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Abstract: Blind Source Separation (BSS) is an effective and powerful tool for source separation and 
artifact removal in EEG signals. For the real time applications such as Brain Computer Interface 
(BCI) or clinical Neuro-monitoring, it is of prime importance that BSS is effectively performed 
in real time. The motivation to implement BSS in Field Programmable Gate Array (FPGA) 
comes from the hypothesis that the performance of the system could be significantly improved in 
terms of speed considering the optimal parallelism environment that hardware provides. In this 
paper, FPGA is used to implement the SOBI algorithm of EEG with a fixed-point algorithm. The 
results obtained show that, FPGA implementation of SOBI reduces the computation time and 
thus has great potential for real time.

1 INTRODUCTION 

EEG is one of the most widespread brain mapping 
techniques to date and is used extensively for 
monitoring the electrical activity within the human 
brain both for research and clinical purposes. The 
raw EEG data represent a projection of a set of 
signals, which are a mix of brain and artifact 
information. BSS is the process of recovering the 
source signals from a linear mixture of measured 
signals. 
There is no general consensus about any one BSS 
Algorithm being the best. Each algorithm has its 
unique set of pros and cons and makes certain 
assumptions about the sources in order to 
compensate for the lack of information about the 
mixing matrix and to be able to process the signals 
blindly. [1], [2] and [3] can serve as good reads for 
literature on Artifact detection and removal in EEG 
signals. SOBI using time structure of signals has its 
unique set of advantages to offer as mentioned in [4] 
and was the chosen algorithm in this work. 
SOBI assumes stationary sources with non-identical 
spectra and considers components at various time 
lags and focuses on decorrelating them as much as 

possible. As mentioned earlier, SOBI offers some 
unique advantages such as ability to resolve 
correlated signals, ability to resolve more than one 
gaussian sources, more robust behaviour in adverse 
Signal to Noise ratio (SNR), need for fewer data 
points implying shorter epoch length – something 
which is must for real time processing. The 
application and usefulness of SOBI in Brain 
Computer Interface has been shown in [5]. It was 
shown that SOBI converges after only a few 
iterations thus proving it worthy for real time 
applications. However, the computational 
complexity and cost for SOBI is high which can be 
partially taken care of by appropriate design of the 
FPGA architecture. Also, when real time processing 
is the main goal a little additional cost is justifiable. 
 
In this paper, an FPGA implementation of the SOBI 
algorithm of BSS model is presented with co-
simulation design concept based on the fixed-point 
number representation.  The BSS Model and SOBI 
algorithm are introduced in Section 2. In section 3, 
the FPGA implementation is described. The result 
analysis and the conclusion are given in section 4 
and 5. 



 

 
2 ALGORITHM AND PROBLEM 

FORMULATION 
 
2.1 BSS model 

BSS is the process of recovering the source 
signals from a linear mixture of measured signals. 
There are three distinct steps required for removal of 
artifact/noise from EEG using BSS: 1) separate 
(unmix) the measured EEG into sources using a BSS 
algorithm, 2) identify and discard artifact/noise 
sources and retain brain sources, and 3) project the 
retained brain sources back into sensor space 
resulting in artifact/noise-free EEG as is illustrated 
in Fig. 1 

 

 
 
 

 
 
 

 
 
Component estimation from EEG data can be 

mathematically formulated as follows. 
 

               X = AS                                 (1) 
 meaning that the sensor data X is rotated by an 

unmixing matrix 𝐴!!,  to arrive at the components S. 
To clarify, all quantities in Equation 1 are matrices. 
A is referred to as the mixing matrix, each column of 
which describes signal propagation from an 
individual source to each electrode site. The 
meaning of “blind” is that both the original sources 
(represented by matrix S) and the way the sources 
were mixed (represented by A) are all unknown, and 
only mixed signals or mixtures represented by X) 
can be measured and observed. 

 
2.2 SOBI Algorithm 
SOBI was first introduced by Adel Belouchrani, 

Karim Abed-Meraim, Jean François Cardoso and 
Eric Moulins in the year 1997.  The steps involved 
in SOBI algorithm are illustrated in Erreur ! Source 
du renvoi introuvable. while the detail explanation 
of the algorithm may be found in [12]. As previously 
stated, SOBI exploits the time coherence of the 
source signals for source separation. As opposed to 
the other approaches, it relies only on stationary 
second order statistics. It was shown in [10-11] that 
blind identification is feasible based on the eigen 
decomposition of spatial covariance matrices.  In 
[12], blind identification is achieved by performing 
joint diagonalization of a set of spatial covariance 
matrices. In [12] it was also  

 Figure 1: Artifact detection and removal using BSS 
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Figure 2: Schematic Representation of BSS using SOBI 



shown that considering a set of matrices rather than  
unique correlation matrix increases the robustness at 
a low additional computing cost. SOBI exploits the 
time coherence of the source signals and assumes 
that the signals are uncorrelated in time. Also, for 
the sake of simplicity the noise is modelled as 
additive white noise. However, this assumption is 
not crucial. The aim of BSS is to identify the 
mixture matrix A and to recover the source signals s 
(t) from the array output x (t) without any a priori 
knowledge of the array manifold. 

The first pre-processing step is Normalization so 
as to ensure that the source signals have unit 
variance. The next step is Whitening which is 
achieved by Singular Value Decomposition of the 
mixture matrices. Whitening reduces the 
dimensionality of the BSS problem, following which 
the mixing matrix A may be defined as  

 
A = 𝑊#U  (2) 

Where W is the whitening matrix and U is a 
unitary matrix. It is shown in [12] that the whitening 
matrix is determined from covariance matrix at t = 0 
(R (0)), provided the noise covariance matrix is 
known or can be estimated. The Unitary factor U 
may be thought of as a unitary matrix that 
simultaneously diagonalizes a set of covariance 
matrices considered at various time lags. A detailed 
analysis of SOBI algorithm can be found in [12]. 
Though SOBI has not been implemented in 
hardware before, [6], [7], [8] and [9] can be good 
references for literature on hardware implementation 
of other BSS algorithms. 

3 DESIGN AND 
IMPLEMENTATION 

3.1 Design Methodology 

Fig 2 illustrates the basic flow of the SOBI 
Algorithm. As is evident, Whitening i.e. Singular 
Value Decomposition, Correlation i.e. determining 
the correlation matrices and Joint Diagonalization of 
the correlation matrices; comprise of the major part 
of the algorithm. Firstly, a SIMULINK model was 
developed and the results were compared to those 
obtained from the MATLAB code. The SIMULINK 
model was built in order to be able to perform 
Hardware Co-simulation, which is an intermediate 
stage between software and hardware 
implementation. This intermediate approach is 
expected to gauge the benefits of both software and

 hardware and thus could provide a better solution. 
This is based on the belief that it is not always 
prudent and economical to implement the entire 
system in hardware. Instead, implementing only 
those blocks which allow certain amount of 
parallelism and / or for which the computational 
time is to be reduced, could turn out to be more 
economical and better solution.  
The three approaches to develop a Co-simulation 
between SIMULINK/ MATLAB and XILINX ISE 
are as mentioned below: 
  1) Using System Generator 
  2) Using HDL Coder and EDA Simulator Link 
  3) Using EDA Simulator Link and a Black Box 
containing the hand coded VHDL code. 
In the first two approaches, the VHDL code is 
automatically generated from a MATLAB code or a 
SIMULINK model. However, there are several 
restrictions on what all MATLAB functions can be 
directly mapped onto a VHDL code. In view of 
these limitations and after several failed attempts 
with the first two approaches, it was decided to hand  
code the VHDL code. Also, hand coded VHDL code 
offers the advantage that it can be optimized as per 
the need. 
Thus, VHDL code for three of the most important 
blocks – Singular Value Decomposition, Correlation 
and Joint Diagonalization - of the SOBI model were 
written and simulation results were obtained for the 
same. The next step was to synthesize the blocks. 
The code for which simulation results were obtained 
was written using real data type, which is not 
synthesizable. Thus, the code for Correlation block 
was rewritten using Floating point representation 
and simulation results were obtained for the same. 
However, as the floating point package [13], ( that 
need to be used since floating point was not an 
inbuilt data type until VHDL 2008) integrated in 
VHDL 2008 is not yet officially supported by Xilinx 
XST13.4, several synthesis issues were encountered. 
Thus, the correlation Block was finally synthesized 
using signed number representation. Finally, the 
synthesis report was generated and the parameters 
were modified so as to optimize the performance. 

3.2 Proposed Architecture for 
Correlation Block 

The Figure 2 denoted below represents the 
process to determine a single Correlation matrix. n 
such processes may be run in parallel to determine 
the n correlation matrices at various time lags. 
However, running the processes in parallel would 
imply more hardware resources being used.



4 RESULTS 

4.1 Simulation Results 

As mentioned earlier, the simulation results for 
SVD block (using real data type), correlation Block 
(using real, floating point and signed numbers data 
type) and Joint Diagonalization block (using real and 
floating point data type) were obtained considering a 
2 x 4 input matrix, that is, 2 channels and 4 data 
points. The parameter p which determines the 
number of correlation matrices to be considered, was 
set to 2. Several observations were made which are 
listed below. 

If it is intended to write a synthesizable code, 
real data type should not be used. The use of Logic 
cores to implement mathematical functions such as 
square root, does introduce a bit of latency and thus 
some hand coded functions should be developed 
instead. Also, though it is easy to program in 
Floating Point it is certainly not a hardware 
Engineer’s choice as it utilizes a lot of hardware 
resources. 

     
Both the Joint Diagonalization and SVD block 

involved the calculation of eigen values and vectors. 
Based on the simulation results, it was concluded 
that the power method should be used only when the 
largest eigen value and the corresponding eigen 
vector is to be calculated. While it worked well in 
the Joint Diagonalization block, it didn’t produce 
accurate results for the SVD block which involved 
calculation of eigen values and vectors of a 2 x 2 
matrix. Thus, the Jacobi method should be used 
instead. 

 
 

4.2 Synthesis Results 

Using the signed integer data type, the synthesis 
of the correlation block was made possible and the 
synthesis report was generated. The mapping 
procedure failed due to the over utilization of IOBs 
(Bounded input output). However, the synthesis 
report generated does provide some insight into the 
synthesis of the code. The timing report shows a 
minimum delay of 12.795 ns which corresponds to a 
Maximum frequency of 78.155 Mhz. This is higher 
than the maximum frequency of 64 MHz achieved in 
[6]. Although, in [6] the entire algorithm was 
implemented while in our case only a part of it is 
implemented. As observed by changing a few 
parameters, it may be concluded that there is a lot of 
scope for optimization.  

 
 
 
4 CONCLUSIONS  
 
Thus, the synthesis results obtained for the 

Correlation Block, do verify that the computation 
time could be reduced by implementing the SOBI 
algorithm in FPGA. Also, there is scope for a lot of 
optimization that can be done to achieve higher 
speed. Also, as was observed while working on the 
codes, SOBI does offer a lot of scope for parallelism 
and pipelining as there are a lot of matrix operations 
involved and thus it seems only wise to implement it 
in FPGA. Once, the major blocks of Correlation, 
Joint Diagonalization and Singular Value 
Decomposition are made synthesizable, it might be 
interesting to perform Co-simulation between 
MATLAB - Xilinx and make a comparison between 
Software, Hardware and Hardware Co-simulation. 
Based on the results, it can be decided as to what 
actually to implement in FPGA. This way an 
economical use of Hardware resources can be made. 
In the near future, when the floating and fixed point 

Figure 2: Proposed architecture for implementation of Correlation Block 



 

packages are officially supported by Xilinx XST for 
synthesis purpose, the same work can be 
implemented using Fixed or Floating point 
representation, which unlike integers is a descent 
way of representing real life EEG data.  

 
 This work is the first initiative taken to 

implement SOBI to perform BSS in Real time and 
thus is just at a preliminary stage. The project 
provides a global view of the implementation, while 
considering the Correlation block in-depth. This 
work could be used to make a choice of the methods 
to implement various blocks, as an analysis of the 
methods for each block has been made in this 
project. A lot of work needs to be done further. 
However, the work does provide hope that SOBI 
could serve as a potential candidate for real time 
BSS. Thus, it could pave a way for on-line 
processing required in applications like Brain 
Computer Interface. 
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