International Journal of Neural Systems, Vol. 25, No. 8 (2015) 1550032 (18 pages)

© World Scientific Publishing Company
DOI: 10.1142/S012906571550032X

\\’ World Scientific

www.worldscientific.com

Epoch-based Entropy for Early Screening of Alzheimer’s Disease

N. Houmani*§ G. Dreyfus®"¥ and F. B. Vialatte®H**
*ESPCI ParisTech, PSL Research University
10 rue Vauquelin, 75005 Paris, France
ISIGMA (SIGnal processing and MAchine learning) Laboratory

10 rue Vauquelin, 75231 Paris Cedex 05, France

tBrain Plasticity Laboratory, CNRS UMR 8249

10 rue Vauquelin, 75231 Paris Cedex 05, France
§Nesma. Houmani@espci. fr
YGerard. Dreyfus@espci.fr
IFrancois. Vialatte@espci. fr

Accepted 12 August 2015
Published Online 9 November 2015

In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quanti-
fies disorder of EEG signals both at the time level and spatial level, using local density estimation by a
Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG
database recorded from patients at an early stage of Alzheimer’s disease (AD) and age-matched healthy
subjects. We investigate the classification performances of this method, its robustness to noise, and its
sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two
alternative complexity measures, Shannon’s entropy and correlation dimension. The classification accu-
racies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier
designed on a development dataset, and subsequently tested on an independent test set. Epoch-based
entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity =
82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable
to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the
other two complexity measures.
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1. Introduction

With the unprecedented ageing of the Western pop-
ulation, dementia and neurodegenerative disorders
have become a major societal concern. Alzheimer’s
disease (AD) is the most common form of dementia;
it affects 11% of the world population aged over 65
and 50% of the persons aged over 85. The number of
individuals with AD is expected to reach 115 million
in 2050.2 AD is characterized by irreversible brain
damages, associated with memory impairments and

I Corresponding author.

a wide range of cognitive dysfunctions. The causes of
AD are not identified; however, the impairments in
cognitive functions reflect the spread of this pathol-
ogy from medial-temporal to parietal brain areas.3~6
Besides, at the early stage, symptoms of AD are often
dismissed as normal consequences of aging.

The early detection of AD has three main inter-
ests. First, the patient and his caregivers can under-
stand the daily consequences of the disease. Second,

the diagnostic can help them anticipate the future.

**F.B. Vialatte was in SIGMA laboratory when the research reported in this manuscript was prepared.
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Finally, even if treatments cannot stop the disease
yet, early therapeutic interventions may delay its
evolution.”8

Electroencephalography (EEG) has been consid-
ered recently in several studies as a potential tool
for diagnosing AD. The main advantage of EEG is
its relatively low cost, and its high temporal resolu-
tion that allows analyzing fast dynamics in the cor-
tex. Nevertheless, diagnosing AD with EEG signals
at the early stage remains a challenge.>“~'2 This is
due to the complex nature of EEG signals that must
be modeled as nonstationary, nonlinear and multidi-
mensional time series.'3~1°

The application of complexity theory to biosig-
nals can provide some relevant insights for clini-
cal applications.'® Indeed, several studies have high-
lighted that one of the major effects of AD is the
reduction in complexity of the EEG signal compared
to that of healthy subjects.'*1>17 However, it is not
always easy to detect such effects because of the large
inter-variability between AD patients. Several meth-
ods can be used in order to assess the complexity
of EEG signals. The fractal dimension”™ was applied
to EEG signals in Refs. 14 and 18-20 as a poten-
tial marker of AD. The correlation dimension!%:2%
and the first positive Lyapunov exponent?!
frequently used.'®?2727 The correlation dimension
(D2) reflects the number of independent variables
that are necessary to describe the dynamics of the
system. The Lyapunov exponent (L1) describes the
divergence of trajectories starting at nearby initial
states. It has been found that EEG signals from AD
patients exhibit lower values of such measures (hence
lower complexity) than signals from age-matched
normal subjects!®2?4 in almost all EEG channels.
D2 and L1 were found useful for detecting changes
between different brain states. Nevertheless, these
two measures are computationally expensive, since

were

they involve the reconstruction of a phase space tra-
jectory reconstruction.?

Therefore, alternative solutions suitable for
sparse data were introduced. They rely on quantify-
ing signal complexity from the point of view of infor-
mation theory. In this context, the complexity of a
signal refers to its unpredictability: irregular signals
are more complex than regular ones since they are
more unpredictable. In that framework, several mea-
sures were proposed to assess the complexity of the
signal; most of them rely on the concept of entropy?®:

29,30 Tgallis entropy,®! approximate

3435 and Lempel-

sample entropy,

32,33 multi-scale entropy,

entropy,
Ziv complexity.36

These measures, however, are not suitable for the
analysis of EEG data; they share two main draw-
backs. First, such measures were computed on whole
EEG sequences without addressing the problem of
their nonstationarity. The assumption of stationar-
ity is generally not true with physiological data. In
order to apply complexity measures to a nonsta-
tionary time series such as EEG, one should take
some precautions: double check for nonstationar-
ity effects,>” and remove nonstationarities.?® Multi-
scale entropy, though powerful, is also not suitable
for studying EEG signals due to its linear extrac-
tion of scales.?® In this context, some studies con-
cluded that EEG time series are quasi-stationary:
in Ref. 39, the authors suggested that EEG can
be described as a piecewise stationary process, i.e.
EEG data can be segmented into stationary seg-
ments with different probabilistic characteristics. In
Ref. 40, the authors claimed that the EEG signal
could be modeled as a sequence of quasi-stationary
segments (epochs) separated by abrupt transitions.
Other studies*!~*3 identified quasi-stationary states
in EEG, called “microstates”. These states are sup-
posed to reflect coherent neural activities. Also, in
Ref. 44, the author suggested that perception is
based on sequences of stationary patterns demar-
cated by discontinuities.

Secondly, such measures did not consider the
EEG signal as a multidimensional time series: the
prevailing paradigms extract information from EEG
signals by averaging them over channels. The EEG
being a multidimensional signal provided by a num-
ber of electrodes (channels), it is of high poten-
tial interest to exploit its spatio-temporal nature
through techniques that can take into account inter-
channel relations. However, alternative methods were
used for studying the EEG background activity.
For instance, mutual information analysis,'®4® func-

46,47

tional graphs, measures of synchrony?® (e.g.

Pearson correlation coefficient and Granger causal-

6,15,49-51 ware ysed

ity) and measures of coherence
for assessing information transmission between dif-
ferent brain areas.

The purpose of the present work is to use the con-
cept of entropy?® to characterize EEG complexity in

order to discriminate AD patients, at the early stage,
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from healthy subjects. As mentioned above, different
variants of entropy were used previously; they differ
in theoretical foundations and computational com-
plexity; their efficiency is problem dependent. Our
contribution consists of the introduction of a novel
entropy measure derived from a refined characteriza-
tion of the local statistical properties of the EEG sig-
nal, by means of a Hidden Markov Model (HMM).%?
This new entropy measure, hereinafter referred to
as epoch-based entropy, is computed on stationary
epochs of multi-channel data, and takes into account
the nonstationarity and multi-dimensionality of EEG
data. We will show that this modeling approach for
EEG improves the analysis of the underlying neu-
ronal dynamics. We extend our preliminary results®
and demonstrate the effectiveness of the proposed
complexity measure for AD screening.

Two alternative complexity measures are also
used as ground truth to assess the effectiveness
of our approach: Shannon’s entropy,2®°* which has
the same mathematical background as the proposed
measure, and the correlation dimension, which is
inherited from chaos theory™ and frequently used
in the literature for AD diagnosis.'®22%%56 The
classification accuracy of each measure for the dis-
crimination of AD patients from healthy subjects
are estimated using a linear classifier designed on a
developmental dataset, and subsequently tested on
an independent test set. The robustness of the mea-
sures to variations in the levels of noise and different
sampling rates is also investigated.

The remainder of the paper is organized as fol-
lows. In Sec. 2, the proposed complexity measure is
presented after a reminder of the correlation dimen-
sion and of Shannon’s entropy. In Sec. 3, we describe
the EEG databases used for the experiments. In Sec.
4, we present and analyze the results. Discussion on
the results and conclusions are stated in Sec. 5.

2. Definition of the Three Complexity
Measures for EEG Analysis

2.1. Correlation dimension

Correlation dimension (denoted Dj3) was primarily
designed as a measure of the complexity of dynamic
19,20,56. it was widely used to investigate the

nonlinear dynamics of human EEG.15:55:57=61 A gjg-

systems

nal that exhibits a high complexity has a high corre-
lation dimension value, which indicates that many

Epoch-based Entropy for Early Screening of AD

degrees of freedom are needed to describe such a
signal.

Consider a univariate time series z(1),z(2),...,
2(K) with sampling period T'. The time series can be
embedded into an m-dimensional space by defining,
for each sample i, an m-dimensional vector V; =
{z(@),z(t + 7),...,2(i + (m — 1)7)}, where the lag
7 is an integer with the condition ¢ < K — (m —
1)7. Thus, in the embedding space, the time series
is represented by a trajectory. Following Grassberger
and Procaccia,'®?? the quantity C(r) is defined as
the proportion of points of the trajectory that lie
within a sphere of radius r centered on point i, and
it is subsequently averaged over the whole trajectory:

") = O, ()

N—-—(m+1)r*

C™(r) is thus the average proportion of pairs of
points of the trajectory that fall within a distance
r of each other. It is shown in Refs. 60 and 61 that,
for sufficiently high embedding dimension, this quan-
tity (known as the correlation integral) grows with r
as rP2 where Dy is the correlation dimension; there-
fore, the correlation dimension can be estimated as
the slope of the graph of log (C™(r))/logr when
r — 0. A small correlation dimension results in a
slow growth of the correlation integral, due to the
fact that most points of the trajectory in embedding
space are very close to each other: the time series
has low complexity. By contrast, a large correlation
dimension results in a rapid growth of the correla-
tion integral, due to the fact that the points of the
trajectory in embedding space are far apart: the time
series has high complexity.

The above procedure requires the choice of three
quantities: the embedding dimension m, the lag 7,
and the range of variation of r.

The above computation of correlation dimension
is applied to univariate time series (single-channel
EEG). In order to exploit the multi-channel EEG
recordings as mentioned in Sec. 1, each EEG time
series should be considered separately. This method
may be followed for signals that are uncorrelated.
This is not the case of EEG signals, where some
correlation effects exist at least at the region level.
Additionally, the analysis of single EEG channels
may imply a loss of relevant information related to
inter-channel variability. We therefore propose in this
work to concatenate the multi-channel EEG signals
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into a single vector, and then to compute the correla-
tion dimension of that vector. This solution has the
advantage of expressing the complexity of a set of
EEG time series of a subject by a single value result-
ing from the analysis of multi-channel EEG signals.

2.2. Shannon’s entropy

The concept of information entropy was introduced
by Shannon in 1948,°* and is generally referred to as
“Shannon’s entropy”.?® Entropy has different mean-
ings that depend on the application. In physics,
entropy is a measure of disorder: the higher the disor-
der, the larger the entropy of the system under con-
sideration. In information theory, entropy is a mea-
sure of uncertainty: it quantifies the predictability of
future realizations of the signal time series based on
the probability distribution of past realizations.

Shannon’s entropy of a discrete random variable
7 with K possible realizations z;,7 = 1,..., K, is
defined by:

K
H(Z) = *Zpi ~logy (i), (2)

where p; is the probability of outcome z;, with
> p; = 1. Entropy is thus a measure of how uni-
formly distributed the random variable Z is: if there
are K outcomes, the Shannon entropy is maximum,
equal to log, (K), if p; = 1/K Vi point Base 2 loga-
rithm is used in order to express entropy in bits.

Shannon’s entropy is thus the mean number of
bits needed to describe the random variable. Based
on this interpretation, entropy can also quantify the
complexity of time series: a signal of high com-
plexity is constructed from a large number of ele-
mentary patterns and thus presents a high entropy
value. Applied on a univariate EEG signal, Shan-
non’s entropy measures the complexity of the EEG
signal based on the probability distribution of ampli-
tude values observed in the signal. For a multi-
variate EEG analysis and comparable results with
the correlation dimension, we proceed following the
same approach as that described in Sec. 2.1: we con-
catenate the multi-channel EEG signals of a sub-
ject into one single vector and then compute the
Shannon entropy of the concatenated vector. Thus,
the complexity of a set of EEG time series of a
subject is expressed by a single value of Shannon’s
entropy.

2.3. Epoch-based entropy measure

Numerous entropy measures were proposed in the
literature for quantifying the complexity of EEG
signals.!9:21:29=35 Despite the common name of
entropy, these measures have different mathemati-
cal backgrounds, hence describe different properties
in the signal.

As defined in Sec. 2.2, the entropy of a ran-
dom variable depends only on its probability den-
sity value. The present work presents a new entropy
measure based on the fundamental assumption that
the EEG signal is piecewise stationary, i.e. can be
viewed as being stationary at the time scale of an
epoch.?*=4 In this context, HMMSs,??%2 which are
extensively used in speech recognition for instance,
are good candidates for estimating complexity in
piecewise stationary signals: they can segment the
EEG signals into stationary epochs, and at the same
time perform a local estimation of the probability
density on each epoch.

A HMM is a probabilistic model that can be
used to describe the evolution of observable events
or signal realizations, called “observations”, which
depend on internal factors that are not directly
observed, called “hidden states”.5? Emission prob-
abilities are the conditional distributions of the
observed variables from a specific state. For con-
tinuous observations (such as EEG signals), the
emission probabilities are continuous. Each state
can output an observation based on the observa-
tion probability distribution. Therefore, the use of
HMM in this framework is also motivated by the
fact that HMM'’s structure is adapted for model-
ing neural dynamics underlying the observed EEG
signals. Such statistical modeling for EEG signals
was already applied in the literature, for instance for

sleep staging applications®3:64
65

or for motor imagery
classification.

In the present work, as in our preliminary
study,”® EEG signals are modeled by a continuous
left-to-right HMM (Fig. 1): the topology of the model
allows transitions from each state to itself and to its
immediate right-hand neighbors only. The states of
the HMM correspond to the stationary parts of the
EEG signal, and the transitions of the HMM corre-
spond to the variations of the signal. We thus con-
sider the EEG signal of a given subject as a succes-
sion of epochs, obtained by segmenting such a signal
via the Viterbi algorithm®? using the corresponding
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subject’s HMM. Viterbi’s algorithm is a widely used
algorithm in HMMs to find the best state sequence.
It can be viewed as a modified forward algorithm:
instead of summing up the probabilities from all
different paths, the optimal path, called “Viterbi
path” 5262 i chosen. Thus, each obtained epoch cor-
responds to a state of the HMM and contains a given
number of observations (sample points). For each
epoch S; the probability density function is modeled
by a mixture of M Gaussian functions considering
a diagonal covariance matrix for each multivariate
Gaussian.

Then each observation z in a given epoch S; is
considered as a realization of a random variable Z;
that follows a given observation probability distribu-
tion P;(z) modeled by the Gaussian mixture. Conse-
quently, a random variable is associated to each sta-
tionary epoch of the signal (Fig. 1), and the entropy
H*(Z;) of the considered epoch S; is that of an
ensemble of realizations of Z;:

H*(Z;) = — Z Pi(z) - logy Pi(2). (3)
z€S;

The EEG sampling period (typically 8 ms) is small
with respect to the epoch length (typically 250 ms).
Therefore, although Z; is a discrete variable, one
takes advantage of the continuous emission proba-

bility law estimated on each epoch by the HMM.
By averaging the entropy over all the epochs of
the EEG signal of the considered subject, an entropy-
based complexity value EpEn(Z) of the considered

H*(Zy) H*(Z)) H*(Zy)

t . t

HMM with N epochs (N hidden states)

Fig. 1. Epoch-based entropy computation of a univari-
ate EEG signal.

Epoch-based Entropy for Early Screening of AD

signal, called “epoch-based entropy”, is obtained as:

1 N
EpEn (Z) = ZH*(Zi). (4)

The use of HMMs is further motivated by the
multi-channel EEG analysis, since EEG data are
often correlated time series from multiple electrodes
on the scalp: HMMs can manage multidimensional
signals by applying multivariate probability density
functions on such signals. Hence, they are appropri-
ate for modeling the inter-relations between EEG
time series recorded from multiple electrodes. In this
case, for each subject, an HMM is trained on a set
of D EEG time series recorded from D electrodes.

At time ¢, a hidden state emits a D-dimensional
observation vector. By applying the Viterbi algo-
rithm, N epochs are generated for each EEG signal
and the entropy H*(Z;) of each epoch S; is computed
considering the probability density estimated by the
HMM on the observations of the D epochs S; (see
Fig. 2).

Although all N epochs are matched between EEG
channels, the model does not constrain these epochs
to be of equal length for all channels: this is a valu-
able feature of the model, because stationary epochs

ij(zl) H*\ZZN)

Fig. 2. Illustration of multi-channel (D = 3) EEG signal
modeling with HMM. The model is feedforward, there-
fore hidden states are visited only once — epochs and
states are matched.
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of EEG data do not necessarily have the same dura-
tion for all channels. The HMM is feedforward, conse-
quently epochs and hidden states are matched (hid-
den states are visited only once). Finally, by aver-
aging the entropy over all the N epochs, an epoch-
based entropy value associated to the multi-channel
EEG of the considered subject is computed.

2.4. Illustration of epoch-based entropy
mechanisms

In this section, we illustrate the mechanisms of
epoch-based entropy for measuring the complexity
of multivariate piecewise stationary EEG signals. To
this end, the epoch-based entropy on three EEG sig-
nals (shown in Fig. 3) is computed, considering them
first separately in a univariate analysis, and subse-
quently as pairs of signals for a multivariate analy-
sis. Each EEG signal is taken from a healthy subject,
sampled at 128 Hz.

Table 1 shows that the three signals exhibit dif-
ferent epoch-based entropy values, hence have dif-
ferent complexities. These results are in agreement
with the visual impression about signal complexity:
higher entropy is associated with high “irregular” or
“complex” signals.

Considering pairs of EEG signals, epoch-based
entropy detects the statistical dependencies between
channels, as shown in Table 2. The proposed entropy
reflects both intra-channel complexity (complexity
over time) and the inter-channel complexity (spatial

Amplitude (uv)
a P 7 A ' ‘ ' 1
(a) 320 ﬁg‘ugﬂf’;rt& $ ﬁ‘*:,,t ¢t‘
A AT " ’ h»&t :
0 ;@?3‘ oy ,,,3 »
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rzo P i1
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Fig. 3. Examples of three EEG signals of different com-
plexities.

Table 1. Epoch-based entropy values computed
on the three EEG signals (a, b, and ¢) when con-
sidered separately.

Signals a b c

Epoch-based entropy 12.1 10.6 8.8

Table 2. Epoch-based entropy computed
on pairs of the three signals. Pairs of iden-
tical signals ([a;a], [b;b], and [c;c]) have
lower complexities than pairs of different
signals ([a;b], [a;c], and [b;c]).

Signals a b c

a 10.8 16.1 15.9
b / 10.5 13.5
c / / 8.6

complexity, or heterogeneity between the overall sig-
nals).

For instance, when computing epoch-based
entropy on identical signals ([a;a], [b;b], and [c;c]),
the entropy takes a lower value than when the sig-
nal is considered alone (Tables 1 and 2). This is due
to the fact that there is no inter-channel difference.
Consequently the combined distributions are more
regular, leading to a decrease of the entropy value
of the multivariate signal. However, this combined
entropy is still nonzero since entropy takes also into
account intra-channel disorder.

The algorithm estimates complexity using the
probability distributions (see Fig. 2). Regularity
between channels means in our case that the channels
have similar probability distributions. Without noise,
the distributions are specific to each channel. With
added Gaussian white noise of high amplitude, the
channels converge towards more similar (and Gaus-
sian) distributions.

This also holds true when entropy is computed
on two signals of different complexities. As an exam-
ple, when computing entropy on the least complex
signal (c) with a signal of higher complexity (a or b),
entropy increases as well as the difference increases
between signals (inter-channels) and also over time
for each signal (intra-channel). When computing
entropy on the most complex signal (a) combined
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with a signal of lower complexity (b or ¢), entropy
also increases.

To summarize, the statistical estimation of
entropy with HMM allows one to quantify the com-
plexity of multivariate EEG signals at two levels
simultaneously: at the time level, complexity corre-
sponds to entropy in piecewise stationary epochs of
EEG signals over time; at the spatial level, complex-
ity corresponds to the heterogeneity of piecewise sta-
tionary epochs between multi-channel EEG signals.

3. Methods
3.1. Databases

We used three datasets, containing EEG recordings
of healthy subjects and AD patients at rest and with
closed-eyes conditions.?®%6 These datasets differ in
terms of EEG setups and recording conditions. They
were produced within the BIOPATTERN European
project (University of Plymouth, Plymouth, UK).
This project is aimed at developing a generalized,
clinical EEG model for AD diagnosis and symptom
quantification by analyzing subject bio-profiles and
clinical measures recorded from hospitals in different
EU countries.%” The local institutional ethics com-
mittees approved this research and informed consent
was obtained from all subjects and caregivers prior
to recording and experimentation.

3.1.1. Dataset A

This dataset originates from Derriford Hospital, Ply-
mouth, UK. It contains EEG data of 24 healthy sub-
jects (aged 69.4 + 11.5 years) and 17 patients diag-
nosed with mild form of AD (aged 77.6 £ 10 years).
It was shown that no significant effect stemmed
from discrepancy of age between the two groups.®”
Patients underwent a battery of neuroimaging and
cognitive tests. EEG signals were recorded during
4min at a sampling frequency of 256 Hz, later down-
sampled to 128 Hz. 21 electrodes were placed on the
scalp according to the Maudsley System (Fps, Fr,
Fg, FZ, F4, Fs, Al, T3, Cg, CZ, C4, T4, A2, T5, P3,
PZ, P4, Tﬁ, Ol, OQ, Fpl)

3.1.2. Dataset B

This dataset contains EEG data of five age-matched
healthy subjects (aged 76.6 + 5.6 years) and five
AD patients (aged 78.8 + 2.4 years). Patients

Epoch-based Entropy for Early Screening of AD

were diagnosed with early stage, mild form AD
according to the National Institute of Neurological
and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Associa-
tion (NINCDS-ADRDA),% and the Diagnostic and
statistical manual of mental disorder, 4th edition
(DSM 1V) criteria. They underwent general medi-
cal, neurological, and psychiatric tests. EEG signals
were recorded during 1 min at a sampling frequency
of 128 Hz using 21 electrodes (Fpy, Fpa, F7, F3, Fz,
F4, Fs, Al, Tg, C3, CZ, C4, T4, AQ, T5, P3, PZ, P4,
Ts, O1, O2) placed according to the 10-20 interna-
tional system at the University of Malta.

3.1.3. Dataset C

This dataset is obtained from the Ecological Univer-
sity of Bucharest. It consists of three healthy sub-
jects (aged 73.5 £+ 2.2 years) and eight age-matched
AD patients (aged 75 + 3.4 years). Patients were
diagnosed with a mild form of AD using psychome-
tric tests, neuroimaging, and clinical examinations.
EEG signals were recorded during 10 to 20 min at
a sampling frequency of 512 Hz using 22 electrodes
(Fpl, Fpg, F7, Fg, FZ, F4, Fg, Al, T3, Cg, CZ, C4,
T4, AQ, T5, Pg, PZ, P4, TG, Ol, 02, OZ) diSpOSGd
according to the International Federation of Clini-
cal Neurophysiology standards for digital recording
of clinical EEG. In this work, EEG signals of this
dataset were down-sampled to 128 Hz similarly to
datasets A and B.

3.2. Study design

Classification was performed by single-feature Linear
Discriminant Analysis (LDA), using each complexity
measure as input feature. The performance of each
classifier was assessed following a consistent proto-
col: a development subset containing EEG data of
dataset B (five AD patients and five healthy sub-
jects) and dataset C (eight AD patients and three
healthy subjects) was used. On these 21 subjects,
the three complexity measures were computed, and
each of them was used as feature of an LDA clas-
sifier; the performance of each classifier was esti-
mated by a Leave-One-Out procedure (LOO, see
for instance Ref. 71), and the threshold that gave
the best correct classification rate was selected. The
optimal values of the hyperparameters needed for a
reliable estimation of the complexity measures (e.g.
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number of Gaussians and epochs for the epoch-based
entropy) were also selected based on the correct
classification rate on the development dataset. In
other words, the development dataset is used both
as a training set and a validation set (using LOO
cross-validation). The robustness to hyperparameter
variations is detailed in Sec. 4.3.

Finally, in the test phase, the three measures were
computed for each subject of the dataset A, using
the optimal hyperparameters found on the develop-
ment dataset. Then, by considering each complexity
measure as a single input feature of the LDA clas-
sifier, the correct classification rates were estimated
on the test dataset based on the optimal thresholds
found on the development dataset for each complex-
ity measure. Consequently, the dataset A was used
as an independent test dataset — which is indeed the
case, as the acquisition sites and experimental con-
ditions for collecting dataset A differ from datasets
B and C.

Brain regions were defined arbitrarily, using sets
of channels located in regions susceptible to be sen-
sitive for changes due to AD. We defined five regions
of interest: frontal (Fpi, Fpa), occipital (O, Os),
parietal (Tg, Py, Pz, P3, T5), temporal (Tg, T4, T,
Ts, Fr7, Fg), and parieto-temporal (F7, Fs, Ts, T4,
T5, Ps, Pz, Py, and Tg). We did not optimize these
regions of interest. The interested reader can report
to Sec. 4.2.3 for simulations of stability to changes in
these channel sets. The concatenation order applied
for Shannon’s entropy and D, was decided arbi-
trarily according to the electrode placement order.
There was no significant effect when changing this
order.

4. Experimental Results

4.1. FEpoch-based entropy, Shannon’s
entropy and correlation dimension
for AD screening

In this section, we investigate the effectiveness of the
proposed epoch-based entropy measure for the dis-
crimination of AD patients from healthy subjects on
the test dataset. We compare it to both Shannon’s
entropy and correlation dimension in terms of clas-
sification accuracy.

Table 3 presents the correct classification rate
and area under the curve (AUC) values, per brain
region, with the three complexity measures on the

test dataset. To obtain an epoch-based entropy
value per person and per brain region, the HMMs
were trained on a set of EEG signals collected
by electrodes of the considered brain area, as
explained above in Sec. 2.3. For comparison pur-
poses, Shannon’s entropy and correlation dimension
were computed per person and per brain region by
concatenating EEG time series of the considered
brain region.

Results clearly show that Shannon’s entropy is
the worst complexity measure in terms of discrimina-
tion between AD patients and healthy subjects, with
an accuracy of 41.4% for all brain regions. This rate
corresponds to the a priori probability of the class of
AD patients (17 AD patients among the 41 subjects
of the test dataset): the classifier based on Shannon’s
entropy classifies all subjects of the test dataset as
AD patients (specificity = 0%, sensitivity = 100%).
By contrast, the best discrimination is provided by
epoch-based entropy when parietal and temporal
regions are considered: a correct classification rate of
almost 83% is obtained (specificity = 83.33%, sensi-
tivity = 82.35%).

For a refined comparative analysis, Fig. 4 shows
the box plots of complexity values obtained on
healthy subjects and AD patients for each complex-
ity measure, on both development and test datasets.
AD patients have lower values of Shannon’s entropy
and correlation dimension than healthy subjects.
However, epoch-based entropy values of healthy sub-
jects are lower than those of AD patients, contrary
to two other complexity measures.

This inverse behavior stems from the specific
properties of the epoch-based entropy measure: AD
induces a reduction in complexity of EEG signals,
but also an increase of irregularity between EEG
channels. As epoch-based entropy quantifies both
effects simultaneously (disorder over time and spa-
tial disorder), it behaves differently from other two
complexity measures.

Moreover, it appears clearly that the box plots of
epoch-based entropy of healthy subjects are signifi-
cantly different from those of AD patients (Mann—
Whitney p = 5.5 x 1077 computed on all datasets),
slightly less significant for correlation dimension (p =
5.7x 107°) and not significant for Shannon’s entropy
(p = 0.064). This accounts for the fact that the
discrimination efficiency of epoch-based entropy is
higher than that of the other two measures.
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Table 3. AUC values and correct classification rates (Acc, in %) on the test dataset with each

complexity measure per brain region.

Brain regions Epoch-based entropy

Correlation dimension

Shannon’s entropy

AUC Acc AUC Acc AUC Acc
Frontal 0.75 63.4 0.82 70.7 0.68 41.4
Occipital 0.83 58.5 0.84 75.6 0.73 41.4
Parietal 0.89 73.2 0.85 58.5 0.75 41.4
Temporal 0.89 63.4 0.74 60.9 0.72 414
Parieto temporal 0.88 82.9 0.82 75.6 0.74 414
All 0.90 82.9 0.80 78.1 0.74 41.4

It has been shown in Ref. 69 that complexity mea-
sures and spectral measures can be strongly corre-
lated. However, since the proposed entropy measure
uses local information (from short time segments),
we expected there would be no correlation. In order
to confirm this hypothesis, we estimated the cor-
relations of relative power in the theta and alpha
ranges with the proposed entropy measure. Those
correlations were nonsignificant for both estimates
(theta: R? = 0.06, F-score = 2.30, p = 0.14; alpha:
R? = 0.07, F-score = 2.78, p = 0.10).

In addition, the box plots of Shannon’s entropy
and correlation dimension values on healthy subjects
(or AD patients) are very different in the develop-
ment and test datasets. This is even more conspic-
uous for AD patients: the box plots of epoch-based
entropy on both test and development datasets are
quite similar on AD patients (Fig. 4(a)), although
the datasets originate from different sites and were
obtained with different electrode placements, as
explained in Sec. 3. Therefore, choosing the decision
threshold on the development dataset does not affect
significantly the performance on the test dataset with
epoch-based entropy.

For Shannon’s entropy (Fig. 4(c)), the distribu-
tion of healthy subjects and AD patients are com-
pletely different on test and development datasets.
Therefore, the selected optimal threshold on the
development dataset is not adapted to the test
dataset, and thus leads to bad classification rate on
the test dataset, as observed above.

It has thus far been demonstrated that epoch-
based entropy is more reliable for AD screening than
the other two complexity measures. In the next sec-
tion, we investigate the robustness of the proposed
measure with respect to variations in experimental
condition that may occur during EEG acquisition.

4.2. Effect of noise and sampling rate
on complexity measures

Several technical issues during EEG acquisition may
affect the analysis of EEG signal, which is known
to have a low Signal-to-Noise Ratio (SNR). Actu-
ally, EEG recordings are strongly affected by differ-
ent sources of noise and disturbances, be they phys-
iological (e.g. neuromuscular noise) or electronic.
Inter-subject variability is partly due to differences
of SNR. Therefore, measures that would not be
robust to variations of SNR are prone to inaccura-
cies depending on experimental conditions. Sampling
frequency is another potential technical issue; given
that EEG signal is digitized, low sampling frequency
may lead to information loss. Clinical EEG databases
are digitized with different sampling rates, which can
constitute a limit for the generalization of a screening
method. In the following, we study the effect of white
noise and sampling frequency on the three complex-
ity measures when applied to EEG data.

4.2.1. Effects of added white noise

In this section, we analyze the influence of white
noise on the complexity estimations obtained by
epoch-based entropy, correlation dimension, and
Shannon’s entropy, on the signals of the test dataset,
independently from sampling rate.

The three complexity measures are first com-
puted on the original signals of the test dataset.
They are subsequently computed on six datasets con-
taining noisy data generated by adding six levels of
Gaussian white pseudo-random mnoise to the origi-
nal data, thereby generating six signals with different
SNR values (20dB, 15dB, 10dB, 5dB, 1dB, —10dB).
As white noise is generated randomly, 100 different
realizations of noisy data are produced for each SNR
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Fig. 4. Box plots of (a) epoch-based entropy, (b) corre-
lation dimension, and (c) Shannon’s entropy values mea-
sured on parieto-temporal region. Values for healthy sub-
jects (left) and AD patients (right) are shown for both
the test and the development datasets.

value in order to obtain a reliable estimate of clas-
sification accuracy from these data. The classifica-
tion is performed from these data using the opti-
mal threshold obtained on the original development
dataset (datasets B and C, without added noise).
Consequently, the obtained results are representa-
tive of the robustness of the classifier to variations
of noise when classifying new independent examples.

Figure 5 displays the values of the three com-
plexity measures obtained on healthy subjects and
AD patients of the test dataset considering the orig-
inal clean data and the six levels of noisy data. It
is first observed that increased noise in the data
causes an increase in correlation dimension and
Shannon’s entropy values, but a decrease in epoch-
based entropy values. This inverse behavior of epoch-
based entropy is due to its properties, as explained in
Sec. 2.3 and observed in Sec. 4.1: increased noise in
the multidimensional EEG data would result in more
regularity between channels since the original data
will be hidden by the added noise. This phenomenon
leads to a decrease of the epoch-based entropy.

Figure 5 also shows that the gap in values
between the seven datasets is more important with
Shannon’s entropy and correlation dimension. In
addition, the difference between healthy subjects and
AD patients is larger with epoch-based entropy (Fig.
5(a)), even in the presence of noise with SNR=
10dB. These first results indicate that epoch-based
entropy is less sensitive to noise than the other two
complexity measures.

Figures 6(a)-6(c) show the seven ROC curves
obtained for classification by LDA, using respec-
tively epoch-based entropy, correlation dimension,
and Shannon’s entropy as a single feature, on the
original signals of the test dataset and on the six
levels of noisy signals obtained from the test dataset.

Note that ROC curves obtained on noisy signals
are smoother than those obtained on the original
signals due to averaging over 100 noise realizations.
Specificity and sensitivity correspond to good classi-
fication of healthy subjects and AD patients, respec-
tively. Figure 7 displays the evolution of the AUC
and the correct classification rates obtained for each
complexity measure on all signals. It is clear that
when adding noise to the original signals, classifica-
tion performance decreases for all measures, but to
different extents.
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Fig. 7. AUC (top) and correct classification rate (bot-
tom) for the three complexity measures on the clean data
and the six noisy data with different SNR.

First consider the classification results obtained
with epoch-based entropy and correlation dimen-
sion. In both cases, the performance degrades grace-
fully as the amount of noise in data increases, albeit
more markedly for correlation dimension than for
epoch-based entropy. Figures 6(a), 6(b) and 7(a)
show that for SNR >10dB, a smooth variation of
AUC values appears with epoch-based entropy. Sim-
ilarly, in terms of accuracy, which is dependent on
the threshold estimated on the original development
dataset (clean data), Fig. 7(b) shows that perfor-
mance degrades rapidly with correlation dimension:
the correct classification rate drops to 58% with Do
when SNR = 20 dB, while, with epoch-based entropy,
the same classification rate is achieved when SNR =
10dB.

Note that for SNR < 10dB, correlation dimen-
sion and epoch-based entropy both reach an accu-
racy of 58.5%, which corresponds to an arbitrary
classification of all subjects as healthy (specificity =
0%, sensitivity = 100%): when adding white noise
to data, the EEG signals of AD patients become
“similar” to those of healthy subjects with respect
to epoch-based entropy or correlation dimension.

Finally, for Shannon’s entropy, we obtain a cor-
rect classification rate of 41.46% on the original sig-
nals as well as for all levels of added noise. This is
due to the fact that the threshold value estimated
on the development dataset is not efficient on the
test dataset as explained in Sec. 4.1. The influence of
noise on that measure is apparent on the AUC values:
by contrast to other two measures, with Shannon’s
entropy, performance drops significantly in terms of
AUC on data affected by low noise (SNR = 20dB).

4.2.2.  Sampling frequency effects

This section studies the influence of sampling fre-
quency on the three complexity measures. To this
end, the original signals of the test dataset, sampled
at 128 Hz, were down-sampled at different frequen-
cies, generated by multiplying the original sampling
frequency by seven different multiplicative factors:
1 =0.9,0.8,0.7, 0.6, 0.5, 0.4, and 0.3 (an interpola-
tion procedure is applied when required). We used
an anti-aliasing low-pass FIR filter with a Kaiser
window in cases when interpolation was required.
Results of classification performance as a function
of sampling frequency, in terms of AUC and correct
classification rate, are shown in Figs. 8(a) and 8(b),
respectively.

At each sampling frequency, the optimal hyperpa-
rameter configuration for complexity measures and
the optimal decision threshold that leads to the best
accuracy are estimated on the development dataset
(robustness to hyperparameter changes in the com-
putation of Dy and epoch-based entropy is investi-
gated in the next section). The obtained configura-
tions and thresholds for each sampling frequency are
subsequently used to estimate the accuracy on the
test dataset.

Figures 8(a) and 8(b) show that the evolution of
classification performance as a function of sampling
frequency are essentially similar, for classifiers based
on epoch-based entropy and correlation dimension.
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of sampling rate with the three complexity measures.

Shannon’s entropy provides poor results irrespective
of frequency.

All the obtained results demonstrated that AD
screening based on epoch-based entropy is less sensi-
tive to noise and sampling rate than AD diagnosis
based on the Shannon entropy and correlation
dimension. For a complete comparison between the
two best complexity measures, the effects on classi-
fier performance of changing hyperparameters used
in their calculation is investigated in the next section.

4.2.3. Regional stability: channel grouping

Epoch-based entropy was computed on a priori cho-
sen sets of channels. We evaluate here the robustness
of the measure to this channel selection.

The largest set of channels was defined in the
parieto-temporal region, where we had selected nine
channels: F7, Fg, T3, Ty, T5, P3, P,, P4, and Tg. We
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Fig. 9. AUC depending on the number of channels in
the parieto-temporal region.

estimated the variations of the AUC when removing
iteratively one electrode from this list. The classifica-
tion performance is globally stable, and drops when
less than four channels are used (Fig. 9). The effect
of spatial correlations on the entropy values is visible
here, as the cross-channel information improves the
classification accuracy. Similar effects are observed
in other regions.

4.2.4.  Temporal stability

We evaluated the stability of epoch-based entropy
using a test-retest procedure. We divided the signals
of all subjects in the test dataset (N = 41), and com-
puted the measure on the first half of the signal, and
compared it with the measure applied on the second
half of the signal (see Fig. 10). The resulting Pearson
correlation score was highly significant (r?> = 0.84,
F = 204.75, p < 1079), demonstrating the measure
stability.

4.3. Effect of hyper-parameters
variation

Hyperparameters are involved in the computation
of correlation dimension and epoch-based entropy.
We evaluated the stability of Dy and epoch-based
entropy to changes in these hyperparameters. As
indicated in Sec. 4.1, the optimal hyperparameter
configuration is selected by looking for that giving
the highest accuracy on the development dataset.
The sensitivity of classifiers based on correlation
dimension and epoch-based entropy to variations of
the hyperparameters is investigated in this section.
For computing epoch-based entropy, the number
of epochs N and the number of Gaussians M per
epoch are required (Sec. 2.3). Figure 11 displays the
AUC values computed with epoch-based entropy as
a function of the number of epochs and the num-
ber of Gaussians. As expected, a sharp decrease of
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Fig. 11. AUC values on the test dataset for different
values of number of Gaussians and epochs.

AUC occurs for small numbers of Gaussians and of
epochs (leading to underfitting), and for high num-
bers of Gaussians and epochs (leading to overfitting).
The presence of a large plateau around the optimal
value shows that the performance of a classifier based
on epoch-based entropy is reasonably insensitive to
change of the hyperparameters involved in the defi-
nition of epoch-based entropy. The hyperparameters
estimated on the development set are far from over-
fitting and underfitting conditions.

Computing D requires the selection of hyperpa-
rameters m, r, and 7. These are commonly referred
to as “embedding dimension”,
delay”, respectively (Sec. 2.1). Figure 12 shows the
AUC values obtained with correlation dimension as

“radius”, and “time

a function of each of the three parameters involved
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Fig. 12. AUC values on the test dataset for different
values of (a) embedding dimension, (b) time delay, and
(c) radius.

in computing D,. Starting from the optimal config-
uration that was found on the development dataset
(embedding dimension m = 4, time delay 7 = 1,
radius r = 2), these hyperparameters are varied sep-
arately. In the range of hyperparameter values inves-
tigated, results show that the AUC is essentially
independent of r, and is sensitive to m and .

For a better insight into the influence of the
embedding dimension m and the time delay 7, Fig. 13
shows the AUC as function of these two parameters,
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with r» = 2. A significant performance degradation is
observed when m =1, for all values of 7: too small
values of m lead to errors because points that are
really far apart in time on the EEG signal end up as
close neighbors in the phase space. For m > 1, the
AUC decreases significantly with 7.

5. Discussion and Conclusion

The purpose of this study was to investigate the
potential application of a new entropy-based com-
plexity measure to the discrimination of AD patients
from healthy subjects on the basis of multi-channel
EEG signals. Termed “epoch-based entropy”, this
new complexity measure is computed on piecewise
stationary epochs using a HMM, which performs
local density estimation at the epoch level. This
method was tested on multi-channel EEG data in
order to illustrate the ability of the method to take
into account inter-channel relations.

The originality of the new measure lies on the
fact that it estimates the complexity of EEG signals
locally over time (as done by classical complexity
measures), and also spatially by estimating the inter-
channels complexity. These two complexity measures
are merged into a single figure. Many investigations
on AD screening were based on the reduction in
complexity of the EEG signal in AD patients; other
studies were based on the reduction of homogeneity
between EEG channels in AD patients.?¢37 However,
these two factors were usually measured separately.

By comparing epoch-based entropy measure to
two alternative complexity measures, correlation
dimension and Shannon’s entropy, it was shown that

Epoch-based Entropy for Early Screening of AD

the proposed measure is a more reliable feature for
AD screening than the other two, on our experimen-
tal data. A significantly higher classification rate was
obtained with epoch-based entropy than with other
two measures. Many studies pointed out the fact that
the amount of data required for reliable assessments
of Dy is beyond experimental reach for physiological
data,”®" which may explain in part our improved
results.

Earlier studies reported classification results in
the 75-90% range.!0-13:14,16-18,23-2527-20.37 [y
ever, note that most studies do not use proper cross-
validation designs (either not using an independent
test set, or optimizing hyperparameters on the whole
database). Without a proper independent test set,
accuracies are usually over-estimated, as they do not
address properly the risks of overfitting. In this work,
an accuracy of 83% is reached with epoch-based
entropy on an independent test dataset when parietal
and temporal regions are considered. This finding
is consistent with clinical knowledge®%15:72: parietal
and temporal regions are the first affected regions in
the early stage of AD. Our measure could therefore
be used for the screening of patients. A next step
would be to investigate databases including other
neurodegenerative pathologies (such as Lewy Body
dementia, vascular dementia, FTD, etc.), in order to
estimate the potential of this method as a diagnostic
tool.

The distinct separation between AD patients and
healthy subjects with epoch-based entropy provides
further evidence that EEG analysis can be used to
detect cognitive abnormalities due to AD. Moreover,
our observations are consistent with the fact that AD
is associated to the loss of neurons and to impair-
ments in the coordination of neural activity.

Shannon’s entropy was the worst complexity
measure in terms of discrimination between AD
patients and healthy subjects. The classification
achieved is not better than a random classifica-
tion, and statistical analyses do not show signifi-
cant differences between the AD patients and the
control subjects (p-value> 0.05). The poor classi-
fication performances can be explained in part by
the mismatch between Shannon’s entropy values esti-
mated on the development dataset and those esti-
mated on the test set. In this case, the optimal
decision threshold selected on the development set
becomes not appropriate for a deployment on the test
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dataset and thus leads to poor classification results
on test data. This result highlights the fact that
Shannon’s entropy is very sensitive to EEG recording
conditions.

Simulations were conducted to assess the robust-
ness of the proposed measure to disturbances in the
experimental conditions by artificially varying the
SNR or the sampling rate in the test set. Here again,
epoch-based entropy was more stable and less sensi-
tive to low SNR (as low as 10dB) or decreased sam-
pling rates (as low as 51.2 Hz) than the two other
measures. This explains its higher generalization per-
formance on the test set. It was further shown that
classifiers based on epoch-based entropy are reason-
ably insensitive to variations of the hyperparameters
involved in its computation. This is in contrast to
correlation dimension-based classifiers.

In conclusion, our study provides a novel method
for analyzing the dynamics of neural activity in
patients with AD. Further experiments should be
conducted on additional subjects to assess the gen-
eralization of our method to clinical usage. Further-
more, in this work, entropy was computed on EEG
time series locally at the epoch level, and then aver-
aged over all the epochs for the sake of parsimony.
It might be interesting to keep the entropy values
per epoch; thus EEG signal would be associated to
a sequence of entropy values. This would character-
ize more finely how the EEG signal fluctuates over
time. Moreover, the proposed entropy measure was
developed for the analysis of EEG data in the time
domain; it could be extended to characterize the
underlying brain dynamics in the frequency domain
by filtering the EEG signal into frequency ranges
prior to the evaluation of the entropy measures.
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