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Abstract. The feasibility of flash flood forecasting without making use of 
rainfall predictions is investigated. After a presentation of the “cevenol flash 
floods“, which caused 1.2 billion Euros of economical damages and 22 
fatalities in 2002, the difficulties incurred in the forecasting of such events are 
analyzed, with emphasis on the nature of the database and the origins of 
measurement noise. The high level of noise in water level measurements raises 
a real challenge. For this reason, two regularization methods have been 
investigated and compared: early stopping and weight decay. It appears that 
regularization by early stopping provides networks with lower complexity and 

more accurate predicted hydrographs than regularization by weight decay. 
Satisfactory results can thus be obtained up to a forecasting horizon of three 
hours, thereby allowing an early warning of the populations.  
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1 Introduction 

The need for accurate predictions of flash floods has been highlighted by the recent 

occurrences of catastrophic floods such as in Vaison-la-Romaine (1991), Nîmes 

(1988), Gardons (2002), Arles (2003), to name only a few, located in the south of 

France. These disasters result from intense rainfalls on small (some hundreds of km2), 

high-slope watersheds, resulting in flows of thousands of m3/s with times of 

concentration of a few hours only. The death toll (over 100) in these circumstances in 

the southeast of France, and the cost of more than 1.2 billion Euros in 2002, showed 

that the design of a reliable tool to forecast such phenomena is mandatory. 

Faced with this major risk, the French Ministry in charge of Sustainable 

Development (currently MEEDADT) created in 2003 the national center for flood 

forecasting and warning SCHAPI (Service Central d’Hydrométéorologie et d’Appui à 
la Prévision des Inondations), which is in charge of the “vigicrue” surveillance 

service. The Gardon d’Anduze, in the South-East of France, has been chosen by this 

Center as a pilot site to compare the flash floods (concentration time of 2h-4h) 



forecasting models. In this context, this paper describes the study of neural network 

models to build an efficient real time flash flood forecaster.  

Real time flash flood forecasting is usually addressed by coupling complex 

atmospheric and hydrologic models. The complexity generated by this coupling is 

huge, and the performances of the present models are limited by several factors: the 

observations may not be accurate enough for these models to produce useful 

predictions, the models may be biased by a lack of observations on the ground at an 

appropriate scale, and the models themselves do not take into account the whole 
complexity of the phenomena.  

An alternative approach consists of capitalizing on the available data in order to 

build models by statistical machine learning. This will reduce the computational 

burden and free the model designers from the limitations of physical modeling when 

the phenomena are too complex, or when the estimation of physical parameters is 

difficult. 

Due (i) to the lack of accurate estimations of rainfalls, and (ii) to the high noise level 

in water level measurements, and in order to guarantee the best possible 

generalization capabilities, complexity control is a particularly critical issue. Two 

traditional regularization methods have been investigated: early stopping and weight 

decay. After careful variable and model selection, the ability of models, obtained by 

either regularization method, to predict the most dramatic event of the database 
(September 2002) is assessed. Hydrographs are displayed and comparisons between 

the results of both methods are performed. Finally, we conclude that, in the present 

case, training with early stopping provides networks with lower complexity, longer 

training but more satisfactory predictions.  

2   Problem Statement 

2.1   Flash Flood Forecasting 

Real time flood forecasting is currently addressed on a disciplinary basis by coupling 

atmospheric and hydrologic models, hydrologic and geographic models, sometimes in 
conjunction with a risk management system or an expert system. The difficult issue is 

the modeling of flash floods in mountainous areas. That problem is usually considered 

from the hydraulic or hydrologic viewpoints, and, in sharp contrast to the present 

study, the forecast of rainfall or climate is an important and necessary part of current 

projects (European projects Flood Forecasting System [1] and PREVIEW [2]). In 

PREVIEW, Le Lay [3] derives a space-dependent rainfall-runoff relation, whose 

inputs are the rainfall radar observations and/or the rainfall forecasts provided by the 

weather models, and the output is the discharge for the Gardon d’Anduze watershed. 

This work shows a fundamental limitation of hydrologic models: they need rainfall 

forecasts because they can only propagate the rainfall over the watershed, in 

agreement with the physical behavior. However, in the case of small basins subject to 

intense storms, no rainfall forecast is available with suitable time scale and accuracy. 
Traditionally, two hypotheses are postulated: either null rainfall, or persistency of past 



observed rainfalls. Obviously these assumptions are inappropriate, and, as a 

consequence, the forecasts of the model are not satisfactory. A probabilistic approach 

is possible in order to downscale the rainfall predictions [4]; nevertheless the time 

scale is not appropriate given the rising time of the Gardon d’Anduze flood. The 

coupling of atmospheric and geographical data can also be performed with remote 

sensing data [5]. As a consequence, the huge quantity of data to be processed leads 

also to investigate parallel simulation as in the CrossGrid project, where a prototype 

of flood forecasting operates on Grid technologies [6]. From the viewpoint of the end 
users, the very short computation times involved in the execution of neural network 

algorithms once training has been performed makes them very attractive as 

components of a warning system, without having to resort to grid computing. Another 

advantage is that any nonlinear, dynamical behavior may be modeled by neural 

networks, particularly the relation between the rainfall up to time t and the discharge 

at time t+f. Forecast is thus possible without estimating future rainfalls. Although 

neural networks were applied previously to the forecasting of outflows at several 

forecasting horizons [7] [8], or for water supply management in mountainous areas 

[9], they were never applied to events of such speed and intensity. 

2.2   Gardon d’Anduze Flash Floods 

The Gardon catchment is emblematic of flash flood behavior: first, its floods are 

very irregular and may rise up to several meters in a few hours; in addition, the basin 

is populated, which explains the huge damage costs and loss of human lives.  

In a few words, the Gardon d’Anduze catchment, sub-catchment of the Gardon 

catchment (Rhône river tributary) is located in the southeast of France, in the 

Cévennes mountainous area. The basin area is 546 km2, the catchment is mountainous 

and has a large mean slope of 40%, which explains the velocity of the floods. The 
basin contains three main geological units: schist (60 %), granite (30%) and limestone 

(10%), which results in heterogeneous soil moisture and permeability.  

The Anduze catchment is subject to very intense storms delivering huge amounts of 

water: for example, a 500 mm rainfall was recorded in the Anduze rain gauge in less 

than nine hours in 2002. These storms occur most often in autumn, when the 

Mediterranean Sea is almost warm. They are called “épisodes cévenols”. 

Fifteen flash flood events are available in the database, whose characteristics are 

shown in Table 1 (1700 records sampled every 30 min). Five very intense events are 

indicated.  

In the present paper, we show that, despite the difficulty of the task, the evolution 

of the water level at Anduze can be forecast up to 3 hours ahead of time, without any 

assumption about the evolution of future rainfall, for the catastrophic, most intense 
event of the database, namely the event of September 2002. 

 



Table 1. Characteristics of events of the database  

Date Duration  
(hours) 

Maximum 
level  
(m) 

Discharge Peak 
(m3/s) 

Very intense 

September, 21-24, 1994 35 3,71 181  
October, 4-5, 1995 54 5.34 975 y 

October, 13-14, 1995 92 5 864  
November, 10-12, 1996 82 2,71 268  

December, 18-19, 1997 104 5.37 985 y 
October, 20-21 1997 34 3,64 473  
November, 5-7 1997 74 4,20 624  

November, 26-27 1997 66 2,58 244  
December, 18-19 1997 104 5,37 985 y 
September, 28-29, 2000  46 4.80 800  
September, 8-9, 2002 29 9.71 2742 y 

September, 24-25 2006 23 2,24 186  
October, 19-20, 2006 55 6.61 1436 y 

November, 17 2006 34 2,75 275  
November, 20-23 2007 70 2,69 264  

 

2.3   Noise and Accuracy 

In the present section, we focus on the nature and quality of the information 

available in the database. 

Rainfall measurements are performed with rain gauges. These are very accurate 

sensors, which broadcast the water level every five minutes; however, they provide 

very local information, so that the heterogeneity of the rainfalls is an important source 

of inaccuracy: for example, for the event of September 2002, the cumulated rainfalls 

were 3 times as large in Anduze as in Saint-Jean-du-Gard, which is only ten 

kilometers away. Therefore, the most important rainfall may be located between rain 

gauges, thereby causing inaccurate estimates due to the too large mesh of the rain 

gauge network. For this reason, radar acquisition of rainfalls with a definition of 1 

km2 has been performed since 2002, but complete, homogeneous sequences are not 
yet available for all events. 

Water level measurements are available with several sampling periods: 1 hour 

from 1994 to 2002, and 5 minutes after this date. However, because of real time 

constraints, the sampling period used in this work is T = 30 mn, although variance 

analysis has shown that 15 minutes would be more appropriate. Thus for events 

recorded before 2002, the peak value is probably underestimated, possibly by 10% to 

30%. For the event of 2002, the error results from an accident: instrumentation was 

damaged during the event, and the water level was estimated a posteriori.  

Therefore, the unreliability of the available data makes the forecasting of such 

catastrophic events a challenging task. 



3. Model Design 

3.1   Definition of the Model 

Given a forecasting horizon f, the model is intended to forecast, at discrete time kT, 

(k N+) the water level at Anduze at time (k + f) T (f N+). 
The available information for the Anduze catchment is the water level at the 

Anduze station, the rainfalls at 6 rain gauges delivering the cumulated rainfalls over 

the sampling period (30 min), and the soil moisture (Soil Water Index, given by the 

ISBA (Interactions between Soil, Biosphere, and Atmosphere) model [10]).  

The 6 rain gauges: Barre-des-Cévennes, Saint-Roman de Tousques, Saumane, 

Mialet, Soudorgues and Anduze are spatially well distributed and one can consider 

that each of them is important. The information about rainfalls is conveyed to the 

network as sliding windows. All sliding windows have equal width w, whose optimal 

value is chosen as described in section 3.2. Different values were found, depending on 

the forecasting horizon (Table 2). Similarly, the information about past water levels is 
conveyed as sliding windows, whose optimal width was found to be r = 2, 

irrespective of the forecasting horizon. 

Table 2. Sliding window width for rainfalls  

Forecasting horizon (f) 0.5 hour 1 hour 2 hours 3 hours 4 hours 5 hours 

w 2.5 3 3 2 0.5 0.5 

 

Because of the non-linearity of the physical process, we take advantage of the 

universal approximation property of a neural network with one hidden layer of 

sigmoid neurons and a linear output neuron [11]. The water level at time t+f is 

forecast from (i) the measured rainfalls in a sliding window of width w, and (ii) from 

the measured water levels in a sliding window of width r. The training data is chosen 

(see section 3.2) in the set of flood sequences recorded over several years (1994-

2007), described in Table 1.  

Since the model takes into account measured past values of the water level, during 

the same flood, the available information about soil moisture is not explicitly 
conveyed to the model since it is implicitly present in the input data.  

3.2   Model Selection 

One of the events was set apart for use as a test set (see section 3.3); another event 

was selected for use either as an early stopping set when the latter regularization 

technique was used, or as an additional test set when regularization was performed by 
weight decay (see section 4 for more details on regularization). In the latter case, it 

was also set apart and used neither for training nor for model selection. 

 



 

Fig. 1. The model is fed by cumulated rainfall measurements provided by the 6 rain gauges 

over a temporal window of width w: ui(kT) is the vector of the w rainfall level measurements 

provided by rain gauge i (i  1... 6) at times kT, (k 1)T, ..., (k w 1)T. Water level 

measurements, over a sliding window of width r, are also input to the model. The output is the 
forecast water level, f sampling periods ahead. 

 

Model complexity selection was performed by partial K-fold cross-validation on 

the remaining N 2 events of the database. K models were trained from the N 3 

remaining floods; therefore, N K 2 events (the least intense ones) were present in the 
training set of all K models. 

The generalization ability of the model was assessed by the cross-validation score 

(see e.g. [12]):  

  

S
1

K
. MSEi

i 1

K

 (1) 

where MSEi is the mean squared forecasting error of the model, for the time sequence 

recorded during event i of the validation set. 

In the present case, K = 4 events were chosen: the 1995, 1997, and 2006 very intense 

events reported in Table 1. The 2002 event was selected as a test set because it is 

typical of events whose forecasting is crucial for early warning. In addition, this event 

is also more intense than those used for training and validation: it is a difficult test for 

the models. The other nine floods were always present in the training set.  

The above procedure was used for complexity selection, spanning the space of 

rainfall window width w, water level window width r and number of hidden neurons 
NC. For each model, 100 different parameter initializations were performed. 

Complexity selection was performed separately for each forecasting horizon. 



After selecting the appropriate complexity (i.e. after selecting the appropriate 

values of w, r and NC) for a given forecasting horizon f, a final model was trained for 

that horizon, from thirteen sequences: all floods except the test sequence and the early 

stopping sequence, or all floods except the two test sequences when weight decay 

regularization was performed. Its performance was assessed on the test sequence(s). 

3.3   Training  

The usual squared error cost function was minimized by the Levenberg-Marquardt 

algorithm [13] during training, after computation of the gradient of the cost function 

by backpropagation. 

4   Regularization 

In addition to performing input and model selection by cross-validation, 

regularization methods were applied during training. Two different methods were 

assessed in this study: weight decay and early stopping.  

4.1   Weight Decay 

Weight decay prevents parameters from taking excessive values (resulting in 

overfitting), by introducing a term in the cost function that penalizes large parameter 

values; this idea is implemented in a systematic fashion in Support Vector Machines. 

In the present case, the new cost function is expressed as: 

2
(1 )J MSE .  (2) 

where MSE is the usual mean squared prediction error,  is the vector of parameters 
and γ is the hyperparameter that controls the balance between the terms of the cost 

function. 

Similarly to model selection, the hyperparameter γ was selected by cross 

validation, for each forecasting horizon, for γ varying from 0.5 to 0.95 with an 

increment step of 0.05. Table 3 shows the optimal value of γ obtained for each 

forecasting horizon. 

Table 3. Optimal hyperparameter values for each forecasting horizon  

Forecasting 
horizon (f) 

0.5 hour 1 hour 2 hours 3 hours 4 hours 5 hours 

γ 0.6 0.9 0.7 0.55 0.75 0.75 



4.2   Early Stopping 

As an alternative regularization technique, early stopping was used in the present 

investigation. Early stopping consists of terminating training when the prediction 

error, assessed on a stopping set, different from the training set, starts increasing. It 

has been shown [14] that it is theoretically equivalent to weight decay. However, due 

to finite sample size, the results may vary widely depending on the choice of the 
stopping set. In the present investigation, the stopping set was the event of September 

2000 of the database, which was well learnt when it was in the training set, and well 

predicted when it was in the test set. Therefore, it appeared as a “prototype” of the 

behavior of the flood process.  

5   Results and Discussion 

The quality of the forecast can be estimated by various criteria, each of which focuses 

on a particular desired feature of the model: accuracy of the prediction of the water 

level at the peak of the flood, accuracy of the prediction of the time of occurrence of 

the peak, absence of spurious water level peak, etc. The most widely used criterion is 

the coefficient of determination of the regression 

2

2
1

MSE
R  

where 2 is the variance of the observations. If the model simply predicts the mean of 
the observations, R2 = 0; conversely, if the model predicts the observations with 
perfect accuracy, R2= 1. In the hydrology literature, the coefficient of determination is 

known as the “Nash-Sutcliffe criterion”.  

 

The “persistency criterion” is more specific to forecast models [15]; it is defined as: 

2

 

2

 

ˆ( ( ) ( ))

1
( ( ) ( ))

test sequence

test sequence
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where y is the observed water level and ŷ is the estimated water level. P is equal to 0 

if the predictor is perfectly dumb, i.e. it always predicts that the future value is equal 

to the present one, and it is equal to 1 if the predictor provides perfectly accurate 

forecasts.  

 

Tables 4 and 5 describe the models and the accuracy of their predictions on the 

2002 flood.  



Table 4. Models obtained with regularization by weight decay.  

Forecasting horizon 
(f) 

0.5h 1 h 2 h 3 h 4 h 5 h mean 

NC 7 7 5 7 5 3 5.6 
Persistency criterion 0.62 0.75 0.62 0.63 0.70 0.68 0.66 
R2 (Nash-Sutcliffe 

criterion) 
0.96 0.91 0.81 0.78 0.72 0.49 0.78 

Estimated/Observed 

peak values 

0.86 0.81 0.77 0.69 0.69 0.57 0.73 

Table 5. Models obtained with regularization by early stopping. 

Forecasting horizon 
(f) 

0.5 h 1 h 2 h 3 h 4 h 5 h mean 

NC 2 2 5 3 3 3 3 
Persistency criterion 0.45 0.65 0.32 0.28 0.23 0.59 0.42 
R2 (Nash-Sutcliffe 

criterion) 
0.98 0.93 0.87 0.93 0.84 0.58 0.85 

Estimated/Observed 
peak values 

0.90 0.84 0.73 0.82 0.79 0.60 0.78 

 

In the present case, early stopping provides consistently more parsimonious models 
than weight decay, with consistently higher values of the determination criterion. 

However, the persistency criterion is larger for models obtained with weight decay. 

Figures 2 and 3 show the predicted and observed curves for the test sequence (2002 

event). Given the difficulty of the task, these results are extremely encouraging, since 

they show that the model would have allowed the public services to issue early 

warnings to the population if it had been available during that event.  

6   Conclusion 

Flash flood forecasting is a very challenging task due to high variability and noise in 

the data, especially when no rainfall forecast is available. In the present study, we 

have shown the feasibility of forecasting the catastrophic event of September 2002 in 

Anduze with an accuracy and forecasting horizon that are compatible with an early 

warning of the populations.  

This requires a careful methodology for model selection and regularization; it is 

shown that early stopping and weight decay result in different generalization 
capabilities, and that, in this specific case, early stopping provides more satisfactory 

results on the test set. This is not claimed to be a general result, but it shows that a 

variety of methods must be used in order to solve such difficult problems 

satisfactorily. 



 

Fig. 2. Hydrograph of the 2002 event for f = 3 h – regularization by weight decay 

 

Fig. 3. Hydrograph of the 2002 event for f = 3 h – regularization by early stopping. 

 

From the viewpoint of hydrology, this methodology should easily be applied to 

small (less than 1000 km2), fast (concentration time less than 10 h) basins providing 

only rainfalls and water level. Because no exogenous data is necessary, the method 

should be applicable to many European mountainous watersheds.  
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