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ABSTRACT 

Certain applications require the production of 
intelligible speech from articulatory data. This 
paper outlines a research program (Ouisper : Oral 
Ultrasound synthetIc SPEech souRce) to 
synthesize speech from ultrasound acquisition of 
the tongue movement and video sequences of the 
lips.  Video data is used to search in a multistream 
corpus associating images of the vocal tract and 
lips with the audio signal. The search is driven by 
the recognition of phone units using Hidden 
Markov Models trained on video sequences. 
Preliminary results support the feasibility of this 
approach. 
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1. INTRODUCTION 

The phonemes produced in a language contain a 
multiplicity of features that are used by the brain to 
understand and produce speech, but are difficult to 
reproduce in machine recognition or synthesis. 
Many articulatory models (CAIP [1], TractSyn [2], 
Maeda [3]) have focused on rule-based approaches 
to speech synthesis driven by articulatory 
parameters. At the same time, the state of the art in 
text to speech synthesis (for example, the Festival 
system [4]) uses a corpus-based approach which 
simply concatenates acoustic speech segments. The 
Ouisper project proposes to create a speech 
synthesizer driven by articulatory measurements 
computed from ultrasound images of the vocal 
tract and optical images of the speaker lips. It will 
thus extract discrete phonemes from a continuous 

data stream and use those as the basis of synthetic 
speech.  

Such a speech synthesizer, driven only by 
articulatory data, could be used as an alternative to 
tracheo-oesophageal speech for laryngeal cancer 
patients, for situations where silence must be 
maintained, or for voice communication in noisy 
environments.   

Our system is based on the building of an 
audiovisual corpus which associates articulatory 
measurements extracted from video to acoustic 
observations. HMM-based stochastic models, 
trained on this corpus and combined with a unit 
selection algorithm, are used to predict and find the 
optimal sequence of acoustic units, using video-
only data. Figure 1 presents an overview of the 
Ouisper speech synthesis system. 

Figure 1: Ouisper corpus-based synthesis system 
overview  

 

 

 

 

 

 

 

 

 

 
 

Section 2 of the article details data acquisition 
and ultrasound image preprocessing, while section 
3 describes the visual feature extraction 
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techniques. Speech segmentation is presented in 
section 4. Visual speech recognition and acoustic 
unit selection are introduced in section 5. 

2. DATA ACQUISITION AND 
PREPROCESSING 

The first task of an audiovisual corpus-based 
speech synthesis system is the construction of an 
articulatory database comprising video sequences 
of the voice organ together with the uttered speech 
signal.  

2.1. Data Acquisition  

Video sequences of the voice organ are taken using 
a 30 Hz ultrasound machine and the Vocal Tract 
Visualization Lab HATS system [5], which 
maintains acoustic contact between the throat and 
the ultrasound transducer during speech. A lip 
profile image is embedded into the ultrasound 
image, as shown in figure 2. 

Figure 2: Example of an ultrasound vocal tract image 
with embedded lip profile: (a) tongue surface; (b) 
hyoid bone; (c) hyoid and mandible acoustic shadows; 
(d) muscle, fat and connective tissue. 

 

The recorded speech dataset consists of 720 
sentences organized in 72 lists from the 
IEEE/Harvard corpus [6], spoken by a male native 
American English speaker. The IEEE sentences 
were chosen because they are constructed to have 
roughly equal intelligibility across lists and all 
have approximately the same duration, number of 
syllables, grammatical structure and intonation. 
After cleaning the database, the resulting speech 
was stored as 72473 JPEG frames and 720 WAV 
audio files sampled at 16000 Hz (43 minutes of 
speech).  

The corpus-based synthesis system currently 
developed in the Ouisper project provides a 
general methodology to deal with multimodal 
corpora. Because this approach is multi-stream 

based, other data streams can be added, such as 
dynamic electropalatography (EPG) and 
electromyography (EMG) [7], or a signal recorded 
from a “non-audible murmur microphone” [8].  

2.2. Ultrasound image preprocessing 

The ultrasound images are first reduced to a polar 
region of interest grid delimited by the acoustic 
shadows of the hyoid bone and mandible. The 
anisotropic diffusion filter of Yu [9] is then applied 
to remove speckle noise without destroying 
important image features.   

3. VISUAL FEATURE EXTRACTION 

3.1. Tongue feature extraction 

In many studies (for example [10]), the position of 
the tongue surface in the image is considered to be 
the only relevant information in the ultrasound 
frame, and the extracted articulatory data are 
simply the parameterized tongue contour. The 
tongue surface is however poorly imaged when it 
is nearly parallel to the ultrasound beam, as in the 
case of the phoneme /i/ for example. Edge tracking 
algorithms are not enough efficient to cope with 
small gaps appearing in the tongue contour, and 
fail for such frames. A solution to this problem is 
the more global feature extraction approach 
introduced in [11], wherein Principal Component 
Analysis (PCA) is used to encode the maximum 
amount of relevant information in the images, 
mainly tongue position, of course, but also other 
structures such as the hyoid bone, muscles, etc. 
This approach is called “EigenTongues” in analogy 
to the “EigenFaces” method developed by Turk 
and Pentland for face recognition [12]. In this way, 
any vocal tract image is considered to be a linear 
combination of a set of standard articulatory 
configurations (cf.  upper part of figure 3). 

Figure 3: The first three EigenTongues (top) / 
EigenLips (bottom), from left to right. 

 

 



3.2. Lip feature extraction  

To characterize the lip information, a lip contour 
can of course be used to extract trajectories of the 
upper/lower lips and commissure from the video 
sequences. Accurate detection of the lip contour 
under varying rotations of the speaker face, 
however, is a difficult task. Hence, a statistical 
“EigenLip” method was also used to code the lip 
frames, as illustrated in the lower part of figure 3.  

4. SEGMENTAL SPEECH DESCRIPTION 

The availability of speech data transcribed at the 
phonetic level is useful for phonetic research and 
crucial in the field of corpus based-synthesis. 
Accurately transcribed speech is needed both for 
the training of audiovisual speech recognition 
systems and for the building of a segment database 
from many transcribed utterances from a single 
speaker.  

4.1. Phonetic segmentation  

Manual phonetic segmentation of the speech signal 
is a difficult and a time consuming task. Several 
methods have been proposed to speed up this 
process. The most successful methods have been 
borrowed from automatic speech recognition, such 
as Hidden Markov Models (HMM), or Dynamic 
Time Warping (DTW) techniques, because 
automatic alignment can be viewed as a simplified 
recognition task. In this study, an HMM recognizer 
is used to do forced alignment of speech, that is, a 
search of the phoneme time boundaries when the 
phonetic sequence is already known.  The speech 
acoustic signal is parameterized using Mel 
frequency cepstral decomposition, with normalized 
energy, delta and acceleration coefficients. HMM 
acoustic models are initially trained on the 
transcribed multi-speaker DARPA TIMIT speech 
database [13].  

4.2. Audiovisual database explorer 

In order to check the speech alignment accuracy 
and the database coherence, an “audiovisual 
database explorer” was implemented in the real-
time dedicated Max/MSP/Jitter1 environment. This 
software allows audiovisual navigation among all 
of the occurrences of each phoneme classes. For 
example, a user can listen to all of the /i/ phones, 

                                                             
1 http://www.cycling74.com 

alone or in their context, and simultaneously see 
the causal motion of the vocal tract and lips.   

5. CORPUS BASED SYNTHESIS DRIVEN 
BY ARTICULATORY DATA 

5.1. Speech recognition from video sequences 
of the vocal tract and lips 

During the training phase, visual observation 
sequences of each phoneme class are modeled 
using a 5-state, 16 mixture, left-to-right HMM via 
an embedded re-estimation algorithm. For 
continuous speech recognition from visual 
articulatory data, a Viterbi algorithm is used to find 
the optimal path through the word model network, 
where word models are obtained by concatenating 
phone HMM models. In this study, no language 
model (word sequence probabilities codebook) is 
used. Thus, this system is driven only by the use of 
a pronunciation dictionary, which contains in our 
case 2390 items. Figure 4 illustrates the 
performance of this visual speech recognizer on 
two examples, where the predicted phone sequence 
is time-aligned with the reference phonetic 
transcription using a dynamic programming-based 
string alignment procedure.  

Figure 4: Reference phonetic transcriptions (Ref) and 
predicted phonetic transcriptions (Rec) derived from 
articulatory visual features  

 

Recognition errors are evident in the figure, but 
our HMM-based system is already able to perform 
phonetic transcription from video-only speech data 
with over 50% correct recognition. This figure is 
validated using a jackknife technique, in which 
each list of ten sentences is used once as the test 
set. This preliminary result is to be compared to a 
best possible of ≈70% obtained doing traditional 



speech recognition directly on the audio signal, 
and as such is quite promising.    

5.2. Unit selection and concatenation   

Given the predicted phonetic sequence, speech 
synthesis can subsequently be envisioned as 
selecting phonetic units in the audiovisual corpus. 
This task is achieved by a Viterbi algorithm, which 
finds the optimal sequence of visual corpus units 
that best match the given predicted phonetic 
sequence. After having selected the visual units, 
the last step is the concatenation of their 
correspondents in the acoustical domain. The 
synthesized speech is of course of good quality for 
correctly predicted sequences; however, with the 
current system, the number of errors is still to high 
to produce a truly usable output signal. One 
approach will be to enlarge the single target to a 
lattice of n-best phone sequences, which could be 
used to drive the search for the optimal solution, a 
strategy which is an extension of the phonetic 
vocoder ALISP [14]. 

6. CONCLUSION AND PERSPECTIVES 

The ability to extract discrete phonemes from 
physiological data is as yet unrealized in speech 
research.  This work is the beginning of such a 
project and would provide a remarkable 
enhancement to the current state-of-the-art in 
speech recognition.  The larger goal of the project, 
to synthesize high quality speech will also be 
useful to the many applications, commercial and 
medical, where synthetic speech can augment 
communication. 
     Future databases will incorporate a front view 
of the speaker’s head. Optical flow based 
techniques will also be used to model the motion 
of the visible articulators. Speech recognition from 
video-only data will be validated using a larger 
dictionary, and may be improved by using a robust 
language model. Finally, the lack of energy, 
voicing, and rate information in the video sequence 
will necessitate the creation of a “virtual prosody” 
in order to obtain good quality speech synthesis. A 
data-driven approach, in which prosodic patterns 
are extracted from the corpus, is foreseen.  
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