Formal modeling with multistate neurones and multidimensional synapses

Brigitte Quenett, Ginette Horcholle-Bossavit, Adrien Wohrer, Gérard Dreyfus

Abstract

Multistate neurones, a generalization of the popular McCulloch–Pitts binary neurones, are described; they are intended to model the fact that neurones may be in several different states of activity, while McCulloch–Pitts neurones model two states only: active or inactive. We show that as a consequence, multidimensional synapses are necessary to describe the dynamics of the model. As an illustration, we show how to derive the parameters of formal multistate neurones and their associated multidimensional synapses from simulations involving Hodgkin–Huxley neurones. Our approach opens the way to solve in a more biologically plausible way, two problems that were addressed previously: (1) the resolution of ‘inverse problems’, i.e. the construction of formal networks, whose dynamics follows a pre-defined spatio-temporal binary sequence, (2) the generation of spatio-temporal patterns that reproduce exactly the ‘code’ extracted from experimental recordings (olfactory codes at the glomerular level).

© 2004 Elsevier Ireland Ltd. All rights reserved.

Keywords: Multistate neurones; Multidimensional synapses; Neural coding; Spatio-temporal patterns; Hodgkin–Huxley model; Formal neural network

1. Introduction

The present study is a step in the modeling of the relations between the anatomical and biophysical structure of biological neural networks and their signal processing and encoding function. More precisely, we suggest a new tool that may bring a contribution to the following general question: what can we infer about the connectivity of a neural network just by looking at the neuronal activity? Answering that question quantitatively amounts to solving an “inverse problem”, which was addressed before (Quenet et al., 2000, 2002) by making the drastic assumption that neurones can have only two states of activity, hence can be modeled as binary elements.

In a first step, that simplification allowed the computation of the appropriate synaptic weights such that the resulting neural network exhibited precisely the spatio-temporal experimentally recorded code1 (Quenet et al., 2000). In a second step, a network of Hodgkin–Huxley neurones...
(HH) spiking neurones having the connectivity derived in the first step was simulated; it was shown that if (i) an appropriate synchronization mechanism is implemented, and if (ii) synaptic efficacies and delays are appropriately defined, then the network of HH neurones exhibits exactly the same spatio-temporal activities as the network of McCulloch–Pitts (McCulloch and Pitts, 1943) (McCP) neurones defined in the previous step. This proves that the analytic construction of networks of McCP neurones can serve as a guide to more biologically relevant models, since HH neurones can mimic, sometimes with a wealth of details (Mainen and Sejnowski, 1996; Santamaria et al., 2002), the features and the activities of single biological neurones.

Therefore, it can be conjectured that in order to make progress in the direction of solving inverse problems with bio-inspired models, it would be useful to design models of neurones that like binary neurones, have analytically tractable dynamics, but unlike McCP neurones, can model more complexity. In the present paper, we show how to extend McCP neurones to multistate units with multidimensional synapses, which (i) can take into account the fact that a neurone can have several states of activity (e.g. can generate, zero, one or two spikes in a given time interval, depending on the state of its presynaptic neurones), and that (ii) can take into account several types of synapses (e.g. involving different neurotransmitters, or with different locations on the dendritic tree) as well as multiple contacts between two neurones.

Finally, we show how to derive the states of the multistate neurones, and the elements of the multidimensional synapses, from simulations of HH neurones. It constitutes also a step to bring together two models of a neurone, a biologically plausible one, the HH neurone and an analytically tractable one, the McCP-like neurone, using an example of the former in order to define, in an ad hoc manner, the latter.

2. Direct and inverse problems in a network of binary units

In the present section, we recall briefly the notations that are used in the analysis of binary (McCP) neurones, and we outline the resolution of inverse problems with such model neurones.

2.1. The dynamic neural filter: a network of McCulloch and Pitts binary units

In its deterministic version, a dynamic neural filter (Quenet and Horn, 2003; Quenet et al., 2000) is a network of binary units with exogeneous inputs and arbitrary connectivity, whose dynamics is defined in discrete time. Let us consider a network of N McCP units, where the activity $s_i(t)$ of each unit i, $i \in \{1, ..., N\}$, at discrete time t can be either 0 or 1. The general term of the synaptic matrix W of the network is $w_{ij} \in \mathbb{N}$, that term corresponds to the weight of a single synaptic contact from neurone j to neurone i. We consider here a model, in which each neurone receives an external input $R_i \in \mathbb{N}$, the vector \vec{R} defined by the N coordinates R_i is the input vector to the network. The dynamics of the network is defined by:

\[
h_i(t) = R_i + \sum_{j=1}^{N} w_{ij} s_j(t-1)
\]

$h_i(t)$ is the potential of neurone i at discrete time t and $s_j(t-1)$ the state of neurone j at time $t-1$, which takes its value in $\{0,1\}$. $s_i(t)H\left(h_i(t) - \frac{1}{2}\right)$

with $H(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

Such a network exhibits a discrete-time dynamics whose major property is to respond to any stable input \vec{R} with a spatio-temporal activity pattern: a sequence of 0 and 1 for each neurone. Given an initial state of the network, the binary spatio-temporal patterns evolve towards a fixed point or toward a cycle whose length

exponentially recorded or computed, for biological or formal neurones, respectively. If time bins can be defined, the number of spikes emitted in each time bin by the recorded neurones may be used to define a “spatio-temporal code” (see, for instance, Weht et Laurent, 1994) that can be reproduced with discrete time formal neurones, provided the resolution of an inverse problem.

This length may become very large at the edge of chaos under some conditions on W and \vec{R} (Gutfreund et al., 1988; Kliper et al., 2003, in press).
depends on the values of \(W \) and \(\vec{R} \). Ranking the neurone activities in a row for each time step, a spatio-temporal pattern of length \(T \) can be denoted a \(((T + 1) \times N)\) matrix \(P \), whose general term \(P_{i,j} \) is the activity \(s_i(t) \) of neurone \(i \) at time \(t \): the first row of \(P \) is the initial state of the network, i.e., at time \(t = 0 \), row \((t+1) \) of \(P \) is the state of the network at time \(t \), and the column \(i \) is the sequence of activity of neurone \(i \).

2.2. Direct and inverse problems

The direct problem can be defined as follows: given \(W \) and \(\vec{R} \), what is the spatio-temporal behaviour of the network, i.e., what pattern, or code, does it exhibit as a response to the input \(\vec{R} \)? The coding properties of the DNF are described in (Quenet and Horn, 2003); it is shown that they are robust to synaptic noise.

Given a matrix \(P \) of a spatio-temporal pattern, an inverse problem consists in finding \(W \) and \(\vec{R} \) such that the network exhibits the activity described by matrix \(P \).

3. Multistate neural network

In the present section, a network of multistate neurones with multidimensional synapses is defined as an extension of the model neurones and synapses defined above. The purpose of that extension is to model different states of activity of a neurone, while retaining the topological equivalence of the states, which allows addressing an inverse problem by solving sets of linear inequalities.

Since the state of a McCP neurone is defined by a scalar that can take on two values, a straightforward extension consists in encoding the state of the neurone by a scalar that can take on \(K \) different values. Such an approach, however, cannot be valid since the three states are not topologically equivalent. In that representation, state \(K \) is separated from state \(K + 2 \) by state \(K + 1 \).

The standard way of achieving complete topological equivalence of the states of a multi-state system consists in using a one-out-of-\(K \) encoding; each state of the system is represented in \(K \) dimensional space as a vector belonging to a basis of that space. Complete topological and metric equivalence between the states is achieved if the basis is orthonormal: state \(k \) of the system is described as a vector, whose \(k \)th component is equal to 1, all other components being equal to 0.

Equivalently, the state can be represented by a vector in \(K – 1 \) dimensional space where the possible states are described by \(K \) vectors, provided that \(K – 1 \) vectors provide a complete basis of \(K – 1 \) dimensional space. The relation between the above representations is described in Appendix 1.

As an example, the state of a three-state neurone can be represented as one vector out of three vectors \(A, \vec{B}, \vec{C} \) in two-dimensional space, if two vectors among the three possible vectors are not collinear.

Topological and metric equivalence of the states is achieved if the three vectors \(A, \vec{B}, \vec{C} \) have the same length and are at \(120° \) angular separation (Fig. 1). That is identical to a three-state Potts neurone (Kanter, 1988; Wu, 1982), but with synapses defined in a very different way.

In that framework, the potential of formal neurone \(i \) is a vector in \(K – 1 \) dimensional state, which is obtained by a linear transformation of the vector states of all presynaptic neurones: hence information transfer between each pair of neurones \((i,j) \) is described by a \((K – 1, K – 1)\) matrix \(W_{ij} \).

In the case of a three-state neurone, the potential of the neurone is defined by

\[
\vec{h}_i(t) = \sum_{j=1}^{N} W_{ij} (\vec{S}_j(t-1)) + \vec{R}_i
\]

* Another three-state neuron has been described by Silverman, Shaw and Pearson (Silverman et al., 1986), where these three states are ranked on a one-dimensional space. In this model, the synapses are scalar.
\(\vec{h}_i(t) \) is the potential of neurone \(i \) at discrete time \(t \) and \(S_j(t - 1) \) the state of neurone \(j \) at time \((t - 1) \), which takes its value in \(\{ \vec{A}, \vec{B}, \vec{C} \} \).

In the deterministic case, the state \(S_j(t) \) of neurone \(j \) at time \(t \) is the state among \(\{ \vec{A}, \vec{B}, \vec{C} \} \) that is closest to \(h_j(t) \), since \(||\vec{A}|| = ||\vec{B}|| = ||\vec{C}||: \)

\[
\tilde{s}_j(t) = A \iff \vec{h}_j(t) \vec{A} > \vec{h}_j(t) \vec{B} \text{ and } \vec{h}_j(t) \vec{A} > \vec{h}_j(t) \vec{C} \quad (5)
\]

Similar conditions hold for \(\vec{B} \) and \(\vec{C} \).

Given a \((T+1) \times N\) matrix \(P \) of a spatio-temporal ternary pattern, solving an inverse problem consists in finding a tensor \(W \) (of size \(2 \times 2 \times N \times N \) and general term \(w^{ij}_{ab} \)) and a matrix \(R \) (of size \(2 \times N \) and general term) such that the network exhibits the spatio-temporal pattern defined by matrix \(P \). The conditions on the terms \(w^{ij}_{ab} \) and \(R_i \) can be written as \(N \) sets of \(2T \) inequalities, one set per neurone; a couple of inequalities can be written for time \(t \) and neurone \(i \). In order to write these inequalities, it is necessary to assign to \(\vec{h} \) some components in the two-dimensional space, for instance, \(\vec{h} = h^1 \vec{B} + h^2 \vec{C} \). Since \(\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{C} + \vec{A} \cdot \vec{C} = \frac{1}{2} ||\vec{A}||^2 \) and \(\vec{h} \) is defined by Eq. (4), the conditions are given in Eq. (6).

\[
\begin{align*}
\text{If } P_i = \vec{A} & \quad \sum_{j=1}^{N} \left[w_{ij}^{11} P_{1j}^{1} + w_{ij}^{12} P_{1j}^{2} \right] + R_i^1 < 0 \\
\text{if } P_i = \vec{B} & \quad \sum_{j=1}^{N} \left[w_{ij}^{11} P_{1j}^{1} + w_{ij}^{21} P_{1j}^{1} \right] + R_i^2 < 0 \\
\text{if } P_i = \vec{C} & \quad \sum_{j=1}^{N} \left[(w_{ij}^{11} - w_{ij}^{21}) P_{1j}^{1} + (w_{ij}^{22} - w_{ij}^{12}) P_{1j}^{2} \right] + (R_i^1 - R_i^2) > 0 \\
\sum_{j=1}^{N} \left[(w_{ij}^{11} - w_{ij}^{21}) P_{1j}^{1} + (w_{ij}^{22} - w_{ij}^{12}) P_{1j}^{2} \right] + (R_i^1 - R_i^2) > 0 \\
\text{if } P_i = \vec{C} & \quad \sum_{j=1}^{N} \left[w_{ij}^{21} P_{1j}^{1} + w_{ij}^{22} P_{1j}^{2} \right] + R_i^2 > 0
\end{align*}
\]
4. Modeling a Hodgkin-Huxley neurone as a multistate neurone with multidimensional synapses

Let us suppose that we want to reproduce neuronal recordings that can be considered as a sequence of synchronised three-state data. Applying the same strategy as described for binary data, we take advantage of the possibility of solving the inverse problem for a McCP-like three-state neural network in order to define synaptic connections and inputs. Nevertheless, the three neuronal states identified in some experimental recordings are not necessarily in a symmetric configuration. It means that we need first to define appropriate McCP-like neurones before solving the inverse problem for a network of such neurones. A HH model of neurone exhibiting three types of activities may be helpful. Indeed, it is possible to perform numerical experiments on such a model, i.e. simulations with the software NEURON, in order to build an ad hoc three state McCP-like unit, where not only the states must be defined and their components assigned, but also the potential $\rightarrow h_i$ and the two functions f_1 and f_2 that describe respectively the potential-states relation $(h_i = f_1(\text{states}))$, as in Eq. (4) and the state-potential relation $(S = f_2(\text{potential}))$, as in Eq. (5). We will describe how the three state McCP-like units can be derived from numerical experiments performed on HH neurones.

4.1. The Hodgkin-Huxley model

The HH model considered here is made of two compartments: a soma and a dendrite where an inhibitory synapse and an excitatory synapse are located; a diagram of this neurone is represented in Fig. 2. Using the NEURON software, this simple model was constructed with a minimal number of ionic currents. The nonlinear nature of calcium dynamics enable cells to generate a wide repertoire of spatio-temporal patterns; therefore, in addition to the somatic sodium and potassium currents, a low-threshold calcium current (I_{Ca}^T-current) and the mechanism for decay of internal calcium concentration due to calcium currents and pump were introduced in the somatic and dendritic membrane in order to facilitate the generation of double spikes (Destexhe et al., 1998).

4.2. The synapses, delays and temporal behaviours

The temporal evolution of the synaptic conductances are modeled by alpha functions with different time constants for the inhibitory synapse and for the excitatory one. The activity of such a unit is simulated with the software NEURON; the parameters of the neuronal model are such that a typical behaviour of the model is indicated in Fig. 3 where three types of activity appear: no spike, one spike and two spikes. It is thus possible to define the three states A, B and C that encode the generation of zero,
Fig. 4. Alpha functions describing the temporal evolution of inhibitory and excitatory synaptic conductances. The corresponding equation is \(g = g_{\text{max}} \left(\frac{t}{\tau} \right) \exp\left(-\frac{t}{\tau} \right) \) with \(\tau = \tau_{\text{IN}} \) and \(\tau_{\text{EX}} \), respectively. The stimuli applied to the neuron are delayed in such a way that the conductances reach their maxima simultaneously. The time course of the synaptic conductances is smaller than the time bin mentioned in Fig. 3.

One or two spikes in a given time bin.\(^5\) Such activities are responses to short pulses (Dirac) applied to each synapse with adapted delays such that the peaks of the synaptic conductances occur simultaneously as indicated in Fig. 4; they depend on the values of the two activity-dependent quantities \(g_{\text{IN}}^{\text{max}} \) and \(g_{\text{EX}}^{\text{max}} \).

We define the ‘potential’ \(\vec{h} \) as the two-dimensional vector whose components are the maximal synaptic conductances:

\[
\vec{h} = \left(\begin{array}{c} g_{\text{IN}}^{\text{max}} \\ g_{\text{EX}}^{\text{max}} \end{array} \right)
\]

4.3. Numerical experiments

Having defined the states and the potential, we show how simulations performed with the HH neuron can be used in order to define the dependence of the potential of a McCP-like neuron on the state of activity of the network \(f_1 \) and the dependence of the state of this neuron on its potential \(f_2 \).

Since function \(f_2 \) is easier to construct, we describe it first.

4.3.1. Construction of the state of the neuron from its potential function \(f_2 \)

The function we are looking for should assign to any, i.e. to any couple of values \((g_{\text{IN}}^{\text{max}}, g_{\text{EX}}^{\text{max}}) \), a state of the neuron, i.e. an activity as a response to the presynaptic stimulus: no spike, one spike or two spikes. The following numerical experiment was performed: the number of spikes generated by the neuron shown on Fig. 2 was recorded in response to the simultaneously stimulation of both its excitatory and its inhibitory synapses (Fig. 5), as a function of the potential \((g_{\text{IN}}^{\text{max}}, g_{\text{EX}}^{\text{max}}) \); the results are displayed on Table 1.

The number of spikes observed in the simulations defines sub-regions of this potential space, clearly separated by linear boundaries, whose equations are of the type \(g_{\text{EX}}^{\text{max}} = mg_{\text{IN}}^{\text{max}} + \theta \).

\(^5\) The formalism introduced here to describe a three-state neuron can be extended to other behaviours than the triplet “no spike, one spike, two spikes”; for instance, it is possible to introduce a bursting state as one of such states. Our approach is useful to define the dynamics of a neural network with multistate neurons if these states can be defined within short fixed time bins, which is not the case for more complex neural behaviours like Poissonian firing or oscillatory firing for instance. Such long-term behaviours may emerge as temporal patterns exhibited by some neurons in a multistate neural network.
In the present case, \(f_j \) can be expressed in the following way (Eq. (7)), with \(h^1 = \frac{g_{IN,j}}{g_{max}} \) and \(h^2 = \frac{g_{EX,j}}{g_{max}} \).

If \(h^2 - m_A h^1 - \theta_{AB} < 0 \) \(s = A \) (no spike)

If \(h^2 - m_A h^1 - \theta_{AB} > 0 \) and \(h^2 - m_B h^1 - \theta_{BC} < 0 \) \(s = B \) (1 spike)

If \(h^2 - m_B h^1 - \theta_{BC} > 0 \) \(s = C \) (2 spikes)

The parameters of the boundary between regions of data A and B are estimated to be \(m_{AB} = 0.56 \) and \(\theta_{AB} = 0.0132 \mu S \); similarly, \(m_{BC} = 1.02 \) and \(\theta_{BC} = 0.0274 \mu S \).

4.3.2. Construction of the potential of the neurone from the state of activity of the network (\(f_1 \))

The function we are looking for should assign to each state \(s_j \) of neurone \(j \), presynaptic to neurone \(i \), a value of

\[
\hat{h}_i = \begin{pmatrix} h_{IN,i}^1 \\ h_{IN,i}^2 \end{pmatrix} \text{ and } h_{EX,i}^1, h_{EX,i}^2.
\]

due to the contribution of neurone \(j \) to the potential of neurone \(i \). According to Eq. (4), such a contribution can be written as indicated in Eq. (8). \(^7 \)

\[
\hat{h}_{ij} = \begin{pmatrix} h_{IN,j}^1 \\ h_{IN,j}^2 \end{pmatrix} \text{ and } \begin{pmatrix} h_{EX,j}^1 \\ h_{EX,j}^2 \end{pmatrix} = W_{ij} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} x'_i \\ y'_i \end{pmatrix} = \begin{pmatrix} w_{11}' x'_i + w_{12}' y'_i \\ w_{21}' x'_i + w_{22}' y'_i \end{pmatrix}
\]

\(^7 \) Time is not included in this equation, as we look for a relationship, which is time-independent. Nevertheless, when this potential-state relation is a part of the updating rules, time appears in the states, as in Eq. (4).
where the components \(x_{ij} \) of state \(s_j \) are
\[
\begin{pmatrix}
 x_{ij} \\
 y_{ij}
\end{pmatrix}
\]
Since synaptic conductances add, we can consider that the potential \(\tilde{h}_i \) at the level of neurone \(i \) is the sum of the contributions of all presynaptic neurones \(j \), and of an external stimulus \(\tilde{R}_i \):
\[
\tilde{h}_i = \sum_{j=1}^{N} h_{ij} + \tilde{R}_i. \tag{9}
\]
Let us assume that neurone \(j \) has two types of synaptic contacts on neurone \(i \): one inhibitory synapse with weight \(G_{i,j}^{\text{IN}} \) and one excitatory synapse with weight \(G_{i,j}^{\text{EX}} \), where these weights are the maximal conductance of the synapses when they are activated by a single presynaptic spike. We are looking for a relation between the elements of the formal multidimensional synapse \(W \), and the weights \(G_{i,j}^{\text{IN}} \) and \(G_{i,j}^{\text{EX}} \). Such a relation depends on the values of the components assigned to states \(A \), \(B \) and \(C \); the latter are still to be defined. In other words, if we want to derive the contribution of neurone \(j \) to the potential of neurone \(i \) in Eq. (9), we need to estimate the values of 10 unknown quantities: the 3 \times 2 components of the states and the four components of the multidimensional synapse. They can be estimated from numerical experiments as follows: a stimulus that mimics a presynaptic state \(A \) or \(B \) or \(C \), can be generated, and its effect on the values of the potential \(\tilde{h}_{\text{max}}(\text{state } A) \) of a postsynaptic HH neurone can be computed for different values of \(G_{\text{IN}} \) and \(G_{\text{EX}} \) (Fig. 6).

When the stimulating element is silent (state \(A \)), whatever the value of \(G_{\text{IN}} \) (respectively \(G_{\text{EX}} \)) the value of \(\tilde{h}_{\text{max}}(0) \) is 0 (respectively \(\tilde{h}_{\text{max}}(0) \)). When \(G_{\text{IN}} \) has the same value as \(G_{\text{EX}} \), the results of such simulations are similar to those obtained with the "Stim" elements, which mimics such a presynaptic neuron.

\[
\text{Eq. } (8) \text{ becomes Eq. } (10) \tag{10}
\]
\[
\begin{pmatrix}
 \tilde{w}_{11} \\
 \tilde{w}_{12}
\end{pmatrix}
\]
\[
\begin{pmatrix}
 w_{11} \\
 w_{12}
\end{pmatrix}
\]
\[
\begin{pmatrix}
 w_{11} \\
 w_{12}
\end{pmatrix} = \begin{pmatrix}
 w_{11}^{\text{IN} \rightarrow \text{A}} + w_{12}^{\text{IN} \rightarrow \text{B}} \\
 w_{11}^{\text{EX} \rightarrow \text{A}} + w_{12}^{\text{EX} \rightarrow \text{B}}
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0
\end{pmatrix}
\]
\[
\forall w_{11}^{\text{IN}}, w_{12}^{\text{IN}}, w_{11}^{\text{EX}}, w_{12}^{\text{EX}} \tag{10}
\]

Eq. (12) is trivially verified if we choose the components of state \(A \) to be zero:
\[
\begin{pmatrix}
 x_{A} \\
 y_{A}
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0
\end{pmatrix}
\]

When the stimulating element emits one spike (state \(B \), by definition, for each value of \(G_{\text{IN}} \) (respectively \(G_{\text{EX}} \)) the value of \(\tilde{h}_{\text{max}}(1) \) is \(\tilde{h}_{\text{max}}(1) \) is \(\tilde{h}_{\text{max}}(1) \) is \(G_{\text{EX}} \). In this case, Eq. (10) becomes Eq. (11)
\[
\begin{pmatrix}
 \tilde{w}_{11} \\
 \tilde{w}_{12}
\end{pmatrix}
\]
\[
\begin{pmatrix}
 w_{11} \\
 w_{12}
\end{pmatrix} = \begin{pmatrix}
 w_{11}^{\text{IN} \rightarrow \text{B}} + w_{12}^{\text{IN} \rightarrow \text{B}} \\
 w_{11}^{\text{EX} \rightarrow \text{B}} + w_{12}^{\text{EX} \rightarrow \text{B}}
\end{pmatrix} = \begin{pmatrix}
 G_{\text{IN}} \\
 G_{\text{EX}}
\end{pmatrix} \tag{11}
\]

If we assign arbitrarily to state \(B \), the following components:
\[
\begin{pmatrix}
 x_{B} \\
 y_{B}
\end{pmatrix} = \begin{pmatrix}
 0 \\
 0
\end{pmatrix}
\]

Eq. (11) becomes:
\[
\begin{pmatrix}
 \tilde{w}_{11} \\
 \tilde{w}_{12}
\end{pmatrix}
\]
\[
\begin{pmatrix}
 w_{11}^{\text{IN} \rightarrow \text{B}} + w_{12}^{\text{IN} \rightarrow \text{B}} \\
 w_{11}^{\text{EX} \rightarrow \text{B}} + w_{12}^{\text{EX} \rightarrow \text{B}}
\end{pmatrix} = \begin{pmatrix}
 \tilde{h}_{\text{max}}(1) \\
 \tilde{h}_{\text{max}}(1)
\end{pmatrix}
\]

We still have two unknown quantities for the multidimensional synapse \(W = w_{11} \text{ and } w_{22} \), two unknown quantities for the components of state \(C \).

When the stimulating element emits two spikes (state \(C \), we measure the values of \(\tilde{h}_{\text{max}}(2) \) for some values of \(G_{\text{IN}} \) and the values of \(\tilde{h}_{\text{max}}(2) \) for some values of \(G_{\text{EX}} \). The results of these experiments are displayed on Fig. 7, which shows that \(\tilde{h}_{\text{max}}(2) \) (respectively \(\tilde{h}_{\text{max}}(2) \)) is a linear function of \(G_{\text{IN}} \) (resp. of \(G_{\text{EX}} \) with a slope \(\alpha^{\text{IN}} = 1.98 \) (resp. \(\alpha^{\text{EX}} = 1.58 \)).
Fig. 6. Schematic representation of the numerical experiments performed on HH neurones in order to define f_1. By changing the state of the Stim element (0, 1 or 2 spikes) and the weights of the inhibitory and the excitatory synapses between it and the neurone, we measure the effects of these changes at the level of the maximal conductances g_{IN}^{max} (0, 1 or 2) and g_{EX}^{max} (0, 1 or 2) (0 not shown). These experiments are performed on the inhibitory synapse (a) and on the excitatory synapse (b) independently.

Fig. 7. When the Stim element generates a double spike, the value of g_{IN}^{max} varies linearly with the value of G_{IN} (a) (idem for g_{EX}^{max} and G_{EX}). The slope is $\alpha_{IN} = 1.98$ for the inhibitory synapse and $\alpha_{EX} = 1.58$ for the excitatory one. (The unit of the x- and y-axes is μS; the scales for G_{IN} and G_{EX} are those of Table 1).

In this case, Eq. (8) becomes Eq. (13)11

\[
\begin{pmatrix}
\frac{\partial g_{IN}^{max}}{\partial G_{IN}}(2) \\
\frac{\partial g_{EX}^{max}}{\partial G_{EX}}(2)
\end{pmatrix}
= \begin{pmatrix}
G_{IN} x_C + w_{12} y_C \\
G_{EX} x_C + w_{22} y_C
\end{pmatrix}
= \begin{pmatrix}
\partial g_{IN}^{max} / \partial G_{IN} \\
\partial g_{EX}^{max} / \partial G_{EX}
\end{pmatrix}
\forall G_{IN}, G_{EX}
\]

We have four unknown values for two equations, so that we can choose two of them arbitrarily. Once again, let us choose the components of state C as:

$\begin{pmatrix}
x_C \\
y_C
\end{pmatrix} = \begin{pmatrix}
0 \\
1
\end{pmatrix}$. Then Eq. (13) becomes Eq. (14):

\[
\begin{pmatrix}
\frac{\partial g_{IN}^{max}}{\partial G_{IN}}(2) \\
\frac{\partial g_{EX}^{max}}{\partial G_{EX}}(2)
\end{pmatrix}
= \begin{pmatrix}
w_{12} \\
w_{22}
\end{pmatrix}
= \begin{pmatrix}
\partial g_{IN}^{max} / \partial G_{IN} \\
\partial g_{EX}^{max} / \partial G_{EX}
\end{pmatrix}
\]

From those numerical experiments, the potential of the neurone can be written down explicitly as a function f_1 of the state of activity of the network:

\[
\vec{h}_i = \begin{pmatrix}
h_1^i \\
h_2^i
\end{pmatrix}
= \begin{pmatrix}
g_{IN}^{max} I^{2} \\
g_{EX}^{max} I^{2}
\end{pmatrix}
= \sum_{j=1}^{N} w_{ij} \vec{s}_j + \vec{R}_i
\]

\[
\begin{pmatrix}
l_1^i \\
l_2^i \\
l_3^i
\end{pmatrix}
= \begin{pmatrix}
\sum_{j=1}^{N} G_{IN}^{j} w_{ij} G_{IN}^{j} \\
\sum_{j=1}^{N} G_{EX}^{j} w_{ij} G_{EX}^{j}
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_1^i \\
x_2^i \\
x_3^i
\end{pmatrix}
= \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_4^i \\
x_5^i \\
x_6^i
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\]

\[
\begin{pmatrix}
x_7^i \\
x_8^i \\
x_9^i
\end{pmatrix}
= \begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
\]

with $x_4^i = x_4^i, x_5^i = x_5^i, x_6^i = x_6^i$ and $x_7^i = x_7^i$.

11 Provided G_{IN} and G_{EX} are taken in appropriate intervals (Table 1).
types between two neurones. We define the potential h, as being a vector whose length is L, with each of its components corresponding to the maximal conductance of a synaptic type.

Numerical experiments with such a neurone allow, in principle, a mapping of the K states to different synaptic contacts. Between regions are linear, i.e. hyperplanes of maximal conductance neurone as a function of the synaptic neurone on this synapse. Several contacts of the same type are defined from experimental measurements, provided the values of the relevant quantities are available.

The above analysis can be generalized in two respects: one can consider that the neurone exhibits K different states, and that there are L synaptic contact types between two neurones. We define the potential h, as being a vector whose length is L, with each of its components corresponding to the maximal conductance of a synaptic type.

Let us assign to the K states, $E^{1}, E^{2}, \ldots, E^{K}$, the following components in a K-1-dimensional space: the m-th component of state E^{k} is $e_{mk} = h_{mk}$, where h_{mk} is the Kronecker symbol and $m \in \{1, \ldots, K-1\}$, $k \in \{0, \ldots, K-1\}$, which means that all the components of E^{k} are zero (silent state), and the only non-zero component of E^{k} is $e_{k} = 1$. In such a case, W_{ij} is a $L \times (K-1)$ multidimensional synapse whose general term is given in Eq. (16)

$$w_{ij}^{kl} = a_{ij}^{l} G_{ij}^{k} , \quad k \in \{1, \ldots, K-1\}, j \in \{1, \ldots, L\}$$

where $a_{ij}^{l} = 1 \forall i$, and $a_{ij}^{l} = k \in \{2, \ldots, K-1\}$ is the ratio of the maximal conductance measured at synapse type l when the presynaptic neurone is in state k and the maximal conductance of that synapse when the presynaptic neurone is in state 1 (which is, by definition, the weight of the synapse). In other words, each term of the W_{ij} multidimensional synapse is a synaptic weight, weighted itself by the influence of the state of the presynaptic neurone on this synapse.

Appendix A

We show that the state of a K-state neurone can be represented as one among K vectors in $K-1$ dimensions.
sional space is equivalent to a one-out-of-K representation in K-dimensional space.

Consider a K-state system described by one vector out of K linearly independent vectors X_1, X_2, \ldots, X_K.

In K-dimensional affine space, the equation of a hyperplane can be written as:

$$n X + 1 = 0,$$

where n is a vector normal to the hyperplane.

If the end points of vectors X_1, X_2, \ldots, X_K belong to that hyperplane, then the following set of K linear equations hold:

$$n X_1 = n \cdot X_2 = \ldots = n X_K = -1.$$

The solution of that set of equations, i.e. the K components of vector n, exists since vectors X_i are assumed to be linearly independent. The orthogonal projection of Y_i of X_i onto the hyperplane is given by:

$$Y_i = X_i - \frac{n \cdot X_i}{\|n\|^2} = X_i + \frac{n}{\|n\|^2}.$$

Example 1.

The state of a two-state system can be represented in two-dimensional state by one of the vectors:

$$X_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

and

$$X_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Then

$$n = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

and

$$Y_1 = \begin{pmatrix} 1/2 \\ -1/2 \end{pmatrix}$$

and

$$Y_2 = \begin{pmatrix} -1/2 \\ 1/2 \end{pmatrix}.$$

Since Y_1 and Y_2 are collinear and opposite, the state of the system can be represented in one-dimensional space as one of two scalars, e.g. $+1$ and -1, as usual in a McCP neuron.

Example 2.

The state of a three-state system can be represented in three-dimensional state by one of the vectors:

$$X_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

$$X_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

and

$$X_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Then

$$n = \begin{pmatrix} -1 \\ -1/2 \\ -1 \end{pmatrix}$$

and

$$Y_1 = \begin{pmatrix} 1/3 \\ -1/3 \\ -1/3 \end{pmatrix}$$

and

$$Y_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ 1/3 \end{pmatrix}.$$

The three vectors have the same module and sum to zero, hence define a two-dimensional subspace and have angular separations of $2\pi/3$ radians.

Appendix B

Hodgkin–Huxley neurones constructed with NEURON

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Soma</th>
<th>Diameter</th>
<th>30 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length</td>
<td></td>
<td>30 μm</td>
</tr>
<tr>
<td></td>
<td>Surface area</td>
<td></td>
<td>2826 μm²</td>
</tr>
<tr>
<td>Dendrite</td>
<td>Diameter</td>
<td>2 μm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length</td>
<td>100 μm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface area</td>
<td>628 μm²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biophysics</th>
<th>Soma</th>
<th>Dendrite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane conductance (pas)</td>
<td>1/Rm (S/cm²)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Axial Resistance (Ohm cm)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Membrane capacitance (μF/cm²)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Resting potential (mV)</td>
<td>−59</td>
<td>−70</td>
</tr>
</tbody>
</table>
Ionic conductances

Na⁺
- Equilibrium potential = 45 (mV)
- Maximal conductance (g_{max}) = 0.34 (uS)

K⁺
- Equilibrium potential = −70 (mV)
- Maximal conductance (g_{max}) = 0.1 (uS)

Ca⁺
- Equilibrium potential = 120 (mV)
- Maximal conductance (g_{max}) = 0.0002 (uS)

T-type (low-threshold) calcium current and intracellular calcium dynamics were used according to modeled mechanisms from NEURON (Destexhe et al., 1998).

Synapses (alpha function)

<table>
<thead>
<tr>
<th>Excitatory Synapses</th>
<th>Inhibitory Synapses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium Potential (e) (mV)</td>
<td>45</td>
</tr>
<tr>
<td>Maximal Conductance (g_{max}) (uS)</td>
<td>0.0055</td>
</tr>
<tr>
<td>Time constant (tau) (ms)</td>
<td>2</td>
</tr>
</tbody>
</table>

References

