

FPGA IMPLEMENTATION OF SOBI TO PERFORM BSS IN REAL TIME

Apurva Rathi!,!,	
 Dr. Xun Zhang!and	
 Dr. Francois Vialatte!

VIT University, Vellore, India
ISEP, Paris, France

ESPCI, Paris, France
rathi.7979@gmail.com, xun.zhang@isep.fr, francois.vialatte@espci.fr

Keywords: EEG; BSS; SOBI; FPGA

Abstract: Blind Source Separation (BSS) is an effective and powerful tool for source separation and
artifact removal in EEG signals. For the real time applications such as Brain Computer Interface
(BCI) or clinical Neuro-monitoring, it is of prime importance that BSS is effectively performed
in real time. The motivation to implement BSS in Field Programmable Gate Array (FPGA)
comes from the hypothesis that the performance of the system could be significantly improved in
terms of speed considering the optimal parallelism environment that hardware provides. In this
paper, FPGA is used to implement the SOBI algorithm of EEG with a fixed-point algorithm. The
results obtained show that, FPGA implementation of SOBI reduces the computation time and
thus has great potential for real time.

1 INTRODUCTION

EEG is one of the most widespread brain mapping
techniques to date and is used extensively for
monitoring the electrical activity within the human
brain both for research and clinical purposes. The
raw EEG data represent a projection of a set of
signals, which are a mix of brain and artifact
information. BSS is the process of recovering the
source signals from a linear mixture of measured
signals.
There is no general consensus about any one BSS
Algorithm being the best. Each algorithm has its
unique set of pros and cons and makes certain
assumptions about the sources in order to
compensate for the lack of information about the
mixing matrix and to be able to process the signals
blindly. [1], [2] and [3] can serve as good reads for
literature on Artifact detection and removal in EEG
signals. SOBI using time structure of signals has its
unique set of advantages to offer as mentioned in [4]
and was the chosen algorithm in this work.
SOBI assumes stationary sources with non-identical
spectra and considers components at various time
lags and focuses on decorrelating them as much as

possible. As mentioned earlier, SOBI offers some
unique advantages such as ability to resolve
correlated signals, ability to resolve more than one
gaussian sources, more robust behaviour in adverse
Signal to Noise ratio (SNR), need for fewer data
points implying shorter epoch length – something
which is must for real time processing. The
application and usefulness of SOBI in Brain
Computer Interface has been shown in [5]. It was
shown that SOBI converges after only a few
iterations thus proving it worthy for real time
applications. However, the computational
complexity and cost for SOBI is high which can be
partially taken care of by appropriate design of the
FPGA architecture. Also, when real time processing
is the main goal a little additional cost is justifiable.

In this paper, an FPGA implementation of the SOBI
algorithm of BSS model is presented with co-
simulation design concept based on the fixed-point
number representation. The BSS Model and SOBI
algorithm are introduced in Section 2. In section 3,
the FPGA implementation is described. The result
analysis and the conclusion are given in section 4
and 5.

2 ALGORITHM AND PROBLEM

FORMULATION

2.1 BSS model

BSS is the process of recovering the source
signals from a linear mixture of measured signals.
There are three distinct steps required for removal of
artifact/noise from EEG using BSS: 1) separate
(unmix) the measured EEG into sources using a BSS
algorithm, 2) identify and discard artifact/noise
sources and retain brain sources, and 3) project the
retained brain sources back into sensor space
resulting in artifact/noise-free EEG as is illustrated
in Fig. 1

Component estimation from EEG data can be

mathematically formulated as follows.

 X = AS (1)
 meaning that the sensor data X is rotated by an

unmixing matrix 𝐴!!, to arrive at the components S.
To clarify, all quantities in Equation 1 are matrices.
A is referred to as the mixing matrix, each column of
which describes signal propagation from an
individual source to each electrode site. The
meaning of “blind” is that both the original sources
(represented by matrix S) and the way the sources
were mixed (represented by A) are all unknown, and
only mixed signals or mixtures represented by X)
can be measured and observed.

2.2 SOBI Algorithm
SOBI was first introduced by Adel Belouchrani,

Karim Abed-Meraim, Jean François Cardoso and
Eric Moulins in the year 1997. The steps involved
in SOBI algorithm are illustrated in Erreur ! Source
du renvoi introuvable. while the detail explanation
of the algorithm may be found in [12]. As previously
stated, SOBI exploits the time coherence of the
source signals for source separation. As opposed to
the other approaches, it relies only on stationary
second order statistics. It was shown in [10-11] that
blind identification is feasible based on the eigen
decomposition of spatial covariance matrices. In
[12], blind identification is achieved by performing
joint diagonalization of a set of spatial covariance
matrices. In [12] it was also

 Figure 1: Artifact detection and removal using BSS

Filter	
 Buffer	
 Normalizer	
 Whitening	

Calculate	
 	

the	
 Correla8on	

Matrices	
 	

Joint	

Diagonaliza8on	

Es8ma8ng	

Source	
 Signals	
 Post	
 Processing	

Figure 2: Schematic Representation of BSS using SOBI

shown that considering a set of matrices rather than
unique correlation matrix increases the robustness at
a low additional computing cost. SOBI exploits the
time coherence of the source signals and assumes
that the signals are uncorrelated in time. Also, for
the sake of simplicity the noise is modelled as
additive white noise. However, this assumption is
not crucial. The aim of BSS is to identify the
mixture matrix A and to recover the source signals s
(t) from the array output x (t) without any a priori
knowledge of the array manifold.

The first pre-processing step is Normalization so
as to ensure that the source signals have unit
variance. The next step is Whitening which is
achieved by Singular Value Decomposition of the
mixture matrices. Whitening reduces the
dimensionality of the BSS problem, following which
the mixing matrix A may be defined as

A = 𝑊#U (2)

Where W is the whitening matrix and U is a
unitary matrix. It is shown in [12] that the whitening
matrix is determined from covariance matrix at t = 0
(R (0)), provided the noise covariance matrix is
known or can be estimated. The Unitary factor U
may be thought of as a unitary matrix that
simultaneously diagonalizes a set of covariance
matrices considered at various time lags. A detailed
analysis of SOBI algorithm can be found in [12].
Though SOBI has not been implemented in
hardware before, [6], [7], [8] and [9] can be good
references for literature on hardware implementation
of other BSS algorithms.

3 DESIGN AND
IMPLEMENTATION

3.1 Design Methodology

Fig 2 illustrates the basic flow of the SOBI
Algorithm. As is evident, Whitening i.e. Singular
Value Decomposition, Correlation i.e. determining
the correlation matrices and Joint Diagonalization of
the correlation matrices; comprise of the major part
of the algorithm. Firstly, a SIMULINK model was
developed and the results were compared to those
obtained from the MATLAB code. The SIMULINK
model was built in order to be able to perform
Hardware Co-simulation, which is an intermediate
stage between software and hardware
implementation. This intermediate approach is
expected to gauge the benefits of both software and

 hardware and thus could provide a better solution.
This is based on the belief that it is not always
prudent and economical to implement the entire
system in hardware. Instead, implementing only
those blocks which allow certain amount of
parallelism and / or for which the computational
time is to be reduced, could turn out to be more
economical and better solution.
The three approaches to develop a Co-simulation
between SIMULINK/ MATLAB and XILINX ISE
are as mentioned below:
 1) Using System Generator
 2) Using HDL Coder and EDA Simulator Link
 3) Using EDA Simulator Link and a Black Box
containing the hand coded VHDL code.
In the first two approaches, the VHDL code is
automatically generated from a MATLAB code or a
SIMULINK model. However, there are several
restrictions on what all MATLAB functions can be
directly mapped onto a VHDL code. In view of
these limitations and after several failed attempts
with the first two approaches, it was decided to hand
code the VHDL code. Also, hand coded VHDL code
offers the advantage that it can be optimized as per
the need.
Thus, VHDL code for three of the most important
blocks – Singular Value Decomposition, Correlation
and Joint Diagonalization - of the SOBI model were
written and simulation results were obtained for the
same. The next step was to synthesize the blocks.
The code for which simulation results were obtained
was written using real data type, which is not
synthesizable. Thus, the code for Correlation block
was rewritten using Floating point representation
and simulation results were obtained for the same.
However, as the floating point package [13], (that
need to be used since floating point was not an
inbuilt data type until VHDL 2008) integrated in
VHDL 2008 is not yet officially supported by Xilinx
XST13.4, several synthesis issues were encountered.
Thus, the correlation Block was finally synthesized
using signed number representation. Finally, the
synthesis report was generated and the parameters
were modified so as to optimize the performance.

3.2 Proposed Architecture for
Correlation Block

The Figure 2 denoted below represents the
process to determine a single Correlation matrix. n
such processes may be run in parallel to determine
the n correlation matrices at various time lags.
However, running the processes in parallel would
imply more hardware resources being used.

4 RESULTS

4.1 Simulation Results

As mentioned earlier, the simulation results for
SVD block (using real data type), correlation Block
(using real, floating point and signed numbers data
type) and Joint Diagonalization block (using real and
floating point data type) were obtained considering a
2 x 4 input matrix, that is, 2 channels and 4 data
points. The parameter p which determines the
number of correlation matrices to be considered, was
set to 2. Several observations were made which are
listed below.

If it is intended to write a synthesizable code,
real data type should not be used. The use of Logic
cores to implement mathematical functions such as
square root, does introduce a bit of latency and thus
some hand coded functions should be developed
instead. Also, though it is easy to program in
Floating Point it is certainly not a hardware
Engineer’s choice as it utilizes a lot of hardware
resources.

Both the Joint Diagonalization and SVD block

involved the calculation of eigen values and vectors.
Based on the simulation results, it was concluded
that the power method should be used only when the
largest eigen value and the corresponding eigen
vector is to be calculated. While it worked well in
the Joint Diagonalization block, it didn’t produce
accurate results for the SVD block which involved
calculation of eigen values and vectors of a 2 x 2
matrix. Thus, the Jacobi method should be used
instead.

4.2 Synthesis Results

Using the signed integer data type, the synthesis
of the correlation block was made possible and the
synthesis report was generated. The mapping
procedure failed due to the over utilization of IOBs
(Bounded input output). However, the synthesis
report generated does provide some insight into the
synthesis of the code. The timing report shows a
minimum delay of 12.795 ns which corresponds to a
Maximum frequency of 78.155 Mhz. This is higher
than the maximum frequency of 64 MHz achieved in
[6]. Although, in [6] the entire algorithm was
implemented while in our case only a part of it is
implemented. As observed by changing a few
parameters, it may be concluded that there is a lot of
scope for optimization.

4 CONCLUSIONS

Thus, the synthesis results obtained for the

Correlation Block, do verify that the computation
time could be reduced by implementing the SOBI
algorithm in FPGA. Also, there is scope for a lot of
optimization that can be done to achieve higher
speed. Also, as was observed while working on the
codes, SOBI does offer a lot of scope for parallelism
and pipelining as there are a lot of matrix operations
involved and thus it seems only wise to implement it
in FPGA. Once, the major blocks of Correlation,
Joint Diagonalization and Singular Value
Decomposition are made synthesizable, it might be
interesting to perform Co-simulation between
MATLAB - Xilinx and make a comparison between
Software, Hardware and Hardware Co-simulation.
Based on the results, it can be decided as to what
actually to implement in FPGA. This way an
economical use of Hardware resources can be made.
In the near future, when the floating and fixed point

Figure 2: Proposed architecture for implementation of Correlation Block

packages are officially supported by Xilinx XST for
synthesis purpose, the same work can be
implemented using Fixed or Floating point
representation, which unlike integers is a descent
way of representing real life EEG data.

 This work is the first initiative taken to

implement SOBI to perform BSS in Real time and
thus is just at a preliminary stage. The project
provides a global view of the implementation, while
considering the Correlation block in-depth. This
work could be used to make a choice of the methods
to implement various blocks, as an analysis of the
methods for each block has been made in this
project. A lot of work needs to be done further.
However, the work does provide hope that SOBI
could serve as a potential candidate for real time
BSS. Thus, it could pave a way for on-line
processing required in applications like Brain
Computer Interface.

ACKNOWLEDGEMENTS

SIGMA Laboratory, ESPCI, Paris Tech
ISEP, Paris
Gerard Drefus, ESPCI, Paris
Yohei Tomita, SIGMA Lab, ESPCI, Paris
Parvaneh Adibpour, SIGMA Lab, ESPCI, Paris
Antoine Gaume, SIGMA Lab, ESPCI, Paris

REFERENCES

[1] Carrie A. Joyce,A Irina F. Gorodnitsky,B And
Marta Kutasb,c , “Automatic removal of eye
movement and blink artifacts from EEG data
using blind component separation” ,
Psychophysiology, 41 (2004)

[2] S. P. Fitzgibbon,* D. M. W. Powers,† K. J.
Pope,† C. R. Clark* , “Removal of EEG
Noise and Artifact Using Blind Source
Separation” , J Clin Neurophysiol. 2007
Jun;24(3):232-43.

[3] A textbook by Aapo Hyvarinen, Juha
Karhunen, Erki Oja, “Independent
Component Analysis”

[4] Arnaud Delorme1,2, Terrence Sejnowski1,
Scott Makeig2 , “Enhanced detection of
artifacts in EEG data using higher-order
statistics and independent component
analysis” , NeuroImage 34 (2007) 1443–1449

[5] Yan Wang1, Matthew T. Sutherland2, Lori L.
Sanfratello2, Akaysha C. Tang234 , “Single-
Trial Classification Of Erps Using Second-
Order Blind Identification (Sobi)”,

[6] Wei-Chung Huang1, Shao-Hang Hung1, Jen-
Feng Chung1,2, Meng-Hsiu Chang1, Lan-Da
Van2, and Chin-Teng Lin1,2 , “FPGA
Implementation of 4-Channel ICA for On-line
EEG Signal Separation” , Biomedical Circuits
and Systems conference, 2008.
BIOCAS.2008.IEEE

[7] Kuo-Kai Shyu, Member, IEEE, Ming-Huan
Lee, Yu-Te Wu, and Po-Lei Lee ,
“Implementation of Pipelined FastICA on
FPGA for Real-Time Blind Source
Separation” , IEEE TRANSACTIONS ON
NEURAL NETWORKS, VOL. 19, NO. 6,
JUNE 2008

[8] Zhongfeng Li and Qiuhua Lin , “FPGA
Implementation of Infomax BSS Algorithm
with Fixed-Point Number Representation ” ,
Neural Networks and Brain , 2005. ICNN&B
’05 An International Conference on 13 – 15
Oct. 2005

[9] Hongtao Du and Hairong Qi , “An FPGA
Implementation of Parallel ICA for
Dimensionality Reduction in Hyperspectral
Images” , Geoscience and Remote Sensing
Symposium, 2004. IGARSS ’04 . Proceedings.
2004 IEEE International

[10] L. Tong, V. C. Soon, R. Liu, and Y. Huang,
“AMUSE: A new blind identification
algorithm,” in Proc. ISCAS, New Orleans,
LA, 1990.

[11] A. Belouchrani, K. Abed Meraim, J.-F.
Cardoso, and E. Moulines, “Second-order
blind separation of correlated sources,” in
Proc. Int. Conf. Digital Signal Processing,
Cyprus, 1993, pp. 346–351.

[12] Adel Belouchrani, Member, IEEE, Karim
Abed-Meraim, Jean-Fran¸cois Cardoso,
Member, IEEE and Eric Moulines, Member,
IEEE, “A Blind Source Separation Technique
Using Second-Order Statistics” , IEEE
TRANSACTIONS ON SIGNAL
PROCESSING, VOL. 45, NO. 2, FEBRUARY
1997

[13] David Bishop, “Fixed and Floating Point
packages for VHDL”,
http://www.vhdl.org/fphdl/Float_ug.pdf

