
1

Neuronal Information Processing - From Biological Data to Modelling and
Applications (World Scientific, 1998).

REDUCING THE COMPLEXITY OF NEURAL NETS

FOR INDUSTRIAL APPLICATIONS AND BIOLOGICAL MODELS

Gérard DREYFUS

ESPCI, Laboratoire d'Électronique (CNRS UPR 9081)

10 rue Vauquelin, 75005 Paris

email: Gerard.Dreyfus@espci.fr

ABSTRACT

The fundamental property of feedforward neural networks - parsimonious approximation -
makes them excellent candidates for modeling static nonlinear processes from measured
data. Similarly, feedback (or recurrent) neural networks have very attractive properties for
the dynamic nonlinear modeling of artificial or natural processes; however, the design of
such networks is more complex than that of feedforward neural nets, because the designer
has additional degrees of freedom. In the present paper, we show that this complexity may be
greatly reduced by (i) incorporating into the very structure of the network all the available
mathematical knowledge about the process to be modeled, and by (ii) transforming the
resulting network into a "universal" form, termed canonical form, which further reduces the
complexity of analyzing and training dynamic neural models.

1. INTRODUCTION

For historical reasons, networks of formal neurons (hereinafter termed neural
networks) have been extensively used for classification purposes, essentially in the
framework of pattern recognition (Bishop, 1995). However, this is but a small
fraction of the potential applications of neural nets. Actually, the latter are basically
universal approximators, which can be advantageously used for statistical nonlinear
data modeling (nonlinear regression), i.e. for building nonlinear models, either static
or dynamic, from measured data. In the present paper, we focus on dynamic
nonlinear models. We show how to go beyond nonlinear regression by
incorporating prior knowledge into the structure of the neural networks, thereby
making them "gray boxes" which achieve a valuable tradeoff between black-box
models (designed solely from measured data) and knowledge-based models
(designed solely from mathematical equations resulting from a physical - or
chemical, biological, economical, etc. - analysis of the process). This approach may

2

result in complex dynamic network structures; we further show how this complexity
can be reduced by the fact that any dynamic discrete-time neural net, however
complex, is amenable to a canonical form which can be analyzed and trained.

2. STATIC MODELS

2.1. The formal neuron

A neuron is a bounded, parameterized nonlinear function f of several variables xi.
The variables of the function are usually called the inputs of the neuron, the value of
the function its output, and a parameter (or weight) ci is attached to each variable.
The most popular neuron (for reasons explained below) is a neuron whose output y
is a sigmoid function of a linear combination of its inputs (a constant term equal to
1, called bias, is appended to the set of variables):

y = tanh c0 + ci xi∑

i=1

n

where n is the number of variables. Thus, the output of the neuron is nonlinear with
respect to the variables and with respect to the parameters ci.

A formal neuron is usually represented graphically as shown on

Figure 1.

y

x1 x2 xn

f

Figure 1

A formal neuron

2.2. Static modeling with feedforward neural networks

2.2.1. Feedforward neural networks

A feedforward neural network is a network whose graph of connections is acyclic: the
output of a feedforward network is a nonlinear function of the inputs, resulting from
the composition of the nonlinear functions performed by the neurons. Among the

3

possible architectures of feedforward networks, networks having inputs, one layer of
neurons, and a linear output, have the property of parsimony which will be described
in section 2.2.2. Such an architecture, shown on Figure 2, is frequently called a
"multilayer Perceptron", or MLP.

1 2 3 NI

Linear output neuron

Hidden neurons

Inputs

....

....

x x x x

Ψ x 1 , x 2 , ..., x NI

1 Nc

Nc + 1

Figure 2

A multilayer Perceptron

Feedforward neural nets are static: if the inputs are constant in time, the outputs
are also constant. In other words, time does not play any functional role in the
behavior of feedforward nets.

2.2.2. Some feedforward neural networks are parsimonious universal
approximators

Feedforward neural networks are universal approximators: given a (sufficiently
regular) nonlinear function Φ(x1, x2, ..., xn), and a given desired accuracy, there exists
a neural network of the type shown on Figure 2, with a finite number of hidden
neurons, that can approximate function Φ uniformly with the desired accuracy,
within a domain of input space. This property is shared by a number of other
approximators such as spline functions, radial functions, Fourier series, etc.

4

Feedforward neural nets which are nonlinear with respect to the parameters
(such as networks of neurons described in section 2.1) are parsimonious, i.e. they
require a smaller number of adjustable parameters than approximators which are
linear with respect to the parameters (such as polynomials for instance, or radial
basis function with fixed centers and variances) (Hornik et al. 1994). Specifically, the
number of parameters required increases linearly with the number of input variables,
whereas it grows exponentially for approximators which are linear with respect to the
parameters. Therefore, the use of neural networks (of the type defined above) allows a
significant decrease of the number of parameters when the number of inputs is
"large", i.e. (from the extensive experience gathered in our group), when the number
of variables is larger than 2.

Qualitatively, the origin of parsimony is the following: when the output is
linear with respect to the parameters, it is a linear combination of functions whose
shapes are fixed; in contrast, the output of a multilayer Perceptron is a linear
combination (with adjustable parameters which are the weights of the second layer of
connections) of functions whose shapes are adjustable through the weights of the
first layer. The additional flexibility due to the fact that the shapes of the functions to
be combined are adjusted, together with the parameters of the combination
themselves, is the key to the parsimony.

2.2.3. From nonlinear function approximation to nonlinear regression
estimation

In practice, function approximation is of little or no interest to the modeler, whether
engineer or biologist. Actually, the problem one is confronted with is the following:
given a finite set of measurements of a quantity of interest, and of the factors that
have an influence on it, find the simplest function that "best" describes the measured
data, i.e. that "best" accounts for the deterministic relationship which is assumed to
exist between the quantity of interest (or output of the model) and the factors (or
inputs of the model); in other words, find the simplest function that "best"
approximates the regression function of the quantity of interest. If the amount of
available data was infinite, the regression function would be fully determined as the
expectation value of the quantity of interest. Since the amount of data is finite, the
best one can hope for is to find a satisfactory approximation of the regression
function. In order to do this, one chooses a family of parameterized functions
(polynomials, neural nets, radial functions, wavelets, etc.) and estimates the
parameters of the chosen function that provide the best fit, i.e. estimates the
parameters that minimize the sum of the squared errors over the set of measurements

5

(differences between the measured values of the quantity of interest and the
corresponding values estimated by the model).

Hence, neural networks appear as a family of parameterized functions that are
attractive candidates for computing a good approximation, in the least squares sense,
of the - forever unknown - regression function. The parameters are estimated from the
available measurements through the so-called training phase, which is nothing but a
numerical process whereby the sum of the squared errors is minimized with respect
to the parameters.

The price that one has to pay for the parsimony is apparent during this phase:
since the output of the model of a parsimonious neural network is nonlinear with
respect to the parameters, the least-squares cost function is not a quadratic function of
the parameters. Therefore, the standard, fast and simple, least-squares procedures are
not applicable: one has to resort to nonlinear minimization methods, which are
iterative gradient techniques.

Despite this shortcoming, the advantages of parsimony for nonlinear regression
are definitely worth the price: since the number of measurements required to perform
a meaningful estimation of the parameters is roughly proportional to the number of
parameters, the parsimony allows the neural network designer to get, from a given
amount of data, a better approximation of the regression than if he used a non-
parsimonious approximator

2.2.4. Summary

Feedforward neural networks having one layer of hidden neurons with sigmoid
nonlinearity are parsimonious parameterized approximators of nonlinear functions.
They can be advantageously used for estimating regression functions from measured
data. Their parsimony allows them to make a better use of the available data than
non-parsimonious approximators (such as polynomials) do.

3. DYNAMIC NEURAL MODELS

3.1. Dynamic models

The previous section introduced static models, which are algebraic equations which
account for the relations between the inputs and the outputs of static processes (or of
dynamic processes in their steady state). In the rest of the paper, we focus on
dynamic models, which are expressed as a set of differential equations and algebraic
equations where time is one of the variables. Because of the pervasive use of

6

computers both for process simulation and for process control, in which the inputs,
outputs, and other relevant variables, are measured and/or computed at discrete
instants of time, we focus on discrete-time models, which are governed by difference
equations (also termed recurrent equations).

3.2. Feedback (or recurrent) networks

3.2.1. Definitions

A feedback network is a network whose graph of connections has cycles; each edge of
the graph is assigned a delay, which is a non-negative integer indicating the time
necessary for the information to be transferred along that edge, expressed in a time
unit which is the sampling period of the process. For a neural network to be causal,
the sum of delays of the edges pertaining to any cycle must be non-zero. Figure 3
shows a feedback network (the numbers within squares are the delays associated to
each connection).

0
03 4

5

u1(k)

0 1

1

10 0

u2(k)

y(k)

Figure 3

A dynamic network

(numbers within squares are delays)

q-1

3

4

5

u1(k) u2(k-1) x(k-1)

x(k)y(k)

Figure 4

The canonical form of the network of Figure 3
(q-1 is a standard symbol for a unit delay)

Since non-zero delays are necessary in a feedback network, such a network is
dynamic: if the inputs are constant, the output(s) may vary in time until a stable
state (if any) is reached. Therefore, feedback neural networks are excellent candidates

7

for modeling dynamic processes, just as feedforward nets are excellent candidates for
modeling static data.

3.2.2. The canonical form of feedback neural networks

The most general form of feedback networks, called the canonical form, is the
following
x(k+1) = ϕ [x(k), u(k)]
y(k+1) = ψ [x(k+1)]

(1)

where ϕ and ψ are two non linear functions, and x(k) is a vector called vector of state
variables; it is the vector, having the smallest number of components, which must
be known at time kT in order to be able to predict the state vector and the output
vector at time (k+1)T if the inputs are known at kT (T is the sampling period).

The canonical form is thus composed of two feedforward nets implementing
functions ϕ and ψ, the outputs of the first feedforward net (the state variables) being
fed back to its inputs through unit delays. In general, the canonical form is made of a
single neural net whose outputs are the output vector of the model and the state
variables (the latter being fed back to the input). Note that all, or some, output
variables may be state variables. Figure 5 shows the most general canonical form.

x(k+1)

 u(k) x(k)

q-1

y(k+1)

ϕ
(feedforward neural net)

ψ
(feedforward neural net)

Figure 5

In practice, the two feedforward neural nets are generally lumped into a single
network whose inputs are the state inputs x(k) and external inputs u(k), and whose
outputs are the outputs of the model y(k+1) and the state outputs x(k+1). It will be

8

shown in section 4, that any neural network, however complex, can be transformed
into a canonical form.

Figure 4 shows the canonical form of the network of Figure 3.

3.3. The challenge of dynamic modeling

A process has
• control inputs, represented, at time kT (where T is the sampling period), by a

vector u(k)
• outputs, represented, at time kT, by a vector y(k),
• unmeasured disturbances which may be deterministic or random, such as

disturbances of the state of the process (e.g. a cold object of unknown temperature
introduced at some unpredictable time into an oven), or of its output (such as
noise on the measurement of the output).
The objective of dynamic modeling is the following: find a model such that its

response to a control signal be the same as the response that the process would
exhibit in the absence of disturbances.

3.4. Issues in the design of a dynamic neural model

The basic issue in the design of a static model is the choice of the number of hidden
neurons, which determines the tradeoff between the accuracy of the fit to the available
data and the interpolation capability (this tradeoff is sometimes called the bias-
variance dilemma). The design of dynamic models requires additional decisions
concerning the architecture of the network.

3.4.1. Input-output vs. state-space representations

The first issue in the design of a dynamic model, whether linear or not, is that of
representation. Two types of representations can be considered:
• in an input-output representation, the output of the model is a function of m past

values of the external inputs and of n past values of the outputs of the model:
y(k+1) = F [y(k), y(k-1), ..., y(k-n), u(k), u(k-1), ..., u(k-m)] ;

• in a state-space representation, the output of the model is a function of
intermediate variables (termed state variables), which are functions of past values
of the inputs and of past values of the state variables:
x(k+1) = ϕ [x(k), u(k)] (state equation)
y(k+1) = ψ[x(k+1)] (output equation)

9

where x is the vector of state variables and u is the vector of external inputs. The
order of the model is the dimension of vector x, i.e. the number of state
variables. Note that this form is identical to the canonical form defined in section
3.2.2.
For linear models, the input-output and state-space forms are strictly equivalent.

For nonlinear models, this is not the case: state-space models have been shown to
be more general and more parsimonious than input-output models (Levin, 1992).
An input-output model is actually a special case of a state-space model, where the
state variables are the past values of the output.

3.4.2. Choice of the order of the model

In the context of black-box modeling, the order of the model (i.e. the number of state
variables xi) must be chosen much in the same way as the number of hidden neurons
must be chosen, either heuristically, or by making use of statistical tests.

3.4.3. Summary

The design of a dynamic neural model involves a larger number of degrees of
freedom than the design of a static neural model. Therefore, in order to restrict the
huge space of possible dynamic models, it is important to take guidance, whenever
possible, from domain knowledge. This approach is explained in the next section.

3.5. Reducing design complexity by knowledge-based neural modeling

In contrast to black-box models, which are derived from measurements only,
knowledge-based models are derived from the analysis of the process from a
physical, chemical, economical, etc., point of view. Very often, a state-space model
of a complex process exists and is reasonably accurate, but the approximations made
in the derivation of the equations, the insufficient knowledge of some phenomena, or
the uncertainties on the numerical values of the parameters of the model, make it
unsuitable for the purpose that it should serve. The key idea of knowledge-based
neural modeling is that, despite its shortcomings, such a model can be used as a
basis for designing an accurate neural model.

The design of a knowledge-based neural model consists in:
• building and training (from simulated data) a recurrent network which obeys the

same equations as the knowledge-based model,

10

• adding black-box neural nets wherever necessary, in order to take care of
unmodeled dynamics,

• training the complete network from real data.

Assume that the state-space model is of the form:
 dx

dt
= f x(t), u(t)

y(t) = g x(t)

where f and g are known analytically, possibly with a few parameters. In a typical
chemical engineering unit for instance, the number of state variables would be on the
order of one (or a few) hundred.

The state equations can be discretized to
 x(k+1) = x(k) + f x(k), u(k)

y k+1 = g x k+1

by Euler's method (other discretization techniques can be used as well). If two
feedforward neural networks can be trained to approximate functions f and g, then a
network such as shown on Figure 6 obeys the same discrete-time equation as the
model.

Since x(k) is a vector, f is a vector too; therefore, instead of using a single
network for approximating the whole vector f, it is generally advantageous to use
different networks for different components fi of f. Several situations may arise:
• function fi (known analytically) can readily be computed: it can therefore be put

simply into a "neural" form; this is a purely formal step, which is just intended
to ease the implementation of the whole model as a neural network ;

• the computation of function fi (known analytically) is time-consuming: for
instance, one has

 dxi

dt
= fi [x(k), T [x(k), u(k)], u(k)]

where T is a solution of a nonlinear equation Γ x(k), T[x(k), u(k)], u(k) = 0; the
computation of the value of xi(k+1) requires solving the second equation at each
time step. In such a case, it may be advantageous to generate a set of
representative sequences by solving numerically the above equations, and to use
these sequences for training and testing neural network #i. Since a properly
designed neural network uses a very small number of neurons, the time necessary
for a trained network to compute xi(k+1) can be smaller than the time necessary

11

for solving the above equations by several orders of magnitude. The same
considerations apply to function g.

• function fi is known with very poor accuracy: it can be implemented purely in a
black-box fashion.

1

Feedforward
neural

network #1

Σ

q-1

x 1(k+1)

x (k) u(k)

Feedforward
neural

network #2

Σ

q-1

x2 (k+1)

Feedforward
neural

network #3

Σ

x 3(k+1)

q-1

x 2(k) x 3(k)

Feedforward neural network

y(k+1)

g

fi

Figure 6

At the end of this step, the neural network, trained from simulated data,
performs exactly as well - or as poorly - as the knowledge-based model.

In the final step, the knowledge-based neural model is trained with sequences
measured on the process itself. In this step, not all weights are adjustable: since
most weights of the network have a physical meaning, those which are known to be
accurate and not to require any adjustment are kept fixed during training. The only

12

adjustable weights are the weights of the black-box networks (if any), and the
weights whose values are not known accurately from theory.

This design technique has been successfully applied to a variety of problems
such as the modeling of an industrial distillation process (Ploix et al., 1997), the
automatic piloting of a four-wheel drive vehicle (Rivals et al., 1994), and the
generation of animated synthetic images.

3.6. Summary: from black-box to gray-box dynamic modeling

We have shown that the design of a dynamic model of a process, whether artificial or
biological, involves several issues in addition to those encountered in the design of
static models (feedforward neural networks). In order to overcome this additional
complexity, it is highly desirable to take advantage of whatever mathematical
knowledge is available on the process, resulting from a physical, chemical,
biological, ..., analysis of the process. We have described the technique of
knowledge-based neural modeling, whereby domain knowledge can be built into the
structure of the neural network. This procedure has several benefits:
• many weights of the resulting network have a physical meaning, so that all of

them need not be trained, and the values taken on by those which are trained
may give insight into the process,

• computation times may be cut by orders of magnitude, with respect to
conventional differential equation solvers,

• the resulting model has the flexibility due to training, while retaining the
intelligibility of knowledge-based models.
The price to be paid for these benefits is the fact that the structure resulting from

the above procedure may be quite intricate, with several entangled feedback loops,
which may make its training, or the analysis of its dynamics, quite difficult. This
complexity may be alleviated to a large extent by transforming the network into a
canonical form. This final step in complexity reduction is described in the next
section.

4. COMPLEXITY REDUCTION BY CANONICAL FORM
TRANSFORMATION

In this section, we summarize a procedure, presented in detail in (Dreyfus et Idan.,
1998), which allows to transform any feasible dynamic neural network into a

13

canonical form consisting (as defined in section 3.2.2) of a feedforward network
whose inputs are the state inputs x(k) and the external inputs u(k), and whose
outputs are the model outputs y(k+1) and the state outputs x(k+1).

We consider a discrete-time model consisting of a set of N equations of the
form:

 xi(k+1) = Ψi xj (k - τij,h + 1) , ul(k - τil,h + 1 ,

i, j = 1, ..., N, l = N+1, ..., N+N', h > 0 (2)

where Ψi is an arbitrary function, τij,h is a positive integer denoting the delay of the
h-th delayed value of variable xj used for the computation of xi(k+1), and where ul
denotes an external input. The above relation expresses the fact that the value of
variable xi at time k+1 may be a nonlinear function of (i) all past variables xj
(including xi itself) and present variables (excluding xi itself), and of (ii) all external
inputs at time k+1 or at previous times. These equations are usually complemented
by an output (or observation) equation expressing the relations between the outputs
and the variables of the model.

In the context of neural networks, equations (1) may be considered as the
description of a recurrent network where xi is the output of neuron i, or the output of
a feedforward neural network i, and Ψi is the activation function of neuron i, or the
function implemented by the feedforward network i.

As a didactic example, consider a process described by the following model :
 x1 = f1 x1, x2, x3, u

x2 = f2 x1, x3

x3 = f3 x1, x2

y = x3

where f1, f2 and f3 are nonlinear functions. After discretization (by Euler's method for
instance), these equations have the following form:

 x1(k+1) = Ψ1 x1(k), x1(k-1), x2(k-1), x3(k-1), u4(k-1) ,

x2(k+1) = Ψ2 x1(k+1), x3(k+1) ,

x3(k+1) = Ψ3 x3(k), x3(k-1), x1(k-1), x2(k), x2(k-1)

 y(k+1) = x3(k+1)

(3)

Thus, referring to relations (1), one has N = 3, N' = 1, τ11,1 = 1, τ11,2 = 2,
τ12,1 = 2, τ13,1 = 2, τ14,1 = 2, τ21,1 = 0, τ23,1 = 0, τ33,1 = 1, τ33,2 = 2, τ31,1 = 2,
τ32,1 = 1, τ32,2 = 2.

14

The transformation of such a system to a canonical form is performed in three
steps:
(i) find the order ν of the system, i.e. find the minimum number of variables {zi}
which describe completely the model at time k if their initial values are known, and
if the values of the external inputs {ul} are known at times 0 to k;
(ii) find a state vector, i.e. a set of ν state variables,
(iii) transform equations (2) into the state equations which govern the state variables
derived in (ii).

In the above example, the equations (3) are not in a canonical form; however, a
canonical form is readily derived by substituting the expression of x2(k+1) into the
equations giving x1(k+1) and x3(k+1) (or, in the continuous-time model,
substituting x2(t) into the expressions of the second derivatives of x1(t) and x3(t)): the
order of the model is 4, and the state variables are x1(k), x1(k-1), x3(k), x3(k-1) (or
x1(t), x3(t) and their first derivatives). It can be proved that, for discrete-time models,
these derivations and substitutions can be viewed as a sequence of graph
transformations which can be performed on a computer in polynomial time. In the
following, we first define the graph representation of a discrete-time model, and we
subsequently summarize the steps leading to the canonical form

4.1. Graph representation of a discrete-time dynamic model

We define the graph representation of a model as a finite directed graph G(E, V)
consisting of a set of edges E and of a set of vertices V. Each vertex vi represents a
variable xi. A directed edge eij from vertex vj to vertex vi represents a non-zero term
on the right-hand side of equation i of the system of equations (3). The length of
each edge is the associated delay τij,h: the number of parallel edges from vj to vi is
equal to the number of different delays τij,h. A directed edge from vj to vi of length τ
is denoted by eijτ (however, for simplicity, the superscript τ will be omitted
whenever the context makes it unnecessary); {Ri} denotes the set of outgoing edges
from vertex vi, and the length of the incoming edge to vi of maximal length is
denoted by Mi. c(vi) is the number of cycles (i.e. the number of paths that start and
end at the same vertex) which include vertex vi; c(eij) is the number of cycles which
include edge eij; Aji is the number of edges eij from vertex vj to vertex vi. Note that
the dynamic system is causal if and only if the graph G(E, V) does not contain any
cycle of length zero. Figure 7 shows the graph representation of model (3).

15

4.2. Computation of the order of the model

The first step in the determination of the canonical form of the network consists in
finding which variables of the model will give rise to state variables, i.e. will appear
as components of the state vector x(k) (for instance, in the above example,
x(k) = [x1(k), x1(k-1), x3(k), x3(k-1)]T : only x1 and x3 give rise to state variables).
Therefore, we want to reduce the initial graph G0 of the model to a simpler graph G1
which contains only the vertices that give rise to state variables (vertices v1 and v3 in
the above example), and which has the same number of state variables (but not
necessarily the same state variables) as the model described by G0. From this
simplified graph we will be able to compute the order of the model.

0

1 2

0

2

2

2

1

2

2 1 1 2 3

2

4

y(k+1)

Figure 7

Graph representation G0 of the model described by equations (3)

The simplifications of graph G0 are the following, where G denotes the current
state of the graph before and/or after the considered transformation is performed:
I. Delete all edges of G0 that do not belong to any cycle

 G←G0 - eij c(eij) = 0

and delete all isolated vertices (vertices without incoming nor outgoing
edge) that may result. In principle, the present transformation is sufficient
for the determination of the order. The transformations of steps II result in
further simplifications of the graph, hence of the computations using the
information of the graph. It can be proved (Dreyfus et al. 1998) that the
present transformations can be performed in polynomial time.

16

II. Iterate until no change is possible:
II.1 Delete vertices whose incoming edges are all of zero length, and
recombine their incoming and outgoing edges

 ∀ vj, eji
0, ekj

τ | Mj = 0 G←G - vj - eji
0 - ekj

τ + eki
τ

II.2 Iterate until no change is possible: if a vertex has one incoming
edge only (or one set of parallel incoming edges only) and one outgoing
edge only (or one set of parallel outgoing edges only) delete the vertex; if
there is a single incoming and a single outgoing edge, merge the edges into
a single edge whose length is the sum of the lengths of the merged edges; if
there is a set of parallel incoming edges and a set of parallel outgoing edges,
merge each pair of one incoming and one outgoing edges into a single edge
whose length is the sum of the lengths of the merged edges

∀ vj, eij

τ1, ejk
τ2 | Aji ≥ 1, Ajl = 0∀l ≠ i, Akj ≥ 1, Alj = 0∀l ≠ k

G←G - vj - eij
τ1 - ejk

τ2 + eik
τ1 + τ2

II.3 Iterate until no change is possible: if several parallel edges between
two vertices exist, delete all but the edge of maximum length.

 ∀ vj, eij
τ1, eij

τ2 G←G - eij
min(τ1, τ2)

When no further change is possible, the resulting graph G1 may be a non-
connected graph.

From graph G1, the order of the network is easily derived: the order ν of the

model is given by

ν = ωiΣ
i

 where

∀ νi ∈ G1 ωi =
Mi ± mineji ∈ Ri

Mj ± τji if Mi ± mineji ∈ Ri
Mj ± τji > 0

0 otherwise

Figure 8 shows the graph G1 derived from the graph G0 of Figure 7. Following
the above procedure, edge e14

2 is deleted, and the output edge from vertex 3 is
deleted, since they do not belong to any cycle; then, vertex 2 is deleted since all its
incoming edges have zero length, edge e13

2 and two edges e31
2 and e31

1 are generated;
finally, parallel edges are deleted iteratively until only edges of maximum length are
left. The order of the model is easily derived: one has M1 = 2, M3 = 2, ω1 = 2,
ω3 = 2, hence ν = 4.

17

4.3. Determination of a state vector

The order of the model having been computed as shown above, the
determination of the graph of time constraints leads to the determination of a state
vector. The graph of time constraints G2 is derived from the model graph G0 by the

2

2

2

2 1 3

Figure 8
Graph G1 of the model described by equations (3)

following sequence of graph transformations, which can be performed in polynomial
time.
I. Initialize G to G0. Iterate until no change is possible:

I.1 Delete all vertices whose incoming edges are all of zero length, and
recombine their incoming and outgoing edges

 ∀ vj, eji
0, ekj

τ | Mj = 0 G←G - vj - eji
0 - ekj

τ + eki
τ

I.2 Iterate until no change is possible: if a vertex has one incoming
edge only (or one set of parallel incoming edges only) and one outgoing
edge only (or one set of parallel outgoing edges only) delete the vertex and
merge the edges into a single edge whose length is the sum of the lengths
of the merged edges

∀ vj, eij

τ1, ejk
τ2 | Aji ≥ 1, Ajl = 0∀l ≠ i, Akj ≥ 1, Alj = 0∀l ≠ k ,

G←G - vj - eij
τ1 - ejk

τ2 + eik
τ1 + τ2

I.3 Iterate until no change is possible: if several parallel edges between
two vertices exist, delete all but the edge of maximum length.

 ∀ vj, eij
τ1, eij

τ2 G←G - eij
min(τ1, τ2)

18

II. Delete all edges that do not have both vertices belonging to at least one
cycle:

 ∀ eij ∈ G | c(vi) = 0, c(vj) = 0, G←G - eij

The variables of the model which are represented by the vertices of the resulting
graph G2 are the state variables: vertex i gives rise to state variables xi(k-ki),
xi(k-ki -1, ..., xi(k-ki -wi). Thus, two integers ki and wi (ki ≥ 0, wi > 0) are associated
to each vertex vi; the computation of this set of integers is the final step of the
determination of the state vector.

We denote by NE the number of edges in the graph of time constraints.
Consider an edge eji of G2 of length τji (Figure 9): from the very definition of the
state vector, and from the construction of the graph of time constraints, it must be
possible to compute xj(k-kj+1) from one of the state variables, arising from vertex vi,
which are available at vertex vj at time k-kj+1; these variables must have been
computed at vertex vi at time k-kj+1-τji. Therefore, the following relations must
hold if τji ≠ 0:

 k - ki - wi + 1 + τji ≤ k - kj + 1≤ k - ki + τji
or equivalently

 kj - wi + τji ≤ ki ≤ kj + τji - 1 (4)

Hence, a set of 2NE such inequalities with 2NV integer variables must be
satisfied.

Thus, the problem of finding the state variables and the state equations is
amenable to the following linear optimization problem in integer numbers: find the
set of integers {wi} such that Σiwi is minimum (since the state representation is the
smallest set of variables that describe the model), under the set of constraints
expressed by the inequalities (4). In addition, the value of the minimum is known to
be equal to ν, whose value is derived as shown in section 4.2.

Note that there is a trivial solution to the set of inequalities (4): ki = 0,
wi = maxj τji. This solution is valid if Σiwi = ν . Otherwise, a solution that
satisfies all constraints can be found by linear optimization methods, such as the
simplex (Dantzig 1963). The minimized objective function is Σiwi and at least one
solution with Σiwi = ν is known to exist. It has been proved in (Dreyfus et Idan.
1998) that the algorithm (Kuenzi et al. 1971, Press et al. 1992) converges to a
solution with integer values, which is precisely what is needed. The solution may
not be unique.

19

–

(a) (b)

 k – ki – wi + 1 k – k i

k – k j w j + 1 k – k j + 1

 τji
 τ jii j

Figure 9

Once the pairs {ki, wi} have been determined, the canonical network can easily
be constructed. The canonical form of the network of Figure 7 is shown on Figure
10.

n-1 n n-1n

1 3

2 2

n-1

∆ ∆

y(n+1)

u4(n-1) z2(n) =
x1(n-1)

z1(n) =
x1(n)

z3(n) =
x3(n)

z4(n) =
x3(n-1)

x2(n)x2(n-1)x2(n-1)

z2(n+1) =
x1(n)

z1(n+1) =
x1(n+1)

z3(n+1) =
x3(n+1) z4(n+1) =

x3(n)

Figure 10

20

5. CONCLUSION

Nonlinear dynamic models become increasingly important in the field of biological
modeling as well as for engineers. Feedback neural networks are excellent candidates
for performing such tasks, but their design is more complex than the design of
feedforward nets, since it involves a larger number of degrees of freedom. In order to
reduce this complexity, two techniques are very helpful:
• the number of degrees of freedom may be decreased by making use of the

available mathematical knowledge of the process to be modeled ("knowledge-
based neural modeling"); this technique combines the intelligibility of
knowledge-based models with the flexibility of black-box models;

• the complexity of the resulting model may be further reduced by casting it into a
canonical form, which greatly facilitates the training and the analysis of he
dynamics of the model.
These techniques have been proved to be useful in industrial applications, and

they may also be useful in the design and analysis of models of biological neural
networks such as those presented in (Quenet et al., 1998).

REFERENCES
Bishop, C. (1995). Neural networks for pattern recognition. Oxford University Press.
Dantzig, G.B. (1963). Linear programming and extensions. Princeton University Press.
Dreyfus, G. and Ydan, I. (1988). The Canonical Form of Nonlinear Discrete-Time Models, Neural

Computation, 10, 133-164.
Hornik, K., Stinchcombe, M., White, H., Auer, P. (1994). Degree of approximation results for

feedforward networks approximating unknown mappings and their derivatives. Neural Computation
6, 1262-1275.

Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. (1971). Numerical methods of mathematical
optimization. Academic Press

Levin, A. U. (1992). Neural networks in dynamical systems; a system theoretic approach, PhD Thesis,
Yale University.

Ploix, J.L. and Dreyfus, G. (1997). Knowledge-based Neural Modeling: Principles and Industrial
Applications. In F. Fogelman and P. Gallinari, eds., Industrial Applications of Neural Networks.
World Scientific.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (1992). Numerical Recipes in C : the Art
of Scientific Computing, Cambridge University Press.

Quenet, B., Dreyfus, G., Masson, C. (1998). From Complex Signals to Adapted Behaviour; a
Theoretical Approach of the Honeybee Olfactory Pathway. This volume.

Rivals, I., Canas, D., Personnaz, L. and Dreyfus, G. (1994). Modeling and Control of Mobile Robots and
Intelligent Vehicles by Neural Networks, IEEE Conference on Intelligent Vehicles (Paris).

