
Perceptrons, past and present 1

 Perceptrons, past and present

G. Dreyfus*, L. Personnaz*, G. Toulouse**

*École Supérieure de Physique et de Chimie Industrielles
Laboratoire d'Électronique

10, ue Vauquelin
F - 75005 Paris

Tel.: (33) 01 40 79 45 41
Fax: (33) 01 40 79 44 25

e-mail: dreyfus@neurones.espci.fr, personna@neurones.espci.fr

**École Normale Supérieure
Laboratoire de Physique

24 rue Lhomond
F - 75005 Paris

Tel.: (33) 01 44 32 34 87
Fax (33) 01 43 36 76 66

e-mail: toulouse@physique.ens.fr

Running head: Perceptrons, past and present

Abstract

The story of Perceptrons is not unlike that of aeronautics. Although man drew
its initial inspiration from the flight of birds, airplanes really came of age with the
development of a deep knowledge in hydrodynamics and flight mechanics.
Similarly, Perceptrons were invented in the 1960's with a view to mimicking the
brain, but their real use in engineering is only at its starting point. In the present
survey, we first describe briefly the state-of-the art of neural nets, emphasizing
their basic mathematical properties and their fields of applications; the second
part of the presentation describes the evolution of the ideas, from the first
attempts in the area of pattern recognition, to more recent developments in
nonlinear process modeling and control.

Perceptrons, past and present 2

Introduction

The development of networks of formal neurons (including Perceptron structures) in the
field of engineering started in the 1960's, and was virtually abandoned in 1970; it was
revived in the 1980's. One salient feature of the evolution of the field in recent years is
the recognition that, from the point of view of engineers, physicists or computer
scientists, the biological metaphor is essentially irrelevant: Perceptrons have
mathematical properties of their own, which make them useful in a wide variety of areas,
irrespective of their biological origin. Of course this observation, helpful for practitioners
as it is, is not meant to induce anyone to ignore the inspiration drawn from biology, not
the potential for fruitful modeling of biological computation, as described elsewhere in
this volume.

The first part of this survey is devoted to a cursory description of the present view of
networks of formal neurons: their basic mathematical property is explained, and the
main tasks that neural networks can perform are presented in that perspective. The
second part of the paper will be an attempt at describing the main steps along the path
that led to the present state.

Where Do We Stand ?

Formal neurons
A formal neuron (hereinafter termed simply "neuron") is a simple mathematical
operator; in the vast majority of applications, it is expressed as a few lines of software;
if stringent real-time operation constraints exist, it can be implemented as an electronic
circuit. The inputs of a neuron are numbers which are processed in the following way:
the neuron computes its output as a non-linear function of the weighted sum of its
inputs (see Figure 1). The inputs may be either the outputs of other neurons, or
exogenous signals. The weights (sometimes termed "synaptic weights"), the inputs and
the outputs are, in general, real numbers. The non-linear function must be bounded: it
may be a step function, a sigmoid (e.g. tanh) function, a gaussian, etc.

Perceptrons
Although the computational power of a single neuron is very low, networks of such
neurons have very useful properties. Before describing them, we first introduce an
important distinction between two classes of network architectures:
- Feedforward neural networks are networks in which information flows from
inputs to outputs, without any feedback (Figure 2); they are static systems: the input-
output relationships are in the form of non-linear algebraic equations; the outputs at a
given time depend only on the inputs at the same time;

Perceptrons, past and present 3

c
in

ci1

ci2

ci3

NEURON i

1

2

3

n

x

x

x

x

y
i

+1

-1

f

FIGURE 1
The output yi of neuron i is a nonlinear function f of the sum of its inputs xj

weighted by the synaptic weights cij:

yi = f cij xj∑
j=1

n

.

- Feedback neural networks (also termed recurrent networks) are networks in which
information may be fed back from the output of a neuron to its input, possibly via
other neurons; such networks are dynamic systems: the input-output relationships
are in the form of non-linear differential equations (or difference equations, see
Figure 3); the outputs depend on the past values of the inputs of the network.

In feedforward multilayer networks, intermediate ("hidden") neurons process
information conveyed by the inputs, and transmit their results to the output neuron(s).
Such networks are used as automatic classifiers for pattern recognition, static nonlinear
models of processes, or nonlinear transverse filters. Figure 2 shows a typical structure
used for classification, in which the hidden neurons are arranged in a layer: connections
exist between the inputs and the hidden neurons, and between the hidden neurons and
the output neurons.

Output neurons

Hidden neurons

Inputs....

...

......

FIGURE 2
A multilayer Perceptron (feedforward network)

Perceptrons, past and present 4

Feedback networks can be used for the nonlinear dynamic modeling and control of
processes. Figure 3 shows a discrete-time feedback neural network. Since there are loops
within the network, delays must be present in order for the system to be causal. It can
be shown actually that any feedback neural network, however complex, can be put into a
canonical form (Figure 4) which is made of a feedforward network (usually a multilayer
perceptron) having some outputs (called state outputs) fed back to the inputs.

0
03 4

5

1 2

0 1

1

10 0

FIGURE 3
A discrete-time feedback network; the numbers in the squares denote time delays.

q-1

3

4

5

1 2

FIGURE 4
The canonical form of the discrete-time recurrent network of Figure 3. The symbol q-1

denotes a unit time delay.

Perceptrons, past and present 5

Note that along time an evolution of terminology occurred. Originally, the word
Perceptron was restricted to an elementary and specific structure; it was subsequently
extended to include all feedforward nets. Our use of the term will be at times even more
liberal.

Fundamental property of multilayer perceptrons and areas of applications
Multilayer perceptrons have a remarkable property: they are parsimonious universal
approximators (or regression estimators) (Hornik et al., 1994).
The approximation property may be stated as follows: any sufficiently regular nonlinear
function can be approximated with arbitrary accuracy by a feedforward network having
a single layer with a finite number of hidden neurons with sigmoidal nonlinearity and a
"linear" output neuron. This property is not specific to neural nets: polynomials, for
instance, are universal approximators; so are wavelets, radial basis functions, and others.
The salient feature of neural networks is their parsimony: for a given accuracy, the
number of weights required is generally smaller for a "neural" approximation than for an
approximation with most other usual approximators. More specifically, the number of
weights grows linearly with the number of variables of the function, whereas it grows
exponentially for polynomials for instance. In practice, perceptrons are often
advantageous when the number of variables is larger than or equal to three.
In the vast majority of applications, the task of a multilayer perceptron is not the
approximation of a known function. The problem of interest is actually the following:
given a collection of values of the variables (the inputs of the network), and a collection
of numbers (the desired values of the outputs) which are the corresponding values of an
unknown nonlinear function, find a mathematical expression that "best" fits the data (i.e.
minimizes the approximation error) and that "best" generalizes (i.e. interpolates) to new
data. Because of their parsimonious universal approximation property, neural networks
are excellent candidates to perform such a task. The problem then is to determine the
values of the weights that allow the neural network to achieve that best fit: this is done
through an algorithmic process called training or supervised learning. After training, the
perceptron should ideally "capture" what is deterministic in the data. Note that this
problem is a classical problem in statistics known as nonlinear regression; training is
just the estimation of the parameters of a nonlinear regression.

In order to find the best nonlinear fit of the output to the data, the following steps must
be taken :
(i) Choose the architecture of the network, i.e. the network inputs (the relevant

variables), the topology and size of the network: this determines a family of non-
linear functions with unknown parameters (the weights of the network) which are
candidates for performing the data fitting.

(ii) Train the network, i.e. compute the set of weight values that minimize the
approximation error over the data set used for training (training set).

Perceptrons, past and present 6

(iii) Assess the performance of the network on a data set (called test set) which is
distinct from the training set, but which stems from the same population.

The fundamental property of perceptrons tells us that a neural network with a
sufficiently large number of hidden units can fit any nonlinear function; however, a
network with too much "flexibility", i.e. too large a number of adjustable weights, will
wiggle unnecessarily between the data points, hence will generalize poorly. Conversely,
a network which is too "stiff" may be unable to fit even the training data satisfactorily.
This is illustrated on Figure 5: the red dots are the measurements of the noisy output of
the process which are used for training the network, and the black line is the output of
the network after training; it is clear that the output of the network with the smaller
number of neurons is a more satisfactory approximation of the deterministic part of the
process output than the output of the larger network.
Therefore, the goal of the model designer is to find the best tradeoff between the
accuracy of the fit to the training data and the ability of the network to generalize. Both
constructive techniques (starting with a very small network and increasing its
complexity step by step) (see for instance Nadal et al. 1989, Knerr et al. 1990) and
pruning techniques (decreasing the complexity of an oversize network) (see for instance
Hassibi et al. 1993) have been widely used, but rigorous statistical methods provide
almost optimal networks (Leontaritis et al. 1987, Urbani et al. 1992). Regularization
techniques, imposing constraints on the magnitudes of the weights, have also been
investigated in depth (Poggio et al. 1990)

The areas of applications of multilayer perceptrons can be derived in a straightforward
fashion:
- static non-linear modeling of processes: there is a wealth of engineering

problems, in a wide variety of areas, which are amenable to data fitting (see
examples below): since perceptrons are parsimonious universal approximators,
they are excellent candidates for performing such tasks, provided the available data
is appropriate;

- dynamic non-linear modeling of processes: as a consequence of the universal
approximation property, feedback neural networks can be trained to be models of a
very large class of nonlinear dynamic processes;

- process control: a process controller computes the control signals that are
necessary in order to convey to the process a prescribed dynamics; when the process is
nonlinear, a neural network can be trained to implement the necessary nonlinear
function;

Perceptrons, past and present 7

Training sequence

Neural model (4 hidden neurons)

Process output

Training sequence

Neural model (8 hidden neurons)

Process output

FIGURE 5
The benefits of parsimony : the most parsimonious network, featuring 4 hidden neurons

(13 weights), has better generalization properties than the network with 8 hidden
neurons (25 weights).

- classification: assume that patterns are to be classified into one of two classes, A
or B, each pattern being described by a set of variables (e.g. the intensity of the
pixels of an image); a (usually human) supervisor sets the values of the desired
outputs to +1 for all patterns that he recognizes as belonging to class A, and to 0
for all patterns of class B. Neural networks are good candidates for fitting a
function to the set of desired outputs, and one can prove that this function is an
estimate of the probability that the unknown pattern belongs to class A. Thus,
perceptrons provide a very rich information, much richer than a simple binary
response would be.
It should be noticed that the classification abilities of neural nets are a relatively
indirect consequence of the universal approximation property. Nevertheless, neural
networks have been extensively studied and used in this context, to the extent that
perceptrons are mostly known as classifiers. We shall see below the historical
reasons of this.

- optimization: optimization is the only area of applications of neural nets that does
not actually take advantage of the universal approximation property. Given a

Perceptrons, past and present 8

discrete-time recurrent neural network made of binary units (i.e. of neurons whose
non-linear activation function is a step), it is usually possible to define a Lyapunov
function (or energy function) for this network, i.e. a scalar function of the state of
the network which has the following property: when the network is left to evolve
under its own dynamics, the Lyapunov function decreases at each time step, until
the network reaches a stable state. Thus, the dynamics of the network leads to a
minimum of the Liapunov function. This property can be used for optimization
purposes in the following way: given a function J to be optimized, if it is possible
to design a neural network whose Liapunov function is precisely function J, then
this network has the ability, if left to evolve under its free dynamics, of finding the
minimum of the cost function (Hopfield et al. 1984).

The supervised training of neural networks
As mentioned above, the supervised training of neural networks is the task whereby the
weights of a network are computed in such a way that, for each input pattern of the
training set, the output of the network be "as close as possible" to the corresponding
desired output; the latter is the class to which the pattern belongs (in the case of
classification), or the measured output of the process to be modeled (in the case of
process modeling). Therefore, a "distance" between the network output (which depends
on the weights c) and the desired output must be defined; usually, it is defined as the
sum (termed "cost function"), over all examples k, of the square of the difference
between the actual output yk(c) and the desired output dk

J(c) =

1

2
dk - yk 2

∑
k=1

N

,

where N is the number of patterns of the training set (also termed examples).
If the network has more than one output, this is summed over all outputs. Thus, training
consists in minimizing the cost function with respect to the weights c. This optimization
is performed by standard nonlinear optimization methods, which make use, in an
iterative fashion, of the gradient of the cost function; this gradient itself is computed by
a simple method called "backpropagation" (which is described elsewhere in this book).
Before training, the weights are assigned random values; during training, the weights are
updated iteratively, so that the cost function J decreases, and training is terminated when
a satisfactory tradeoff is reached between accuracy on the training set and generalization
ability measured on the test set, distinct from the training set.

Some typical applications of neural networks
Static non-linear modeling of processes. The application of perceptrons in the area of
Quantitative Structure-Activity Relationship (QSAR) is a typical example of the ability
of neural networks to fit data. The goal is the prediction of a chemical property
(expressed by a real number) of a molecule from a set of descriptors (also real numbers)
such as its molecular weight, its dipole moment, its volume, or any other relevant
quantity (Figure 6). A variety of chemical properties can be thus estimated: aqueous

Perceptrons, past and present 9

solubility, partition coefficients, etc. Some descriptors can be measured, others can be
computed ab initio by molecular simulation software tools. The results obtained by
neural networks in this area are consistently superior to those obtained by other
regression techniques on the same databases.

Aqueous solubility
Partition coefficients
Boiling point
...

FIGURE 6
The goals of QSAR

This approach can be extended to other areas: prediction of the properties of composite
materials from their composition, prediction of pharmacological properties of molecules,
etc. Perceptrons can be regarded as an aid to the design of new molecules, new materials,
etc.; they can be extremely valuable by saving the labor and cost of synthesizing a new
molecule or a new material which can be predicted not to have the desired properties.

Dynamic non-linear modeling of processes. As mentioned above, feedback neural
networks, which obey non-linear difference equations, can be used for dynamic non-
linear process modeling. These applications are given as examples of the quite general
procedure of prediction through interpolation.

The aim of the modeling is to find a mathematical model, such as a neural network,
whose response to any input signal (usually termed control signal in the field of process
control) is identical to the response that the process would exhibit in the absence of
noise (Figure 7).

Very frequently, some knowledge on the process is available in the form of non-linear
differential equations, deriving from a physical (or chemical, economical, financial, etc.)
analysis of the process. In such a case, it would be wasteful to throw away this valuable
information. One of the most remarkable features of neural networks is the fact that they
are not necessarily "black boxes": prior knowledge can be used in order to give an
appropriate structure to the network, and determine the value of some of its parameters.

Perceptrons, past and present 10

PROCESS

NEURAL
MODEL

Disturbances

u(k-1)
yp(k)

y(k)
e (k)-

+

error signal

input signal

FIGURE 7
Principle of black-box modeling

Such knowledge-based neural models are in use in industrial applications (Ploix et al.
1996).

The prediction of time series from past values is related to process modeling, except for
the fact that control inputs may not exist: the inputs of the neural predictor are an
appropriate set of past values of the time series itself, and possibly a set of past values
of the predictions; in the latter case, the predictor is a feedback network. Financial and
economic forecasting are typical areas of applications of time series prediction by neural
nets (Weigend et al. 1994).

Process models can be used in a variety of applications: fault detection, personnel
training, computer-aided design, etc. The use of models for process control is presented
in the next section.

Process control. Control is the action whereby a given dynamic behavior is conveyed to
a process. When a nonlinear model is necessary, neural networks are excellent candidates
for performing such a task. The design of a neural process controller requires two
ingredients:
- a reference model which computes the desired response of the process to the

setpoint sequence ;
- a "neural" model, as described above.

Perceptrons, past and present 11

The "neural" controller is trained to compute the control signal to be applied to the
model in order to obtain the response required by the reference model.
For instance, the process output may be the heading of an autonomous vehicle and the
control variable may be the angle of rotation of its driving wheel. Then, if the setpoint is
the orientation to be taken, the reference model describes how the vehicle should behave
in response to a change in the setpoint signal, depending on the speed of the vehicle for
instance; the neural controller will compute the sequence of angles of rotation of the
driving wheel which is necessary for the vehicle to reach the desired orientation with the
desired dynamic behavior. The French company SAGEM, in a cooperative work with
ESPCI, has designed and operated a fully autonomous four-wheel-drive vehicle whose
driving wheel, throttle and brakes are controlled by neural networks (Figure 8) (Rivals et
al. 1994).

FIGURE 8
An autonomous vehicle, fully piloted by neural networks (courtesy SAGEM)

Classification. In a classification problem, unknown patterns (in a general sense, e.g.
handwritten characters, time series, phonemes, etc.) must be assigned to appropriate
classes. The patterns are represented by a set of descriptors (real numbers) which are
supposed to describe the pattern unambiguously. A classifier either assigns an unknown
pattern to a class, or acknowledges that it cannot assign a class, because the pattern is

Perceptrons, past and present 12

ambiguous or too dissimilar from the examples. The performances of a classifier depend
strongly on the representation of the patterns, which results from preprocessing steps
acting upon the raw data; in picture processing for instance, typical preprocessing
includes filtering, thinning, contour extraction, size normalization, etc. If the pattern
representation is appropriately discriminating, if the network is appropriately designed,
and if the training set is a representative sample of the patterns to be processed, neural
networks yield recognition performances which are similar to those of the best non-
neural classifiers; however, their implementation as special-purpose integrated circuits or
on parallel processors is easier than for most classifiers of equivalent quality. There is a
wealth of examples of applications of neural networks in this area, which has been
investigated in great depth. Industrial applications have been very successful in the field
of character recognition: as an example, the French Post Office runs automatic mail
sorting machines which use neural networks (together with other methods) for the
recognition of handwritten postal codes (Figure 9).

FIGURE 9
Examples of handwritten postal codes drawn from a data base available from the US

Postal Service.

 Similarly, neural networks are used as components of systems which read automatically
the check amounts written in cursive handwriting (Figure 10). On-line recognition of
cursive handwriting is also a promising field of applications (Guyon et al. 1996)

Perceptrons, past and present 13

FIGURE 10
The automatic recognition of handwritten amounts on checks (courtesy A2iA).

Of course, classification problems arise also in a variety of applications which are quite
different from visual pattern recognition. Perceptrons are thus used in industry for
failure diagnosis, in banks for rating companies, etc. As an example, the French Caisse
des Dépôts et Consignations uses a neural network for rating the capacity of towns to
refund loans; each town is rated from A (best) to E (worse). Figure 11 shows a map with
color-coded towns, each town being assigned the color of the most probable class.

How Did We Get There ?

Having summarized the basic principles of neural networks in engineering, we are going
to show how the evolution of the ideas led to the present state of understanding of their
mathematical properties and of their areas of applications. Historically, the early
concepts of formal neurons (with binary or continuous output) appeared as abstractions
in studies of the operation modes of the nervous systems (McCulloch and Pitts 1943),
in particular their ability to perform binary and logical operations. In the fifties and
sixties, these models started to appeal to engineers who wanted to find a response to the
challenge of automatic invariant pattern recognition: how is it that very simple nervous
systems are able to recognize an object, independently of its size, orientation, and
background, a task which even to-day's most powerful computers are unable to perform.
Thus, neural networks were first considered for applications in the field of pattern
recognition, as evidenced by the name Perceptrons. The interest in neural networks was
renewed in 1982 by the introduction of fully connected recurrent networks (known as
Hopfield networks) which were described by equations analogous to those which
describe magnetic systems (spin glasses) (Hopfield 1982); statistical physicists then
went on a long way into the analysis of such systems, solving a rich variety of idealized

Perceptrons, past and present 14

FIGURE 11
Financial analysis of townships

models for memory and learning, and into their use for the modeling of biological
networks (see the appropriate chapters in the present Encyclopedia).

Since neural networks were first used for automatic classification, this section will
emphasize neural networks viewed as classifiers, although the link between nonlinear
regression (using the fundamental property of neural networks, i.e. function

Perceptrons, past and present 15

approximation) and classification is by no means obvious, and was made clear only in
recent years. After this reminder, more recent developments are described.

Classification
The problem of classification is that of assigning a pattern (described by a set of
numbers called descriptors, regressors or features), to one of several classes. A typical
example is that of recognizing handwritten numerals from the postal code, a problem
which has become a classical benchmark for classifiers. There are two types of
classifiers:
- boundary classifiers define boundaries between regions which are assigned to

classes in the space of representations of the patterns to be classified (Figure 12);
these boundaries are derived from a set of patterns whose class is provided by the
supervisor; when an unknown pattern is input to the classifier, the latter makes a
decision as to the class to which the pattern belongs, based on the position of the
point representative of this pattern with respect to the boundaries;

*

*
*

*

*
*
*

*
*
*

**

*

**

*
* * *
*

*

* * *
** *

*
*

*
*

o o

o
o
o

o
o
o

o
o

o
o

o
o

o
o

o
o

o o

o o
o
o

oo

*
* *

*

* *
*
*

*
*

*
*
*

*
*

* *

*

*

*

*

**

*

Class A

Class B

Boundary

*
*

oo oo
* * *
*

o

FIGURE 12
Representation of two classes in a 2-D space (each pattern has two descriptors). The

crosses and dots are the examples.

- probability classifiers estimate the probabilities that a pattern belongs to each class;
again, this estimate is based on a set of patterns whose class is known; when an
unknown pattern is input to the classifier (Figure 13), the latter estimates the
probability that it belongs to each class, but, in contradistinction to the boundary-
oriented approach, it does not make a decision as to the class of the pattern; the
final decision is produced by another component of the pattern recognition system,
based, for instance, on information conveyed by several different classifiers using
different representations of the patterns.

Perceptrons, past and present 16

1.0

0.0

0.25

0.5

0.75

xx
1

Probability that the pattern
described by x belongs

to class A :

Probability that the pattern
described by x belongs

to class B :

Pr A x

Pr B x

FIGURE 13
Curves showing the probability that a pattern described by descriptor x belongs to either
class; the pattern described by x = x1 has a 15% probability of belonging to class A and

85% probability of belonging to class B.

In the following, we first consider the boundary-oriented approach, and then turn to the
probability-oriented approach.

The boundary-oriented approach to neural classification. We consider that a set of
patterns is available, whose classes are known to an expert (or supervisor), supposedly
without error; each pattern is defined by a problem-dependent representation, i.e. by a
set of numbers (e.g. the set of pixel intensities of an image) which are assumed to be
useful for the discrimination of the various classes in the application under
consideration. From this set of patterns, it is desired to infer the boundaries between the
regions representing each class in the space of representation.

The simplest possible boundary-oriented two-class classifier is a single binary neuron,
or Perceptron, also known as linear separator (Figure 14). A binary neuron is a neuron

whose non-linearity is a step function: its output y is given by y = H ci xi∑
i=0

n

 = H(v),

where n is the number of features of the chosen representation, x0 = 1, and H is the
Heaviside step: the output of the neuron is equal to 1 if v is positive, and 0, if v is
negative. The boundary is defined as follows: the weights ci should be such that the
output of the neuron be equal to 1 if the input pattern belongs to one of the classes, and
be equal to zero if the input pattern belongs to the other class: the boundary between the

classes is a hyperplane whose equation is v = ci xi∑
i=0

n

 = 0 (Figure 15). The weights ci are

computed by applying a suitable training procedure (as described below) to a subset of
the available set of patterns (the training set, made of labeled patterns). If the examples

Perceptrons, past and present 17

of the training set can be completely separated, without classification errors, they are
said to be linearly separable.

Class A/class B

x1 x2 xnx0 = 1

c0 cn

y = H ci xi∑
i=0

n

= H(v)

c1 c2

FIGURE 14
A binary neuron (or linear separator)

x1

x2 Hyperplane

+
-

c0 + c1x1 + c2 x2 = 0

FIGURE 15
Separating hyperplane (in the case n = 2).

There are several supervised training algorithms for computing the weights ci. The oldest
one is known as the "Perceptron algorithm". The Perceptron algorithm is an iterative
method, using a training set made of patterns labeled by a supervisor in the following
way: an example belonging to class A is a pattern labeled with the desired value dk = 1,
an example belonging to class B is a pattern labeled with dk = 0. At the k-th iteration, the
k-th example is input to the neuron, and the corresponding potential vk is computed; if
the pattern is correctly classified, the weights are left unchanged; if the example is
misclassified, then the weights are changed according to the Perceptron rule:
ci(k) = ci(k-1) + (2 dk - 1) xi

k, where ci(k) is the value of weight ci at iteration k, and the
"learning rate" is a positive constant, smaller than or equal to 1. All examples are thus

Perceptrons, past and present 18

presented in turn, in a random order; it can be proved that, if the training examples are
linearly separable, this algorithm is guaranteed to converge to a valid solution within a
finite number of iterations; conversely, if the examples are not linearly separable, the
algorithm does not converge, and just runs on forever unless a maximum number of
iterations is specified.

In practice, linear separability of distributions seldom occurs. A boundary between
classes, even if the training examples are not linearly separable, can be found by

minimizing the following cost function: J = 1
2

 2 dk - 1 - v k 2∑
k=1

N

 = Jk∑
k=1

N

, where N is the

number of examples. This can be achieved by ordinary least-squares methods. The
iterative Widrow-Hoff method leads to the same unique minimum; at each iteration,
irrespective of the fact that the example presented is well classified or misclassified, the
weights are changed in the direction opposite to the gradient, with respect to the
weights, of Jk (the term of the cost function related to example k); thus

ci(k) = ci(k-1) + (k) (2 dk - 1 - v k) xi
k

, where (k) is positive. It can be proved that,

because J is a quadratic function of the weights, the algorithm finds the unique solution
that minimizes J, if (k) vanishes. The boundary surface v = 0 thus obtained is a straight

line if the pattern representation is two-dimensional (n = 2), a plane if n = 3, and a
hyperplane if n > 3; this hyperplane, however, does not necessarily separate the two
sets of examples, even if they are linearly separable. Nevertheless, if the distributions of
the classes are unimodal, the solution may be satisfactory; if the classes are gaussian
distributed, the boundary surface thus obtained is guaranteed to yield the minimal
average classification error when the classifier is used (Bayes classifier).

The Widrow-Hoff algorithm (also termed delta rule in the neural literature) minimizes a
function of the potential v of the neuron, but the quantity that one would really like to
minimize is the sum of the squared distances between the desired output dk and the

actual output yk : J = 1
2

 dk - yk 2∑
k=1

N

 . Since yk is not linear with respect to the weights,

the least-squares method is not applicable. Thus, gradient methods are generally used in
order to minimize J; this implies that the output y of the neuron is differentiable with
respect to the weights, which is not the case if the non-linearity of the neuron is a
Heaviside step. Thus, the non-linearity of the neuron is no longer H(v), but a sigmoid
function f(v) which is a "smooth" version of a step; for instance, one takes

y ≡ f(v) = 1
1 + e-v

. The minimization is performed by changing the weights in the

direction opposite to the gradient of the term of the cost function related to example k
with respect to the weights: c i(k) = c i(k-1) + (k)(dk - yk) f ' vk , where f' is the

derivative of the sigmoid function with respect to v. We refer to this rule as the
generalized delta rule.

Perceptrons, past and present 19

Once the neuron has been trained, the presentation of a pattern at its input results in a
response which, in contrast to the previous cases, is not binary, but may take
continuous values between 0 and +1 (Figure 16). Therefore, the neuron does not make a
decision as to the class to which the pattern belongs; it is up to the user to set up a
decision mechanism, the simplest one being that the pattern is assigned to class A if y >
0.5 and to class B if y < 0.5. With such a choice, the hyperplane defined by y(x) = 0.5 (or
v(x) = 0) becomes the boundary between the two classes.

v

y
+1

FIGURE 16
A sigmoid function y = f(v)

All the above approaches, whereby weights are computed from examples, lead to a
crucial issue: how many examples are needed in order to obtain a meaningful boundary ?
This is a difficult question, which has not yet received a complete, general answer. An
interesting insight into this problem is given by the following result (Cover 1965).
Consider a set of N points distributed randomly in an n-dimensional space, and make a
random dichotomy in this set (i.e. assign each point at random to one of the two classes
with probability 0.5). Cover proved that (i) if the number of examples N is smaller than
the number n of descriptors (N < n), any dichotomy of the set of examples gives two
subsets which are linearly separable, (ii) for a large dimensionality of the representation
space (say, n > 100), if the number of examples N is smaller than or equal to twice the
number of descriptors (N ≤ 2n), then almost any dichotomy gives two subsets which are
linearly separable. Therefore, if the number of examples is not very large with respect to
the number of descriptors, a linear boundary may exist between the classes, but this
boundary may be completely meaningless, thus leading to poor classification of patterns
which are not in the training set. Quantitatively, it can be proved that the number of
examples required for meaningful class separation grows exponentially with n; thus,
compact representations using a small number of descriptors are highly desirable. This is
sometimes called the curse of dimensionality.

Perceptrons, past and present 20

Interestingly, all the above-mentioned techniques for training single neurons have been
applied to Hopfield nets: since all neurons of such nets are connected together, they all
have a similar input. As a consequence, it turns out that the behavior of single-layer
perceptrons is highly relevant also for understanding the global dynamic behavior of
these feedback nets.

We are now in a position to go from single neuron to neural networks. The single neuron
is a linear separator. If the examples are not linearly separable, what can one do about
it ? The answer is : use a feedforward multilayer network of neurons, which is able to
determine boundary surfaces of arbitrary shape. The reason for this is best understood
in the framework of the probability-oriented approach to classification.

The probability-oriented approach to neural classification. As mentioned above, the link
between the classification properties of neural networks and their approximation
property is the following: when using the above-mentioned generalized delta rule, the
desired output of the neuron is either +1 (if the example belongs to class A) or 0 (if the
example belongs to class B). Let us use the same idea when training a feedforward neural
network. Then we know from the fundamental property of neural nets that the network,
after training, will provide an approximation of the probability Pr(Ax) that a pattern

described by a vector x belongs to A; this is performed by minimizing

J = 1
2

 dk - yk 2∑
k=1

N

 where dk = 1 if the pattern belongs to A, dk = 0 otherwise, and yk is

the network output; if the examples are well chosen and numerous enough, if the number
of hidden neurons is appropriate, and if the training algorithm is efficient, this
approximation is very good. This is illustrated on Figure 17 in the case of a one-
dimensional pattern representation.
Once the probability has been estimated, a rule for the computation of the class
boundary must be chosen; the most natural choice, which minimizes the error risk, is to
choose the surface corresponding to equal probabilities of belonging to either class :
Pr Ax = Pr Bx = 0.5. This relation defines a surface in the representation space. Since
the feedforward network can approximate any function, the surface thus defined can
have an arbitrary shape. Therefore, a feedforward network with one output neuron can
define an arbitrary boundary surface between two classes.

Perceptrons, past and present 21

00

Estimate of the probability that the
pattern described by
x = x belongs to class A1

x

1

x1

Class boundary

0.5

Pr A x

0

0 0 0 0 00000000000000 000

Class A
Class B

FIGURE 17
An estimate of the probability that a pattern described by x belongs to class A. Since the
pattern is represented by a single descriptor x, the class boundary is a point on the x-axis
corresponding to an estimated probability of 0.5; the boundary would be a line in two-

dimensional space if the patterns were described by 2 descriptors, and a hypersurface in
n-dimensional space if the patterns were described by n descriptors

The same principle can be extended to the determination of boundary surfaces between
several classes. For a C-class problem, one generally uses a feedforward network with C
outputs; during training, the desired output for output c is +1 if the example belongs to
class c, and 0 otherwise; thus, the network uses a 1-out-of-C coding for the classes. In
order to interpret the outputs as probabilities, the sum of the outputs must be
constrained to be equal to 1 (Bridle 1990).

The above considerations are meant to explain why neural networks are able to compute
boundary surfaces of arbitrary shape. However, it should be emphasized that there is
much more to probability-oriented classification than just boundary surface
determination. It is customary, in real applications, to have several classifiers make
decisions from various sources of information (for instance, one may use several
representations of the patterns, thus several classifiers using these representations).
Therefore, the final decision is made from scores computed by the classifiers: typically,
in a character recognition application, each classifier provides a list of hypotheses
concerning the unknown character, ranked in order of decreasing probability. In banking
applications, and more generally in computer-aided decision making applications, it may
be useful to give a graded rating; in the above-mentioned application of neural nets to the

Perceptrons, past and present 22

rating of financial capabilities of towns, a typical result is of the form "this town has
78% probability to belong to class B, 19% probability to belong to class C, and 1%
probability to be in A, D and E". This is illustrated on Figure 18, which is a zoom on a
specific area of France, where a bar graph shows the estimated probabilities of each
town to belong to each class.

FIGURE 18
Zoom on a specific area of Figure 11, showing the probabilities of each town to belong

to each class (the town names have been erased on purpose).

Dynamic modeling of processes
A process, whether physical, chemical, biological, economical, ecological, etc., can be
modeled using two different sources of information: knowledge on the process,
expressed mathematically by differential equations relating the physical, chemical, etc.,
variables of interest, and measurements performed on the process. Models which take
advantage essentially of the knowledge are termed knowledge-based models; they
usually have a small number of parameters which are determined from measurements
performed on the process. Models which take essentially advantage of the

Perceptrons, past and present 23

measurements performed on the process are termed black-box models. Knowledge-based
models are usually preferred to black-box models because they are more intelligible, since
the mathematical equations and the variables have a well-defined meaning. Very
frequently, in practice, little or no usable prior knowledge is available, so that one has to
infer a model essentially from the measurements alone; black-box models are also
frequently used although a knowledge-based model exists, if the equations of the latter
cannot be solved with the available computation resources.

A black-box model is primarily defined by its inputs, which are the variables that act on
the process, and its outputs. Two kinds of inputs are to be distinguished: control inputs
are those inputs on which one can purposefully act in order to control the process, and
disturbances, which act on the process in an uncontrolled or even unmeasurable way; for
instance, the electric current in a heating resistor is a control input for an oven whose
temperature we wish to keep at a given value, while the unpredictable temperatures of
the items that are loaded into the oven at unpredictable times are disturbances. The
outputs of the process are the variables of interest which are measured: in the previous
example, the temperature in the oven is the output of the process; the outputs may also
be subject to disturbances, especially sensor noise.
A black-box model is intended to provide mathematical relations between the measurable
input variables and the output variables; these relations involve a number of unknown
parameters, which are estimated from the measurements made on the inputs and
outputs. Since these measurements are affected by the disturbances and noise, the model
should capture the predictable part of the variation of the output variables under the
effect of the input variables. In other words, the prediction made by the model should be
equal to the output that would have been measured on the process if no disturbance had
been present. If the effect of the disturbance can be appropriately modeled as additive
white noise, the variance of the error in the model's prediction of the process should be
equal to the variance of the disturbance.

 The black-box modeling of linear dynamic systems has been studied extensively for
many years. If we make the assumption that there exists an unknown non-linear
function which describes the process behavior, neural networks are natural candidates
for modeling non-linear dynamic systems, since they can approximate any non-linear
function. Indeed, most concepts in neural modeling are extensions of ideas developed in
the framework of linear system modeling (Narendra et al. 1990).

We mentioned in the first part of the present survey that any dynamic neural network
can be put in a canonical form, made of a feedforward network with state outputs fed
back to its inputs (Nerrand et al. 1993). Therefore, we first consider feedforward
networks as static models.
A static linear (affine) model is of the general form

 y = b0 + b1 x1 + b2 x2 ... + bn xn

Perceptrons, past and present 24

where the xi 's are the input variables; a first natural non-linear extension of the model is
the following:
y = c0 + c1 1 x1, . . . , xn + c2 2 x1, . . . , xn + . . . + cm m x1, . . . , xn

where the i's are appropriately chosen non-linear functions of the variables. Thus, y is
non-linear with respect to the inputs, but it is linear with respect to the coefficients ci :
the latter can therefore be estimated by the standard least-squares method from
measured values of the output of the process yp and of the values of 1, 2, ..., m.
In traditional engineering, the non-linear functions i's are monomials, so that the model
is polynomial. The main advantage of the method is the fact that the output is linear
with respect to the weights, so that standard least-squares methods can be used; the
main drawback is the fact that polynomial models of several inputs and high degree tend
to have a very large number of monomials, hence a very large number of parameters.
This absence of parsimony makes the use of input selection methods mandatory.
In contradistinction, neural networks may provide a parsimonious model of a process in
the region of input space in which measurements, used for training the network, have
been performed. The output of a simple feedforward network with n inputs, m hidden
neurons with activation function f and a linear output neuron will be typically of the
form

y = c0 + ci f cij xj + ci0∑
j=1

n

∑
i=1

m

Thus the output y is no longer linear with respect to the weights, so that the standard
least-squares methods are no longer applicable: as mentioned in part 1 of the present
survey, one has to resort to non-linear optimization methods such as gradient descent
methods using the popular "backpropagation" algorithm for computing the gradient of
the cost function.
The fact that the non-linear activation function f is very often a sigmoid stems from
several factors. Historically, sigmoids were first used in classification, as "smooth"
variants of the step function, as mentioned above; in addition, it turns out that, for
function approximation, sigmoids are very easy to handle, especially during training. It
must be noted, however, that networks of sigmoids are not always the best solution for
a given problem; the optimal solution actually depends on the training set (number and
distribution of examples used for training), on the architecture of the network (the
unknown function, or a satisfactory approximation thereof, must be a member of the
family of functions generated by the network), on the training algorithm, and on the
model selection procedure used.
Neural networks with sigmoid activation functions are members of the general family of
networks of "ridge" functions; a ridge function is a function of a weighted sum of the
inputs (Figure 19).

Perceptrons, past and present 25

FIGURE 19
A sigmoid ridge function with a two-dimensional input space : y = 1

1 + exp - x1 - x2

Gaussian instead of sigmoid ridge functions may be used (Figure 20):

y = c0 + ci exp - cij xj + ci0∑
j=1

n 2
 .∑

i=1

m

FIGURE 20
A gaussian ridge function y = exp - x1 - x2

2 .

The straight lines are the projections of the equal-value loci onto the (x1 , x2) plane

Perceptrons, past and present 26

Wavelet ridge functions have also been investigated (Benveniste et al. 1996).

Non-ridge functions such as radial-basis functions (Figure 21) have also been widely
used (Moody et al. 1989):

y = c0 + ci exp -
xj - ij

2

2 i
2∏

j=1

n

∑
i=1

m

where ij is the jth coordinate of the center of gaussian i with width i. Two approaches
have been taken: choose a priori the number, centers and widths of the gaussians and
estimate the weights ci only (note that the output is linear with respect to the weights,
so that standard least-squares methods can be used), or choose only the number of
gaussians and estimate the weights, the positions of the centers and the widths (which
requires a non-linear minimization).

FIGURE 21
A radial basis function y = exp - x1

2 + x2
2 .

Note that in all cases where non-linear optimization is required, second-order gradient
methods turn out to be a great improvement upon the simple gradient methods described
above for single neurons. The description of second-order minimization methods falls

Perceptrons, past and present 27

beyond the scope of this short survey; they are easily found in standard textbooks on
nonlinear optimization or numerical analysis (see for instance Press et al. 1992).

Having discussed the various forms of the feedforward nets, we consider them now as a
part of the canonical form of a recurrent network used as dynamic model. In such a
model, the inputs and outputs are functions of time, and we restrict our attention here to
discrete-time models: the behavior of the model is described by sequences of values
sampled at discrete instants of time. Such models are thus described by difference
equations of the type
y(k) = y(k-1), ..., y(k-n), u(k-1), ..., u(k-m)
where y is the output of the model and u is the control input (such a model is termed an
input-output model). Thus, the function which determines the output at time k from
the outputs and inputs at previous times completely defines the dynamics of the model;
this function can be implemented by a feedforward neural network of any of the types
mentioned above.
However, input-output models are not the most general form of dynamic models. The
state-space form
x(k) = x(k-1), u(k-1)

y(k) = x(k)
where x(.) is a vector of state variables, has been proved to be commonly more
parsimonious than the input-output form (Levin et al. 1995).

In order to illustrate the non-linear modeling capabilities of neural networks and the
difference between input-output and state-space models, we consider the modeling of
the hydraulic actuator of a robot arm. This is a process with one input (the opening
angle of the valve of the hydraulic circuit) and one output (the pressure in the hydraulic
circuit). The training and test sequences are shown on Figure 22.

Using an input-output model, the best results were obtained with the second-order
network shown on Figure 23, with two hidden neurons (sigmoid activation function).
The result obtained after training is shown in Figure 24. The mean-square prediction
error on the training sequence is equal to 0.085, whereas the prediction error on the test
sequence is 0.30. This is a clear indication that the overfitting phenomenon occurs, due
to the relatively small number of examples.

Perceptrons, past and present 28

-4

-2

0

2

4

0 200 400 600 800 1000

-1

0

1

0 200 400 600 800 1000

yp

u

Training sequence Test sequence

FIGURE 22
The training and test sequences for the modeling of a robot arm actuator; top: output

sequence; bottom: control sequence.

1

f
∑ ∑

Unit
delays

u(k) y(k) y(k-1)

y(k+1)

f
∑

FIGURE 23
Input-output model used for the modeling of the hydraulic actuator of the robot arm

Perceptrons, past and present 29

-5

0

5

0 100 200 300 400 500

yp

y

-5

0

5

0 100 200 300 400 500

yp

y

FIGURE 24
Result obtained on the training (top) and test (bottom) sequences after training the

input-output model

With the state-space model shown on Figure 25, the results on the test set are as shown
on Figure 26.

1

Unit
delays

f
∑

f
∑

∑∑∑

y(k+1) x2(k+1)x1(k+1)

u(k) x1(k) x2(k)

FIGURE 25
State-space model used for the modeling of the actuator of the robot arm

Perceptrons, past and present 30

The mean-square error is 0.10 on the training sequence, and 0.11 on the test sequence,
which is much better than the input-output model. This clearly illustrates the advantage
of using state-space predictors when small training sets only are available: since they
require a smaller number of inputs, they are more parsimonious, hence less prone to
overfitting.

-5

0

5

0 100 200 300 400 500

yp

y

-5

0

5

0 100 200 300 400 500

yp

y

FIGURE 26
Result obtained on the training (top) and test (bottom) sequences

after training the state-space model

Context and Conclusion

The science of neural networks is an open and fascinating domain, at the crossroads of
biology, physics and engineering. Now, at the end of this brief survey, devoted mainly
to perspectives on the use of networks of formal neurons to engineering applications, a
few words on the broader context are in order.

In their strict definition, as purely feedforward architectures, the Perceptrons are the
essential building blocks for all statistical physics studies of neural nets. Within this
framework, a limit of infinite number of inputs is taken (similar to the limit of infinite
number of particles in thermodynamics); this apparent complication turns out to be a
very fertile one, because it allows for the solution of many relevant models (memory
storage, rule learning (Watkin et al. 1993), generalization, etc.). Furthermore, the exact

Perceptrons, past and present 31

results derived from such perceptron structures serve as foundations for the study of
more general nets, incorporating feedback connections.

Indeed the presence of reciprocal (feedback) connections is a pervasive feature of
biological nervous systems. Despite this conspicuous anatomical fact, neurobiological
modeling based on feedforward nets is an active field of research, and one can submit at
least four good reasons for that:
i) such models provide often a workable first-order approximation,
ii) they may serve as steps towards higher-order improvements,
iii) in some physiological functions, neural processing is indeed so fast and directed
(reflex arcs) that feedforward processing contains the essence,
iv) finally, there is a potential for future inspiring analogies with the computational and
algorithmic properties of the formal nets, developed for engineering applications, as
described and illustrated in this survey article.

References cited

BENVENISTE, A., JUDITSKY, A., DELYON, B., ZHANG, Q., GLORENNEC, P.-Y. (1994)
10th IFAC Symposium on Identification (Copenhagen, 1994).

BRIDLE, J.S. (1990) Neurocomputing: Algorithms, Architectures and Applications 227-
236, F. Fogelman-Soulie and J. Herault (eds.). NATO ASI Series, Springer.

COVER, T.M. (1965) IEEE Transactions on Electronic Computers 14, 326-334.

GUYON, I., WANG, P.S.P. (1994) Advances in Pattern Recognition Systems Using Neural
Network Technologies. World Scientific.

HASSIBI, B., AND STORK, D.G. (1993) Advances in Neural Information Processing
Systems 5, 164-171.

HOPFIELD, J.J.(1982) Proc. Natl. Acad. Sci. USA 79, 2554-2558.

HOPFIELD, J.J., AND TANK, D.V. (1985) Proc. Natl. Acad. Sci. USA 81, 3088-3092

HORNIK, K., STINCHCOMBE, M., WHITE, H. AND AUER, P. (1994) Neural Computation
6, 1262-1275.

KNERR, S., PERSONNAZ, L., DREYFUS, G. (1990) Neurocomputing: Algorithms,
Architectures and Applications 41-50, F. Fogelman-Soulie and J. Herault (eds.). NATO
ASI Series, Springer.

Perceptrons, past and present 32

LEONTARITIS, I. J., AND BILLINGS, S.A. (1987) Int. J. Control 1, 311-341.

LEVIN, A. U., NARENDRA, K. S. (1995) Neural Computation 7, 349-357.

MC CULLOCH, W.S. AND PITTS, W.H. (1943) Bull. Math. Bioph. 3, 115-133.

MOODY, J.E., AND DARKEN, C.J. (1989) Neural Computation 1, 281-294.

NADAL, J.P. (1989) International Journal of Neural Systems 1, 55-59.

NARENDRA K. S., PARTHASARATHY K. (1990) IEEE Trans. on Neural Networks 1, 4-
27.

NERRAND, O., ROUSSEL-RAGOT, P., PERSONNAZ, L. AND DREYFUS, G. (1993) Neural
Computation 5, 165-199.

PLOIX, J.L., AND DREYFUS, G (1996) in Industrial Applications of Neural Networks, F.
Fogelman-Soulie, P. Gallinari, eds., World Scientific.

POGGIO, T., AND GIROSI, F. (1990) Science 247, 1481-1497.

PRESS, W.H., TEUKOLSKY, S.A., VETTERLING, W.T., FLANNERY, B.P.(1992)
Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press.

RIVALS, I., CANAS, D., PERSONNAZ, L., AND DREYFUS, G. (1994) Proceedings of the
IEEE Conference on Intelligent Vehicles 137-142.

URBANI, D., ROUSSEL-RAGOT, P., PERSONNAZ, L., DREYFUS, G. (1994) Neural
Networks for Signal Processing 4, 229-237.

WATKIN, T.L.H., RAU, M., BIEHL, M. (1993) Rev. Mod. Phys. 65, 499-556.

WEIGEND, A.S., AND GERSHENFELD, N.A. (1994) Time Series Prediction: Forecasting
the Future and Understanding the Past. Addison-Wesley

General references

ARBIB, M. (1995) The Handbook of Brain Theory and Neural Networks. MIT Press

BISHOP, C.M.(1995) Neural networks for Pattern Recognition. Oxford.

Perceptrons, past and present 33

DUDA, R.O., HART, P.E. (1973) Pattern Classification and Scene Analysis. Wiley.

GRASSBERGER, P., AND NADAL, J.P. (1994) From Statistical Physics to Statistical
Inference. Kluwer.

GUTFREUND, H., TOULOUSE, G. (1994) Biology and Computation: a Physicist's Choice.
World Scientific.

HERTZ, J., KROGH, A., AND PALMER, R.G. (1991) Introduction to the Theory of Neural
Computation. Addison-Wesley.

LJUNG, L. (1987) System Identification; Theory for the User. Prentice Hall.

M INSKY, M., AND PAPERT, S. (1969) Perceptrons. MIT Press.

RUMELHART, D.E., HINTON, G.E., WILLIAMS, R.J. (1986) Parallel Distributed
Processing: Explorations into the Microstructure of Cognition, MIT Press.

STEIN, D.(1992) Spin Glasses and Biology. World Scientific.

