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Abstract 

 

This paper describes the automatic extraction of the P, Q, R, S and T waves of 

electrocardiographic recordings (ECGs), through the combined use of a new machine-learning 

algorithm termed Generalized Orthogonal Forward Regression (GOFR) and of a specific 

parameterized function termed Gaussian Mesa Function (GMF). GOFR breaks up the 

heartbeat signal into Gaussian Mesa Functions, in such a way that each wave is modeled by a 

single GMF; the model thus generated is easily interpretable by the physician. GOFR is an 

essential ingredient in a global procedure that locates the R wave after some simple pre-

processing, extracts the characteristic shape of each heart beat, assigns P, Q, R, S and T labels 

through automatic classification, discriminates normal beats (NB) from abnormal beats (AB), 

and extracts features for diagnosis. The efficiency of the detection of the QRS complex, and 

of the discrimination of NB from AB, is assessed on the MIT and AHA databases; the 

labeling of the P and T wave is validated on the QTDB database.  

 

Keywords: machine-learning, neural network, orthogonal forward regression, adaptive signal 

processing, cardiac wave recognition, ECG.  
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I. Introduction 

Long-term ECGs have many applications, especially 24 hours records that reflect the effects 

of daily physical activities. Due to their ambulatory character, such ECGs tend to be very 

noisy, and often require analysis by experts [1], [2], [3]. Reviewing and editing long-term 

ECG data are time-consuming processes, although the data stream may contain a very small 

amount of clinically relevant information. Algorithms have been developed to automatically 

detect, classify and analyze electrical cardiac complexes [4], [5], [6], [7], [8], [9], [10]: they 

include wavelet decomposition [11], [12], and radial basis function (RBF) modeling [13]. In 

addition to these methods for parameter extraction, several automatic classification methods 

have been used for labeling the cardiac waves such as neural networks [14], [15], Hidden 

Markov Models [16], [17], [18] or Support Vector Machines [19]. But the specificity and the 

sensitivity of such algorithms are far from being fully satisfactory. Even for 10-second ECGs 

obtained in supine conditions, there is still a need for improved solutions [20], [21].  

In the present paper, we describe a new algorithm, which automatically detects the electrical 

waveforms from cardiac complexes (P-Q-R-S-T), and further discriminates abnormal beats 

(AB) from normal beats (NB) originating from the sinus node. The core of our method is the 

modeling of cardiac beats by a new class of parameterized functions (Gaussian Mesa 

Functions or GMFs) which were specially designed for modeling each cardiac waveform by a 

single function. The estimation of the parameters of the GMF is performed by an original 

algorithm termed Generalized Orthogonal Forward Regression (GOFR). Once a heartbeat is 

segmented into GMFs, a medical assignment (P, Q, R, S or T) for each function is performed 

automatically, based on probability estimations provided by neural networks. The latter step is 

performed with remarkable accuracy and simplicity, due to the fact that the GMF modeling 

extracts features that are very relevant for quantitative electrocardiology. 

The above algorithms are embedded into a global analysis procedure that does not require any 

ad-hoc adaptation for a given ECG recording, and allows multi-lead ECG processing: manual 

lead selection by the cardiologist is not required.  
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II. Methods 

 

Figure 1 shows pictorially an overview of the whole algorithm described in this section. 

Although the paper focuses on the second step (heartbeat processing), preprocessing, which is 

a prerequisite for ECG analysis, is briefly described; examples of post-processing are 

described for performance assessment. 

 
Figure 1 

Overview of the global analysis procedure ECG preprocessing 

 

II.1. ECG Signal preprocessing 

In this study, the preprocessing methods used are unsophisticated, but they are suitable for the 

data present in the AHA [22] and MIT [23] databases used here. The first step is the 

computation of the electrical baseline, in order to obtain an iso-electric reference for the 

computation of the waveform amplitude. The algorithm that corrects for baseline variations is 

based on the detection of the active and passive zones of the signal (an active zone is defined 

as a time interval during which the heart has an activity); the result of that step is a relatively 

flat iso-electric baseline, together with an estimate of the noise level. The ECG signal is 

subsequently segmented into cardiac complexes by an efficient and popular algorithm 

developed by Pan and Tompkins [24]. 

Since the focus of this paper is the heartbeat processing described in the next section, the 

baseline correction and the segmentation of the raw signal into heartbeats are not detailed in 

this paper but are only introduced as a part of the whole procedure for the analysis of the MIT 

and AHA databases. Interested readers may refer to [25] and [26] for a detailed description; 

many examples are provided in [25], pages 59 - 64 and 84 - 90. 

II.2. Heartbeat processing 

In the present approach, heartbeat processing is performed in two steps, namely heartbeat 

modeling and wave labeling. To model the heartbeat, a new function, called Gaussian Mesa 

Function (GMF), was introduced; in addition, an original machine learning algorithm, called 



Computer Methods and Programs in Biomedicine, vol. 88, pp. 217-233 (2007) 

 

4 

Generalized Orthogonal Forward Regression (GOFR), was designed for adapting those 

functions to the cardiac signal [26], [27]. The purpose of coupling GMF and GOFR is to 

provide a mathematical model in which each monophasic cardiac waveform from the body 

surface ECG is modeled by a single GMF, and each biphasic waveform by two GMFs, which 

greatly facilitates the subsequent labeling of the waves. The GMF function is defined in 

section II.2.1, and the GOFR algorithm in section II.2.2. The labeling procedure, which 

performs the labeling of each cardiac wave from the corresponding GMF(s) is described in 

section II.2.3. 

II.2.1. Gaussian Mesa Function (GMF) 

The electrical cardiac cycle on surface ECG is typically represented by 3 waveforms: P, QRS 

and T. Both P and T waves can be monophasic or biphasic, and the QRS complex is 

composed of up to three monophasic waveforms Q, R and S. A biphasic waveform can be 

seen as two monophasic waveforms of opposite polarities. 

On a given ECG lead, each monophasic cardiac waveform may have a positive or a negative 

polarity depending on the orientation of the cardiac electrical activity with respect to the 

derivation under consideration. These individual waves may be flat or tall, narrow or wide, 

symmetric or asymmetric, or may exhibit a plateau. A Gaussian Mesa function (GMF) is a 

parameterized function that was designed to model the variability of monophasic waveforms. 

It is an asymmetric function with five parameters, made of two half-Gaussian functions 

connected together by a horizontal line (Figure 2). The shape of the GMF depends on its five 

parameters. 

 

 
Figure 2 

Definition of the Gaussian Mesa Function 

 

That function is continuous, differentiable, and all its derivatives with respect to its 

parameters are continuous, which is essential when applying standard optimization algorithms 

for parameter estimation. 
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The 5 parameters are thus: µ (location in time), σ1 (standard deviation of the first Gaussian 

function), σ2 (standard deviation of the second Gaussian function), σL (length of the 

horizontal part), A (amplitude of the GMF). The following constraints must be satisfied: σ1, 

σ2 > 0, σL ≥ 0. 

II.2.2. Modeling algorithm 

In order to efficiently fit parameterized functions to a biological signal, a new algorithm, 

termed Generalized Orthogonal Forward Regression (or GOFR), was developed. The 

efficiency of GOFR, as compared to that of the standard OFR (or projection-pursuit) 

algorithm, was investigated in  [26], [27] together with a precise mathematical description. 

We provide a general description below.  

Let s be the signal to be modelled with M GMFs. The GOFR algorithm is a 4-step procedure 

used to select and tune the parameters of one GMF function. To obtain a model composed of 

M functions, the four steps of the GOFR are iterated M times.  

The 4 steps are the following: 

 selection of the most relevant GMF from a library of candidate GMFs, 

 tuning of the GMF parameters in order to fit the signal s,  

 orthogonalization of the library,  

 orthogonalization of s with respect to the tuned GMF. 

Since the purpose of the method is to model each of the five characteristic cardiac waveforms 

with a single GMF, M=6 GMFs were used in this study. Five characteristic waves are 

modeled by five GMFs out of six, and the sixth GMF either models a non-informative part of 

the signal, or contributes to the modeling of a biphasic P, R or T wave. The discrimination 

between informative and non-informative GMFs is performed by the classification procedure 

described in sections II.2.3.1 and II.2.3.2. 

Figure 3 describes the GOFR algorithm. Figure 3A shows the 67 GMFs of the library 

available at the beginning of the GOFR (M=1, step 1). A correlation coefficient is computed 

between each GMF of the library and s1, where s1 is equal to signal s at the first iteration. The 

first GMF g1 selected to model s1 is the GMF that is most correlated to s1 (Figure 3B). 

The five parameters of g1 are subsequently tuned to fit s1. To that end, the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) non linear optimisation algorithm [28] minimizes the least squares 

cost functions (sum of squared differences between s1 and g1). Note that constrained 

optimization is required since σ1, σ2 and σL must be positive. 
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The GMF g1
* obtained after optimisation is shown on Figure 3C. 

 
Figure 3  

GOFR algorithm for selection, tuning and orthogonalization of a GMF (µ , σ1, σ2 and σL are in ms; A is in 

arbitrary units, proportional to the amplitude in mV).  
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The last two steps consist of orthogonalizing both the library and s1 with respect to g1
*. The 

resulting signal s2 (Figure 3D) is the part of the ECG that remains to be explained, and is used 

to iterate the 4 steps described above with the ortogonalized library.  

After M=6 iterations, the algorithm provides a model made of 6 GMFs (Figure 3, right panel). 

 

Figure 4 shows representative GMF models for (a) a normal beat, (b) an aberrant beat from 

the ventricle, (c) a beat with an abnormal ST segment, and (d) a premature beat originating 

from the atria. Each GMF, selected and tuned by the GOFR algorithm, has an 

electrophysiological background, and conversely, each monophasic wave is modeled by a 

single GMF: for example, in Figure 4(a), the first GMF models the signal arising from the 

repolarization process of the ventricles, GMFs number 2 and 6 refer to ventricle 

depolarization, and the atria contraction is modeled by GMF number 3. The fourth and the 

fifth GMFs are not informative, and do not correspond to physiological activity. Note that the 

specific number attached to each GMF has no significance: the information presented to the 

physician is not those numbers, but the labels (P, Q, R, S, T) obtained automatically as 

described in the next section (II.2.3). The advantage of that modeling strategy appears clearly 

in Figure 4(d): in that case, the GMF that is labeled as a P wave (by the algorithm described in 

section II.2.3) has negative amplitude, which reflects the fact that the P wave has negative 

amplitude. 

Those four examples are extracted from the MIT and AHA databases, used to validate the 

modeling algorithm; for more details on those databases, see section III. 

II.2.3. GMF labeling 

The previous section described the procedure whereby each heartbeat is modeled by six 

Gaussian Mesa Functions. The next step consists in assigning to each GMF an 

“electrophysiological” label (P, Q, R, S or T). To perform that task, automatic classifiers are 

trained to estimate the probability for each GMF to be assigned a given label, from the values 

of its five parameters defined in section II.2.1. 

The task is performed in two steps: first, the R waves are labeled. Then the P, Q, S, and T 

labels are assigned to the GMFs. 
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Figure 4 

Four heartbeats modeled by six Gaussian mesa functions, fitted with the GOFR algorithm: (a) normal 

cardiac beat originating from the sinus, (b) abnormal beat of ventricular origin, (c) abnormal ST segment, 

and (d) premature atrial beat.  

II.2.3.1. Labeling of R waves 

Among the six GMFs that build up the heartbeat model, the function that models the R wave 

is first identified. To that end, a neural network classifier (NNC) is trained to estimate the 

probability of each GMF to model an R wave (Figure 5), in order to discriminate GMFs that 

model R waves from GMFs that model non-R waves. A cursory introduction to neural 

network classification is provided in Appendix A. 

In the present case, the features that are input to the classifier are the five parameters of the 

Gaussian mesa function to be labeled: the parameters of the six GMFs that model the 

heartbeat are input in turn to the classifier, and the GMF that has the highest probability of 

being a R wave is assigned label “R” (Figure 6). Since the Gaussian mesa function has been 

specifically designed for fitting a cardiac wave by a single function, the features that are fed to 

the classifier are very discriminating, thereby facilitating to a great extent the task of the 

classifier. 
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Figure 5 

A classifier designed to estimate the probability that a GMF, whose parameters are fed to the classifier, 

models an R wave. 

 

 
Figure 6 

Procedure for assigning label R to one GMF out of a 6-GMF representation of a heartbeat. P(R|GMFi) 

denotes the probability for the i-th GMF to be an R wave, hence a probability 1 - P(R|GMFi) of being a 

non-R wave. 

 

In the usual framework of statistical machine learning, classifiers of increasing complexity are 

trained on a “training set”, and the selection of the optimal complexity (i.e. the number of 

“hidden” neurons) is performed on a “validation set”, which is distinct from the training set. 

Both data sets are composed of digital ECGs from ELA Medical database on which each 

cardiac wave has been manually labeled by a cardiologist (P. Maison-Blanche). For R-wave 

labeling, 960 GMFs that model R waves (R GMFs) and 960 GMFs that do not model R waves 

(non-R GMFs) are used for training; validation is performed on a different set of 960 R GMFs 

and 960 non-R GMFs. The results on both data sets, and the selected complexity, are 
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presented on Table 1 for the R wave classifier, together with the data pertaining to the 

classifiers of P, Q, S and T, described in the next section. 

 
 Number of 

hidden neurons 

selected 

Size of the 

training set 

Size of the 

validation set 

Misclassification 

rate on the 

training set (%) 

Misclassification 

rate on the 

validation set 

(%) 

R NNC 4 1920 1920 4 2.7 

P NNC 3 1464 1710 0.3 0.5 

Q NNC 3 600 290 2.8 2 

S NNC 3 956 824 2 1.5 

T NNC 5 2238 2506 0.5 0.8 

Table 1 

Results on the training set and validation set for each classifier; the choice of the decision thresholds used 

for P, Q, S and T classifiers is explained in the next section 

 

II.2.3.2. Labeling P, Q, S and T waves  

Prior to the labeling of P, Q, S and T waves of a given GMF model, a new time origin t0 is 

chosen at the location of the R wave previously detected. Therefore the value of the parameter 

µ  of each GMF, which expresses its location, is changed to µ - t0 (Figure 7); that provides a 

temporal description of the sequence of activity of the beat, which is important for the 

labeling process. For example, the new value of µ for the GMF that models a P wave of a 

normal beat is negative around 120 and 200 ms, so that a GMF with a negative value of µ has 

a large probability of being a P wave. Conversely, a GMF with µ around 300 ms has a large 

probability of being a T wave. 
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Figure 7 

A new time origin t0 is defined at the bottom of the detected R wave. The value of µ   of each GMF of the 

heartbeat model shown on Figure 3 is changed by µ  - t0 (µ , σ1, σ2 and σΛ are in ms; A is in arbitrary untis, 

proportional to the amplitude in mVolts). 

 

Assigning label P 

To assign label P to one or more GMF, a neural network classifier (NNC) has been trained to 

recognize a P-GMF from its parameters. The architecture and the performances of the 

selected NNC are indicated in Table 1. 

Similarly to the assignment of label R, assigning P label to the GMF among the 6 GMFs for 

which the probability is highest would result in assigning label P once and only once per 

heartbeat; that procedure would not account for biphasic P modeled by two GMFs to which 

the same label should be assigned twice. Therefore, a probability threshold must be chosen, 
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and label P is assigned to all GMFs for which the probability estimated by the NNC is above 

this threshold (Figure 8).  

 
Figure 8 

Procedure for assigning label P to one or more GMFs.  P(P|GMFi) denotes the probability for the i-th 

GMF to be a P wave, hence a probability 1 - P(P|GMFi) of being a non-P wave. The label P is assigned to 

all GMFs whose probability to be a P wave is higher than 0.8 

 

The choice of the threshold must result in a satisfactory tradeoff between sensitivity and 

specificity. A graphical representation (ROC – Receiver Operating Characteristics – curve 

[29]) is used: the true positive rate is plotted against the false positive rate for the different 

values of the thresholds. Figure 9 shows the ROC curve for the P wave NNC. The area under 

the curve is larger than 0.9, which provides an estimate of the statistical accuracy of the 

classifier [29]. For this classifier, choosing a threshold value of 0.8 guarantees high sensitivity 

with low false positive rate. Increasing the threshold would result in a slight improvement of 

sensitivity while incurring a significant increase in false negative rate, i.e. a decrease in 

specificity.  
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Figure 9 

ROC curve of the P wave neural network classifier. The area under the curve is 0.95.  

 

Assigning label T 

The procedure for assigning label T is similar to the procedure used for P wave labeling. 

Since several GMFs may model a T wave, a threshold must also be chosen. A value of 0.3 

results in a satisfactory tradeoff between sensitivity and specificity for T wave NNC (Figure 

10). The fact that the threshold derived from the ROC curves for T waves is smaller than for P 

waves is due to the variability of the shape of the T wave. 

 

 
Figure 10  

ROC curve of the T wave neural network classifier. The area under the curve is 0.91.  

 

Assigning labels Q and S 

Similarly, two NNCs assign labels Q and S. Label Q (resp. S) is assigned to the GMF that has 

the higher probability to be a Q wave (resp. S wave) if this probability is larger than 0.8.  
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Figure 11 summarizes the P, Q, S and T labeling process: each GMF of the model is tested for 

each label. A GMF that is classified as being neither R, nor P, nor Q, nor S, nor T, is assigned 

label X: such a GMF is considered as non-significant for the heartbeat description.  

 

 
Figure 11 

Global procedure for labeling the P, Q, S and T waves. The decision is made according to the label 

probability estimated by each NNC. GMF 5 is assigned the label X, since it is classified as being neither P, 

nor Q, nor R, nor S, nor T.  

II.2.4. Multilead processing 

The heartbeat processing (GMF decomposition and GMF labeling) described above was 

designed for single lead analysis. Hence, the simplest processing strategy for multilead ECG 

consists in processing each lead separately and subsequently making a decision as to which is 

the “most significant” lead for each medical label (Figure 12). One of the advantages of the 

GMF labeling is that the process estimates a probability for each label; these probabilities are 

used in the decision step to select the most significant lead for each medical label (Figure 13). 

For example, when processing a two-lead cardiac beat, the P wave on the first lead is modeled 

by one GMF out of six to which the label P is assigned with probability P(P-GMF, lead 1).  

 
Figure 12 

Global procedure for multilead analysis 
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Similarly, the P wave is modeled on the second lead by another GMF out of six, which is 

labeled P with the probability P(P-GMF, lead 2). The GMF selected as the most significant 

model of the P wave is the GMF with larger probability of being a P wave1:  the GMF from 

lead 1 is chosen if P(P-GMF, lead 1)>P(P-GMF, lead 2); otherwise, the GMF from lead 2 is 

chosen (Figure 13). 

 
Figure 13 

Example of two-lead processing: preprocessing, modelling, labelling, and decision 

 

II.3. Post-processing  

The characteristic waves of the ECG have been localized for each beat. Their shape and the 

distance between them are easily derived from the parameters of the corresponding GMFs. 

II.3.1. Wave boundary identification 

A useful feature for diagnosis is the distance between the characteristic waves, which is 

obtained from the position of the beginning and the end of each wave, provided by the 

parameters of the corresponding GMF: when a wave is modeled by a single GMF (which is 

by far the most frequent case in the analysis of the MIT and AHA databases), the parameters 

of that GMF provide information on the morphology of the wave: location of the centre, 

length of the linear part, half-widths of the left and right Gaussians, and amplitude (Figure 

14a). The position of the centre is taken equal to µ. Since Gaussian Mesa Functions extend to 

infinity on either side of the maximum, the onset and offset cursors cannot be computed 

                                                 

 
1 In the case of a biphasic wave on one of the available leads, the monophasic model of the wave, found on the 

other lead, is chosen as being the most significant (in standard multilead ECG recordings, at least one of the 

derivations will exhibit a monophasic wave). 
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exactly. For a Gaussian function, the beginning and the end are usually located at two 

standard deviations on either side of the maximum. Similarly, for Gaussian Mesa functions, 

the onset of the wave is defined as µ  − 2σ1 − σL/2 and the offset as µ  + 2σ2 + σL/2, so that the 

area of the GMF enclosed by the two cursors exceeds 97% of the total area; methods based on 

area of the T waves to exhibit the T wave offset have been shown to be efficient  by other 

authors ([30], [31]) . 

 

 
Figure 14 

Wave segmentation is derived from the parameters of the GMFs. (a): in the case of a single GMF, the 

segmentation is derived directly from the parameters; (b) if two GMFs are required to model the wave, a 

decision is made from the parameters of the two GMFs, depending on their shapes.  
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When a biphasic P or a T wave is modeled by two GMFs, three  cases may arise: (i) one GMF 

is wider than the other: it was found empirically that choosing the parameters of the wider 

GMF for segmentation provided satisfactory results; since such cases arise very infrequently 

in the present databases, this point will be further investigated in the future; (ii) the two GMFs 

overlap as illustrated on Figure 14b: the onset is taken equal 

to
  
min µ1

! 2"
1

1
! "

L

1
/ 2,  µ2

! 2"
1

2
! "

L

2
/ 2( ) , where µi denotes the center of GMFi; the offset 

is taken equal to
  
max µ1 + 2!

1

1 +!
L

1
/ 2,  µ2 + 2!

1

2 +!
L

2
/ 2( ) ; the position of the center is taken 

equal to
 
µ1 + µ2( ) / 2 ; iii) the two GMFs do not overlap: the GMF with larger probability is 

used for wave delineation. 

The performance of the wave boundary identification is reported in section III. 

II.3.2. Amplitude, polarity and shape of the waves 

The first information derived from the shape of the R wave is whether the heartbeat is normal 

or aberrant. When analyzing an ECG, the physician relies on expert knowledge for this 

discrimination: width of the R wave, R-R time interval from previous beat, R-R time interval 

to next beat, depolarization axis, etc. Since each R wave is modeled by a single (or two) mesa 

function(s), its width, its inception time, the distance to neighboring R waves, etc., are readily 

available. Therefore, full advantage can be taken of expert knowledge [32], [33], [34] in order 

to build a decision tree.  

A time change in the cardiac wave shapes is an additional useful feature for the experts to 

perform a diagnosis. Figure 15 shows an episode of abnormal atrial activity on a 24-hour 

ECG: the P waves are upside down from the sixth beat onward. The detection of such activity 

is very difficult from rhythm analysis, because of the stability of the R-R intervals. Our 

methodology localizes the P waves for each beat, and models it with a GMF, so that the 

amplitude of the P wave for each beat is known. In order to detect this pathology 

automatically, the amplitude of the GMF that modeled the P wave can be plotted as a function 

of time (Figure 16): the GMF amplitude is negative for these ectopic beats. Note that the latter 

curve is already available to cardiologist on short-term ECG for patients in supine position, 

but has never been presented on long-term ambulatory ECG analysis.  
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Figure 15 

ECG with an abnormal atrial activity. From the sixth beat onward, the P wave is upside down. The 

rhythm is still very stable during the occurrence of this conduction anomaly; therefore, it is very hard to 

detect from rhythm analysis. 

 

 
Figure 16 

Time evolution of the amplitude of the P wave (mV). The rectangle contains the part of the recording that 

is displayed on Figure 15 . Each cross is a heartbeat. The abnormal atrial activity appears clearly in this 

representation. 

 

Figure 17 shows a two-lead ECG from the MIT database (record 119), labeled by our 

algorithm. In this figure, only the beginning of the P and the end of the T waves are labeled 

for each beat. These results are obtained without any expert annotation. The abnormal beats 

have been detected by the discrimination step described above. But the abnormality appears 

also on other features extracted by the algorithm. 
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Figure 17 

Automatic annotation of ECG with the present algorithm. The GMF decomposition of the cardiac beats 

marked by an asterisk is shown on Figure 19.  

 

For example, Figure 18 shows the evolution in time of the T wave amplitude on lead A; the 

upside-down repolarisation of the abnormal beats appears clearly on this graph. Figure 19 

shows the GMF decomposition of two consecutive beats (one normal and one abnormal). The 

GMF labelling process did not assign label “P” to any wave of the abnormal beat; this 

absence can also be a flag for abnormality. 

 

 
Figure 18  

Evolution in time of the T wave amplitude. The rectangle contains the part of the recording that is 

displayed on Figure 17. The variation of repolarisation direction is a flag of abnormality. 



Computer Methods and Programs in Biomedicine, vol. 88, pp. 217-233 (2007) 

 

20 

 
Figure 19 

GMF decomposition and labelling of two consecutive beats marked by asterisks on Figure 17. The absence 

of label P in the second decomposition is a flag for abnormality 

 

II.4. Implementation and computation time 

The procedure has been developed under the Matlab environment.  The optimisation step with 

GOFR is in C-code to increase speed. At present, 36 ms are required to model and label 100 

heartbeats2; therefore, brute-force GMF modeling of the 180,000 heartbeats of a 24-hour 

recording would require more than one minute. For routine use, this is too long because the 

global analysis procedure requires additional time-consuming steps such as QRS detection, 

baseline cancellation and wave labeling, while an automatic analysis of long term ECG 

(Holter record) must be performed within a few minutes. To shorten the modeling step, 

similar heartbeats were grouped together by an unsupervised clustering procedure (see [26] 

for details) based on several features of the heartbeat (RR interval from previous beat, RR 

interval to next beat, QRS principal axis direction, shape of the QRS loop). That step resulted 

in less than 200 clusters for the 180,000 heartbeats, which reduces the expected computation 

time for the global analysis procedure to about 2 minutes for a 24-hour recording. 

In its final version, the whole procedure will be implemented in the ELA Medical Holter 

analysis software for clinical use.     
                                                 

 
2 C program running under Windows XP on a Pentium IV-m, 2.8 Ghz 
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III. Results 

This section describes the results of the global procedure (Figure 1). The results pertaining to 

heartbeat recognition (NB vs AB) are first described; results for P and T wave localization are 

presented in the second subsection. All results reported below were obtained on test sets, i.e. 

on heartbeats that were used neither for training nor for optimizing the NNC classifiers. 

III.1. Cardiac beat recognition: NB vs. AB 

The performance of the discrimination of normal beats from abnormal beats was estimated on 

the MIT database3 [23], and the AHA database4 [22]. In this paper, we considered as 

abnormal beats, beats which did not come from AV node. Beats labeled in the MIT database 

as normal, atrial premature beat, nodal premature escape beat, or bumble branch beat are 

considered as normal beat in this study, and beats labeled as ventricular contraction are 

considered as abnormal. Beats labeled as fusion beats that correspond to a depolarization from 

ventricular and from AV node merged together were not taken into account for performance 

estimation.  

 

The sensitivity (S) and the positive predictivity (P+) are reported in Table 2:  

S = TP / (TP+FN) and P+ = TP / (TP+FP)  

where TP is the number of true positive detections, and FN (resp. FP) is the number of false 

negatives (resp. false positives). 

These results involve both heartbeat localization and recognition. Thus, the value of S for 

normal beats, for example, reflects the efficiency of the algorithm for detecting the QRS 

location and labeling it as a normal beat. These results are better than, or in the same range as, 

results obtained by state-of-the-art published methods (e.g. [11], [12] ,[35], [36]), and they 

provide a substantial improvement over results obtained by commercially available programs 

on the same databases [12]. 

 

                                                 

 
3 We discard records #102, #104, #107, and #217 in the MIT database as they correspond to pacemaker records. 
4 We discard series 800x in the AHA database. These records are ventricular fibrillation, so that the ventricle 

depolarization in not well defined in such cases. 
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  MIT Database AHA Database 

  Normal 

beats 

Abnormal 

beats 

Normal 

beats 

Abnormal 

beats 

Number of analyzed beats 86,071 4,771 131,949 11,407 

Sensitivity S (%) 99.80 91.72 99.68 87.77 

Present 

algorithm 

Positive predictivity P+ (%) 99.47 95.46 98.95 95.93 

Number of analyzed beats N/S N/S 14,350 799 

Sensitivity S (%) N/S N/S 99.82 97.25 

Coast et al [36] 

Positive predictivity P+ (%) N/S N/S 98.90 85.67 

Number of analyzed beats 109,428 N/S N/S 

Sensitivity S (%) 99.80 N/S N/S 

Martinez et al 

[12] * 

Positive predictivity P+ (%) 99.86 N/S N/S 

Number of analyzed beats 109,809 N/S N/S 

Sensitivity S (%) 99.75 N/S N/S 

Pan et al [24] *  

Positive predictivity P+ (%) 99.54 N/S N/S 

Table 2 

Results for R wave assignment and heartbeat labeling on MIT3 and AHA4 databases. 

* Values that refer to QRS detection only without normal/abnormal beats discrimination 

III.2. P and T labeling on QTDB database 

In the present section, the neural network classifiers trained on the ELA medical database (as 

described in section II) were applied, without further processing, to the labeling of P and T 

waves present in the records of the QTDB database [35]. To the best of our knowledge, only 

two public databases contain manually annotated P, R and T waves: the QTDB database, and 

the CSE database [37]. The characteristics of the QTDB database (signal length, number and 

position of the leads, sampling rates) are much closer to those available with Holter records 

than the CSE database. Table 3 (from {Schreier, 2003}) summarizes the differences between 

the QTDB and CSE databases. 

QTDB features a significant number of records, sampled from well-known databases such as 

MIT database or AHA database, and manually annotated by an expert. It includes 3,622 

annotated beats, with a variety of ECG morphologies (3,194 P waves and 3,542 T waves). 

Moreover, QTDB is known to have a very poor signal to noise ratio, with several pathologies 

that make an accurate detection of the waves over the whole database a challenging task. 

Therefore, at present, QTDB is the only annotated database that is relevant for testing our 

method for analyzing long-term recordings. 
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Property QTDB (PhysioNet) CSE Multilead 

Signal length About 15 min About 10 s 
Sample rate 250 Hz 500 Hz 
Number of channels 2 15 (12 standard leads and 3 

orthogonal leads) 
Number of signals containing 
markers for QRS onset et T offset 

103 25 

Number of annotated beats per signal 30 to 80 1 
Total number of annotated events 3623 (QRS onset), 3542 (T offset) 25 (QRSonset), 25 (T offset) 
Location of experts’ annotations 
within signal 

About 10min after the beginning of 
the signal 

First beat only 

Number of experts  One, except for 11 signals with two 
experts 

5 

Table 3 

Comparison of QTDB and CSE databases (from  table 1 of {Schreier, 2003}). 

 

 

III.2.1. Single lead processing 

The first two rows of Table 4 contain the results for lead 1 and lead 2 when each lead is 

processed separately. The third row shows the results obtained when the marker from the two 

leads that agreed most with the annotation was selected. The latter methodology was 

described in [12].  

 
Markers Pon Ppeak Pend Tpeak Tend 

 
# of annotations 3,194 3,194 3,194 3,542 3,542 

S (%) 80.9 80.9 80.9 82.1 82.1 

E (ms) 22.6 15.5 21.1 29.2 45.0 
Present algorithm 

Lead 1 
σ (ms) 22.6 12.2 22.3 17.9 38.6 

S (%) 76.2 76.2 76.2 81.6 81.6 

E (ms) 24.7 18.1 27.2 25.4 42.8 
Present algorithm 

Lead 2 
σ (ms) 25.7 16.3 31.2 17.4 40.3 

S (%) 91.2 91.2 91.2 93.6 93.6 

E (ms) 17.3 11.1 17.6 19.9 34.8 
Present algorithm 

Best lead  
σ (ms) 17.7 8.9 18.6 12.0 30.3 

Ref1 vs ref2 Eref (ms) - - - 17.5 24.5 

Table 4 

Results for P and T labeling on the QTDB database for single lead processing. P waves are described by 

Pon, Ppeak and Pend markers; for T waves, Tpeak and Tend only are annotated. 
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To estimate the performance, three values are shown: first, the sensitivity of the algorithm for 

each marker; second, the mean magnitude of the error E over all annotated beats: 

  

E = 1 / N m
ann

i
! m

a lg

i

i=1..N

"        (1) 

where N is the number of detected markers of a given type, mi
ann the position in time of the i-

th annotator’s marker, and mi
alg the position found by our method. Therefore, E=0 if all 

markers from the algorithm are exactly at the same positions as the markers of the annotator. 

Some publications ([12], [35]) define the error as the algebraic value of the discrepancy 

between the position of the annotator’s marker and the position of the computed marker, 

rather than the absolute value of that discrepancy. In those papers, the results are given in 

terms of mean value of this algebraic discrepancy and its standard deviation. To compare our 

results with those publications, the third value given in Table 4 is the value of the error (σ) 

such that Pr(E < σ) = 0.67. This value can be directly compared to the standard deviation 

(Std) of publications that use algebraic values of the error. 

For 11 records of the QTDB database, a second reference for T waves is available from a 

second cardiologist (“second annotator”); the last row of the table provides the difference 

between the two annotations (the first annotation was used as a reference; Eref is the mean 

magnitude of the difference between the two annotations, for each marker): these values can 

be viewed as the maximum performance that one can expect from automatic detection, 

assuming that humans cannot be outperformed for annotation. 

The distribution of the magnitude of the error for the P wave is shown on Figure 20. For the 

onset marker and the offset marker, the results obtained for that wave are in the same range as 

those published previously (for a review see [12], table III). The marker that labels the peak of 

the P wave is more accurate with the methodology described here, but the sensitivity is 

slightly lower5. 

                                                 

 
5 The distributions displayed on Figure 20 and Figure 22 are those obtained when the marker that best agrees 

with the annotation is selected. 



Computer Methods and Programs in Biomedicine, vol. 88, pp. 217-233 (2007) 

 

25 

 
Figure 20 

Distribution of the magnitude of the error for P wave markers 

 

Some automatically detected markers have a large discrepancy with the annotators’ markers, 

so that they contribute heavily to the overall error. One example of such cases is shown on 

Figure 21: the P wave has the same amplitude as noise, which makes its automatic detection 

very difficult.  
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Figure 21 

Record (sele0116, 0:10:17.5): the P wave has a low signal-to-noise ratio; the differences between the 

annotator’s marker and the computed marker for the first beat are 156ms, 185ms, 140ms for the on, peak 

and off  markers respectively; such values give large contributions to the overall error. 

 

The results for T wave location are less accurate than those obtained for the P wave. 

Nevertheless, these results are better than those published in [8]. They are in the same range 

as those published in [10], [12] for the peak of the wave, and slightly lower for the end of the 

wave. However, the quality of the T wave markers appears clearly when comparing the 

results to the annotator’s error Eref: the difference between the two errors (Eref and E) on both 

T wave peak marker and T wave offset marker is less than 2 samples (~8 ms, since QTDB is 

sampled at 250Hz). 

Distributions of the error on the T wave markers are shown on Figure 22. Just as for the P 

wave marker histograms, a few large values of some errors have large adverse effects on the 

average results. One example of record with large errors is shown on Figure 23: in this case, 

the T wave is bifid. The annotator’s markers include only the first part of the T wave whereas 

the present algorithm markers include the two parts of the wave. The peak of the wave is 

between the two parts of the wave as described in section II.3.1. Thus, the comparison 

between markers on such heartbeats produces large discrepancies.  
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Figure 22 

Distribution of the magnitude of the error for T wave markers 

 

III.2.2. Multilead processing 

As indicated in section II.2.4, three markers for the P waves (onset, peak and offset) and two 

markers for the T wave (peak and offset) are provided for each cardiac beat from the 

multilead processing; these markers take into account the information from all available leads.  

 

Table 5 shows the results obtained on QTDB. Similarly to single lead processing, the 

performances of the algorithm are measured by the magnitude of the discrepancy between 

each annotator marker and the corresponding computed marker.  
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Figure 23 

In this record (sel14172, 10:17:20) the T wave is bifid. For both heartbeats, the GMF decomposition 

models the T wave with 2 GMFs and the neural network classifier detects the more accurate T-GMFs on 

lead II.   

 
Parameters Pon Ppeak Pend Tpeak Tend 

 
# of annotations 3,194 3,194 3,194 3,542 3,542 

E (ms) 19.6 14.3 20.6 26.9 42.8 Presented algorithm 

Multilead processing σ (ms) 20.0 12.2 21.4 18.4 38.5 

Ref1 vs ref2 Eref (ms) - - - 17.5 24.5 

Table 5 

Result of P and T labeling on the QTDB database for multilead processing. P waves are described by Pon, 

Ppeak and Pend markers; for T waves, Tpeak and Tend only are annotated. 

 

The results for multilead processing are less accurate than those obtained for single lead 

processing when the best lead is selected for each marker, but are much better than those 

obtained from a single lead when only one lead is processed. The magnitude of the error on 

the P wave detection is approximately 5 sampling periods for the onset and end markers, and 
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smaller than 4 sampling periods for its peaks; 67% of the markers have an error in those 

ranges. Similar to single lead processing, a few markers give a large contribution to the 

overall error: distributions are shown for each marker on Figure 24. 

 

  
Figure 24 

Distribution of each marker for the P wave (a) and for the T wave (b) 

 

The peak of the T wave is detected with an error below 6 sampling periods, and below 9 

sampling periods for its end. However, 67% of the markers have an error smaller than 5 

sampling periods for the peak of the wave. 
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These results are slightly less accurate than those published in [8], [12], but these studies refer 

to single lead processing, and the best marker from available leads is chosen to compute the 

error. Here, the processing includes multilead decision, which is a more realistic configuration 

in the framework of automatic processing.    

IV. Conclusion and discussion 

The present paper described an algorithm for labeling automatically the characteristic waves 

of an ECG. We first described a methodology for representing the heartbeat as a combination 

of special-purpose parameterized functions (GMFs) in order to extract discriminant features. 

We also discussed the design of nonlinear classifiers for assigning automatically a medical 

label (P, Q, R, S and T) to each GMF of the model. 

Heartbeat modeling and labeling is a part of a global procedure that processes raw data from 

multilead records, without any pre-processing by the cardiologist: it detects R waves, removes 

the baseline and labels the waves. It was tested on the MIT and AHA databases for R wave 

localization, and on QTDB for P and T wave detection. The results are very satisfactory, 

especially for multilead processing. At present, wave delineation is performed from the GMF 

parameters with very simple rules; that part of the algorithm can probably be improved in 

order to decrease the magnitude of the error of the marker. Moreover, in the present method, 

multilead processing is performed by choosing, for each beat, the lead from which wave 

delineation is statistically most probable (based on GMF probability), so that the final wave 

delineation is made from a single lead. Two strategies emerge to improve the results: first, in 

order to take advantage of all available information, all GMFs that are assigned the same label 

could be taken into account, e.g. for wave delineation; alternatively, principal component 

analysis (PCA) could be performed on each heartbeat in order to find the most informative 

direction [26], [38], [39], [40]. GMF modeling and labeling of the principal component (or 

possibly of the two principal components) should improve the robustness of the computation.  

In addition to their use for wave delineation, GMFs provide five parameters that describe the 

shape of each wave. This property is a powerful tool for temporal detection of shape changes 

in specific characteristic waves, and provides the expert with new diagnosis tools on the 

whole ambulatory long-term ECG. 

Finally, it should be noted that a significant part of the methodology described here is generic, 

and can be applied outside the field of cardiology. An extension to 2-dimensional signals 

(time-frequency maps) has been performed, and applied to the analysis of neurophysiological, 

e.g. for the early detection of Alzheimer’s disease [41], [42].  
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Appendix A 

 

Given an unknown pattern described by a vector of numbers (“features”), a single-output 

neural network classifier (NNC) is a parameterized function that provides an estimate of the 

posterior probability of the classes, i.e. the probability that the pattern belongs to one of two 

classes (posterior probability) (Figure 25). 

 

 
Figure 25 

Neural network classifier 

 

The features are fed to an appropriate number of elementary functions (“hidden neurons”) 

each of which computes a nonlinear function (tanh) of a weighted sum of the features. The 

“output neuron” computes a nonlinear function (logistic function) of the quantities computed 

by the “hidden” neurons. The weights of the weighted sums are the parameters of the model 

(2).   

( ) 0 0

1.. 1..

tanh

hn i

out in in out

NNC i ij j i

i N j N

P C X f x! ! ! !
= =

" #" #
= + +$ %$ %$ %& '& '

( (     (2) 

where PNNC is the output of the NNC, 
1 2

! "= # $!
i

T

N
X x x x  is the feature vector, and Nhn 

is the number of hidden neurons. f is the logistic function. The parameters of the network are: 

• 
  

!
i

out{ }
i=1..N

hn

, pertaining to the “connections” between the Nhn hidden neurons (i = 1 to 

Nhn) and the output neuron; 
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• 
  
!

ij

in{ }
j=1..N

i

, pertaining to the connections between the Ni features (j = 1 to Ni) and 

hidden neuron i, 

• 
  

!
i0

in{ }
i=1..N

hn

, pertaining to the connections between the constant input (equal to 1, 

called bias) and hidden neuron i 

• 
0

out
! , pertaining to the connection between the bias and the output neuron. 

 

These parameters are estimated through an algorithmic process (“training”), from a set of 

examples of the patterns to be classified (“training set”), by minimizing a cost function J. In 

the present case, the least squares cost function was minimized: 

  

J (!) =
1

N
p

L(k) " P
NNC

C X
k( )( )

2

k=1..N
p

#      (3) 

where Np is the size of the training set, L(k) = 1 if input vector Xk belongs to class C and 

L(k) = 0 otherwise. 

For classification problems, alternative cost functions can be used such as cross entropy; 

interested readers can refer to [43],[44]. 

The complexity of the classifier is determined by the number of hidden neurons; a neural 

network with zero hidden neuron is a linear separator: the locus of points of equal probability 

is a straight line. The larger the number of hidden neurons, the more complex the separation 

between classes of examples that is performed by the classifier. If the network is too complex, 

the classifier is too sensitive to the details of the training set and gives poor results when 

presented with fresh data; conversely, if the classifier is not complex enough, it is unable to 

classify the examples of the training set (the so-called “bias-variance dilemma”). Therefore, 

model selection is an important part of the model design process ([43], [44] ,).  

Alternative statistical classifiers, such as support vector machines [45], could be used in the 

same context. However, given the small dimensionality of input space, and the large number 

of available examples, neural networks are appropriate for the present task. In addition, 

support vector machines are not well suited to probability estimation, which is of central 

importance in our procedure. 
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