection of Alzheimer’s disease. 

4 Conclusion 

The present paper describes a novel method for analysing automatically large amounts of 

experimental data from electrophysiological experiments. It is based on the modelling of the 

time-frequency maps, obtained by wavelet transformation of the signals, which are usually 

analysed “visually”. The map is modelled as a sum of simple “bump” functions, and it has 

been shown that the resulting model allows the detection of time-frequency events that occur 
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with some degree of invariance in the experiments, and are related to the activation of 

different neural populations. 

One of the assets of the method is the fact that it allows experts to validate the result of bump 

modelling: the starting point is the time-frequency maps with which they are familiar, and the 

accuracy and relevance of the resulting bump model can be checked visually and estimated 

numerically. In addition, it provides a quantitative estimate of the reproducibility of the time-

frequency events detected by the model. 

The method was first validated on synthetic signal, and it was shown that automatic 

discrimination, based on features extracted from the bump modelling, is feasible and efficient. 

The method was also applied to real signals recorded from the olfactory bulb during Go/No-

go experiments. The relevance of the bump model was demonstrated by the design of an 

automatic classifier, whose inputs features derived from the bump model, which allowed the 

automatic discrimination of beginner rats from naïve rats, based solely on their LFP 

recordings during the tasks. A detailed discussion of the biological relevance of the bump 

models derived from the recordings can be found in (Vialatte, 2005), and will be published in 

forthcoming article. 

The feasibility and efficiency of the automatic analysis and classification of large numbers of 

time-frequency maps have also been demonstrated on EEG data for early Alzheimer’s disease 

detection, as described in (Vialatte et al., 2005a) and (Vialatte et al., 2005b). However, there 

is still room for improvements, especially by a more thorough selection of the features that are 

used for automatic classification; that topic is still under investigation. 

. 
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APPENDIX 1 

Procedure for the generation of groups 

and the computation of their invariance rates. 

1 Distance 

The above approach requires the definition of a distance on a time-frequency map. Since the 

variables on the x- and y-axes have different physical meanings, dimensionless variables must 

be defined. The time resolution is a natural reference for the distance between bumps along 

the time axis, and the frequency resolution for the distance along the frequency axis: the 

dimensionless distance δx between two points lying at the same frequency, and at a distance 

δt equal to the time resolution σt, should be equal to the dimensionless distance δy between 

two points lying at the same time, and at a distance δf = (f1 – f2) equal to the frequency 

resolution 
 
!

f
 at the mean frequency  f : if δt = σt and δf = 

 
!

f
, then δx = δy. 

Moreover, it is convenient to define the dimensionless distance in time as the ratio of the 

distance in time to the period T at the frequency of interest: 

δx = δt / T = f δt. 

As a consequence, one has, for two bumps centred at frequencies f1 and f2:  
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 (using relations (2) and (3)) with δf =(f1 – f2) 

Finally, the distance between two bumps b1 (f1, t1) and b2 (f2, t2) is equal to: 

  
d b

1
,b

2( ) = !x2
+ ! y2 . 

2 Detection of invariant areas 

The B bumps arising from the modelling of N maps within a neighbourhood of size Θ are 

clustered iteratively by the following algorithm: 

- Initialization 

o Compute the matrix of distances between the bumps of all possible pairs of 

bumps belonging to two different maps. 

- Cluster formation 
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o For each bump 
 
b

r
(r = 1, …B), find its nearest neighbour in each map (except 

the map br belongs to); denote by br,c the nearest neighbour of bump br in map 

c (c = 1 to N – 1). 

o Among those bumps, consider the bumps {
  
b

r ,k
} (

  
k = 1...K

r
,  K

r
! N "1) such 

that 
  
d(b

r
,b

r ,k
) <! , where Θ is a radius that is chosen a priori from 

considerations that will be described below. Those bumps form a group Gr, 

containing 
 
K

r
 bumps 

  
b

r ,k
 that are located at a distance of br smaller than Θ; 

denote by Dr the quantity 
  

D
r
= d(b

r
,b

r ,k
)

k=1

K
r

! . br will be referred to as the 

centroid of group Gr. 

- Selection and bump elimination 

o Among all groups Gr (  r = 1...B ), find the group(s) {Gr0} that contain(s) the 

largest number of bumps Kr0:   Kr0
= max

r
(K

r
) .  

o Within the group(s) {Gr0}, select the most compact group Gz, i.e. the group 

such that 
  
D

z
= min

r0
(D

r0
) , with invariance rate R = Kz/N: thus, the invariance 

rate of a group is the proportion of modelled signals that have at least one 

bump within that group. 

o Search for the bumps 
  
b

r ,n
neighbouring br: find all bumps on all signals such 

that 
  
d(b

r
,b

r ,n
) <! . Withdraw the bumps 

  
b

r ,n
 from the set of bumps.  

o Iterate the formation of new groups {Gr} until the largest group contains less 

than 2 bumps. 

The groups {
 
G

z
} thus obtained are the invariant areas of interest. 

The maximal distance Θ has an influence on the number of groups {
 
G

z
}, and on the area of 

those groups. The smaller Θ, the closer the bumps must be in order to be considered as 

neighbours. Therefore, a small value of Θ will select small zones that have a high density of 

invariant bumps, whereas a large value of Θ  will generate larger clusters encompassing a 

larger number of bumps (Figure 17). If one is interested in highly invariant events, and willing 

to accept a risk of missing some of them, a small value of Θ must be chosen; conversely, if a 

large amount of jitter is expected, then a larger value of Θ must be chosen, but irrelevant 

events might be captured. Therefore, a case-dependent tradeoff must be performed. In the 
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absence of prior information, the value of the threshold that gives rise to the maximum 

number of groups Gz should be chosen, and the groups with low invariance rates should be 

discarded. 

The results reported in section 3 were obtained with Θ = 5, which is a satisfactory tradeoff 

between tolerance to jitter (just over the duration of an oscillation) and the number of bumps 

present in each group.  

Figure 18 shows the invariance analysis of real signals: the locations of invariant groups are 

superimposed on a time-frequency map obtained by averaging 100 such maps, from real 

signals. Clearly, the analysis provides information about invariant groups that cannot be 

provided by map averaging, because of the variability of the signals. 
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APPENDIX 2 

Pruning of the bump models 

 
The present appendix describes the procedure used for pruning a model made of a large 

number of bumps, in order to discard bumps that model noise. As described in section 2.3.5, 

we denote by F the fraction of the energy of the map that is described by a bump. Since there 

may be invariant bumps with small energies, a selection criterion must take into account the 

invariance rate of the bump, in addition to the energy modelled by that bump. 

Consider a bump model built with a stopping criterion Fs, i.e. a model containing bumps that 

model a fraction of the map that is larger than Fs. Assume that the pruning method consists in 

discarding all bumps whose invariance rate is smaller than a threshold T(Fs); an appropriate 

choice of T(Fs) will be discussed below. We denote by I(Fs) the number of “informative” 

groups, i.e. the groups whose invariance rate is larger than T(Fs), and by N(Fs) the number of 

“noise” groups, whose invariance rate is below the threshold. Therefore, we seek the value F* 

of Fs for which the ratio I(Fs) / N(Fs) is maximum. To that effect, Fs is varied between two 

values Fmin and Fmax, where Fmax is the fraction of the map that is modeled by the first bump 

built into the model, and Fmin is the fraction modelled by the bumps when the amplitude of 

10% of them is smaller than the maximum amplitude of the wavelet transform of white 

Gaussian noise. 

The value of the threshold T(Fs) is found as follows: having built a model with termination 

criterion Fs, additional maps are generated by randomly shuffling the bumps, and groups are 

built as described in appendix 1. The threshold is defined as the value of T(Fs) whose 

cumulative distribution function is larger than 99%. 
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Table and figure captions 

 

Table 1: Detection of invariant areas. Invariance rates of the groups that are closest to the 

location of the oscillations in the time-frequency map, with Θ = 5, for A and B type signals. 

Boldface figures indicate the most invariant group detected 

 

Table 2: Error rates for the classification of 100 type A signals and 100 type B signals, for 100 

different initialisations of each classifier. 

 

Table 3: Error rates for the classification of 100 recordings from beginner rats and 100 

recordings from expert rats during olfactory stimulation, as a function of the number of 

hidden neurons.  

 

Table 4: Error rates for the classification of 100 recordings from beginner rats and 100 

recordings from expert rats in the absence of olfactory stimulation (during inter-trial 

intervals), as a function of the number of hidden neurons. 

 

Figure 1: Real part of w(t) (relation (1)), with 2πσt f = 7 (left) and 2πσt f = 14 (right). 

 

Figure 2: The time and frequency extensions of wavelets in a time-frequency map (adapted 

from Mallat, 1989). 

 

Figure 3: An example of wavelet transform. Left, an artificial signal made of three 

components: a low frequency (30 Hz) oscillation, and two oscillatory bursts around (50 Hz; 

500-700 msec) and (70 Hz; 1000-1200 msec). Right, the time-frequency map of this signal 

obtained with the complex Morlet wavelet. A color version of the figure is posted at: 

http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html. 

 

Figure 4: Distribution of the normalized wavelet coefficients zft (relation (4)) for a typical 

map, before shifting them in the positive direction: all values of zft are larger than -2. 

 

Figure 5: Example of bump modelling. Top: normalised time-frequency map of a LFP signal; 

bottom: bump modelling (using “half ellipsoid” functions, defined in section 3.1) of the map: 
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the arrow points at the bump that has the largest amplitude. A color version of the figure is 

posted at: http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html. 

 

Figure 6: Definition of the sliding windows, and of time and frequency margins, for P = 4. 

The grey area is the map under investigation. fl and fh are the lowest and highest frequencies 

of interest. The dark grey rectangle is a sliding window. 

 

Figure 7: Half ellipsoid bump, with its five parameters (a, lf, lt, µf, µt). 

 

Figure 8: Modelling residual ρ for real signals modelled with Gaussians (top curve) or half 

ellipsoids (bottom curve) as a function of the number of bumps (results of the modelling of 

100 maps of signals recorded from the rat olfactory bulb during 1.5 second). 

 

Figure 9: Type A signals. Left: examples of artificial signals containing oscillations located at 

points a, b and c. From top to bottom (1) a and c; (2) b and a; (3) a, b and c oscillations. 

Right: time-frequency map of the third signal, containing the three oscillations. Oscillation a 

is close to the background noise, but is nevertheless present in all signals. The time-frequency 

map on the right is to be compared with the maps of Figure 10 and Figure 11; note that signal 

(1) (a and c components only) cannot be discriminated visually from signal (1) of Figure 10 

(b and c components only). A color version of the figure is posted at: 

http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html 

 

Figure 10: Type B signals. Left: examples of artificial signals containing oscillations located 

at points a, b and c. From top to bottom (1) b and c; (2) a and b; (3) a, b and c oscillations. 

Right: time-frequency map of the third signal, containing the three oscillations. Oscillation b 

is close to the background noise, but is nevertheless present in each signal. The time-

frequency map on the right is to be compared with the map of Figure 9; note that signal (1) (b 

and c components only) cannot be discriminated visually from signal (1) of Figure 9 (a and c 

components only). A color version of the figure is posted at: 

http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html 

 

Figure 11: Normalised time-frequency map of type A signals, averaged over the 100 

generated examples. Oscillations c appear prominently, although they are less invariant than a 
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oscillations. A color version of the figure is posted at: 

http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html 

 

Figure 12: Example of real signal (expert rat, odour = eugenol, stimulus onset at 500 msec).  

 

Figure 13: Classifier outputs for 100 recordings (numbered 1 to 100) of expert rats and 100 

recordings (numbered 101 to 200) of beginner rats, of any origin (5 different rats, postero-

ventral electrodes), of a validation set; classifier: neural network; expert rats are labelled as 1, 

and beginner rats are labelled as 0. Left: most appropriate (3 hidden neurons) classifier 

outputs for recordings during odour stimulation; right: most appropriate (2 hidden neurons) 

classifier outputs for recordings during inter-trial intervals. Gray areas show erroneous 

classifications (bottom = false negatives, top = false positives). 

 

Figure 14: Time-frequency map (top) and its bump model in two (middle) and three (bottom) 

dimensions. Recording of a LFP signal from an expert rat in response to eugenol. 

 

Figure 15; Invariant groups of bumps in response to eugenol. Left: naïve rats (182 

recordings); right: expert rats (166 recordings) 

 

Figure 16: Time-frequency map (top) and its bump model (bottom) for an EEG recording 

from a patient with mild cognitive impairment. Result obtained in collaboration with A. 

Cichocki, T. Rutkowski (Riken Brain Science Institute), and T. Musha (Brain Function 

Laboratory). A color version of the figure is posted at: 

http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html 

 

Figure 17: Effect of Θ on the generation of groups, for 100 real signals recorded from the rat 

olfactory bulb (Ravel et al., 2003) of 5 expert rats, sampled during 500 msec prior to and 1 sec 

after the stimulation. Left: number of invariant groups vs. Θ, Right: maximal, average and 

minimal (dotted, solid and dashed lines respectively) invariance rate R of the generated 

groups vs. Θ. Θ is varied from 0 to 10 in increments of 1; additionally, results for Θ = 0.01 

are shown. If the threshold is small (e.g. Θ = 0.01), the number of groups is small; as the 

threshold increases, the tolerance to jitter increases, so that a larger number of groups are 

generated, with higher invariance rates; when the threshold becomes large (for Θ > 1), groups 
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coalesce so that the number of groups decreases. For Θ > 5, the most invariant groups reach 

the maximum rate R = 100%. 

 

Figure 18: Time-frequency map obtained by averaging 100 time-frequency maps of real 

signals recorded from the rat olfactory bulb (Ravel et al., 2003) of 5 beginner rats, sampled 

during 500 msec prior to and 1 sec after the stimulation. The rectangles are the locations of 

the groups with invariance rate larger than 30%, obtained with Θ = 1. The figures are the 

invariance rates; crosses indicate the centroids of the groups. The area of maximum amplitude 

of the averaged map is shown as a circle. The examples illustrate the fact that averaging the 

maps does not give reliable information on the invariant areas of the maps. A color version of 

the figure is posted at: http://www.neurones.espci.fr/NNT_1005_color_figures/Figures.html.  
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Invariance rates Type-A signals Type-B signals 

Oscillation a  0.91, centroid 56 Hz / 1.43 s 0.52, centroid 39 Hz / 1.45 s 

Oscillation b  0.44, centroid 106 Hz / 1.08 s 0.82, centroid 86 Hz / 1.07 s 

Oscillation c  0.58, centroid 26 Hz / 0.88s 0.44, centroid  31 Hz / 0.90 s 

Table 1 

 

 



A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics 34 

 

 

Number 

of hidden neurons 

0 1 2 3 4 5 6 7 

% error on training set 11.4 10.1 6.9 3.9 2.3 1.7 1.7 1.4 

% leave-one-out error 11.5 9.5 8.5 8.0 7.0 7.5 7.5 8.00 
Table 2 
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Number of hidden neurons 0 1 2 3 4 

% training error  22.6 15.1 12.3 7.5 3.76 

% leave-on-out error 28.5 24.0 23.5 22.0 24.0 
Table 3 
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Number of hidden neurons 0 1 2 3 4 

% training error  43.5 35.6 29.3 16.9 9.4 

% leave-one-out error 62.0 50.0 40.0 40.0 42.0 
Table 4 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 



A machine learning approach to the analysis of time-frequency maps, and its application to neural dynamics 41 

 

 

 

Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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Figure 17 
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Figure 18 

 


