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Abstract 
This article presents a framework for a phonetic vocoder 
driven by ultrasound and optical images of the tongue and lips 
for a “silent speech interface” application. The system is built 
around an HMM-based visual phone recognition step which 
provides target phonetic sequences from a continuous visual 
observation stream. The phonetic target constrains the search 
for the optimal sequence of diphones that maximizes 
similarity to the input test data in visual space subject to a unit 
concatenation cost in the acoustic domain. The final speech 
waveform is generated using “Harmonic plus Noise Model” 
synthesis techniques. Experimental results are based on a one-
hour continuous speech audiovisual database comprising 
ultrasound images of the tongue and both frontal and lateral 
view of the speaker’s lips.   

 
Index Terms: silent speech, corpus-based speech synthesis, 
visual speech recognition 

1. Introduction 
The objective of a “Silent Speech Interface” is to permit voice 
communication without the vocalisation of sound. Such a 
system primarily targets applications in which silence must be 
maintained, but could also be used to enable voice 
communication in situations where standard speech is masked 
by background noise. Since no glottal activity is required, it 
could furthermore have application as an alternative to 
tracheo-oesophageal and electrolaryngeal speech for 
laryngectomized patients. In the literature, silent 
communication has usually been envisioned as a speech 
recognition task driven by observation of the voice organ. The 
input articulator activity may be derived from EMG/EPG 
signals, as in [1], or, as in our case, from ultrasound and 
optical images of the vocal tract. 

In [2] and [3], we addressed the problem of continuous-
speech phone recognition from ultrasound and optical video 
sequences of the vocal tract. Here, we propose to use this 
visual phone recognition step (VSR) as the basis of a phonetic 
vocoder driven by video-only data. Our approach does not use 
a specific vocal tract model as in articulatory synthesis, but 
rather is based on the building of an audiovisual dictionary in 
which each visual unit has an equivalent in the acoustic 
domain. Given a test sequence of visual features and the 
phonetic target predicted by the VSR, a unit selection 
algorithm searches in this audiovisual dictionary the optimal 

sequence of units that best matches the input test data. The 
proposed unit selection algorithm is an adaptation of the 
standard path search algorithm used in corpus-based speech 
synthesis. The quality of the match is defined optimally as a 
compromise between a target cost evaluated in the visual 
space and a concatenation cost evaluated in the acoustic 
domain. The output speech waveform is generated by 
concatenating a “Harmonic plus Noise Model” (HNM) 
representation of acoustic segments for all selected units. An 
overview of the recognition/synthesis system is given in 
figure 1.   

The system is evaluated on a 61 minute audiovisual 
database of ultrasound and optical sequences of the tongue 
and lips, recorded in synchrony with the uttered speech signal. 
Text material was chosen with corpus-based synthesis 
specifically in mind.  

Section 2 of the article summarizes database content and 
acquisition, feature extraction procedures, and the visual 
phone recognition step (further details on these system blocks 
are given in [3]). The unit selection algorithm and speech 
waveform generation techniques used in the corpus-based 
synthesis, which are the main focus of this article, are detailed 
in section 3, along with preliminary experimental results of 
synthesis driven by video-only data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Framework for a phonetic vocoder based on 
visual observation of the tongue and lips.  
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2. Visual Phone Recognition Step  

2.1. Database acquisition and phonetic content  

The acquisition system fixes the speaker’s head and supports 
the ultrasound transducer under the chin without disturbing 
articulator movement [4]. The protocol described in [2] was 
modified to include both lateral and frontal view of the 
speaker’s lips along with the ultrasound tongue images and 
acoustic speech signal. The streams are mixed at a video 
frame rate of 30 Hz. A typical frame is shown in figure 2. 

 

 
Figure 2: Example ultrasound vocal tract image 
showing frontal and lateral lip views 

Because the recorded multimodal speech signal is used 
both for phone-based VSR and as the basis of a diphone-
based concatenative synthesizer, the text of the database must 
be phonetically balanced and have good diphone coverage. 
The CMU-Arctic corpus text [5] was chosen for our 
acquisitions. This base consists of 1132 sentences divided into 
two phonetically balanced sets, A and B, of 593 and 539 
items respectively. With a phoneme set of 41 elements (39 
phonemes plus schwa and pause), the diphone coverage of 
sets A and B in the corpus is 78 % and 75.4 % respectively.   

A native speaker of American English read sentences 
from sets A and B in a single session lasting over 2 hours. 
Speaker fatigue limited acquisitions to the first 1020 of the 
1132 Arctic phrases (100 % of set A and 80 % of set B). 
Multiple sessions are not done at present in order to avoid 
compensating for imprecisions in the re-alignment of the 
transducer relative to the vocal tract. After cleanup, the 
resulting 61 minutes of speech was stored as 109553 bitmap 
frames and 1020 WAV audio files sampled at 16000 Hz. 

2.2. Phonetic alignment of the speech waveform  

The acoustic wave of each recorded sentence is parameterized 
by 12 Mel-frequency cepstral coefficients (MFCC) with their 
energies and first and second derivatives. The phonetic 
labeling is performed by an HMM-based forced alignment 
procedure with an initial set of 40 HMM acoustic models, 
trained on the transcribed multi-speaker DARPA TIMIT 
speech database [6]. These 5-state (with one non-emitting 
initial state, and one non-emitting terminating state), 16 
mixture, left-to-right HMM models are used to segment the 
corpus audio stream. The HMM training and recognition 
procedure are done using the HTK front-end [7]. 

 To facilitate the subsequent diphone speech synthesis, a 
segmentation of the database into diphones is deduced from 
the phone labeling by searching for spectral stability points at 
the boundaries of all phones. With 33637 phonemes labeled, 

the diphone coverage of our audiovisual speech database is 
found to be 79.4 % (1271 diphones out of a total of 1599). 

2.3. Tongue and lip video feature extraction 

Tongue and the lip regions of interest are resized to 64x64 
pixels via cubic interpolation and ultrasound images are 
filtered using an anisotropic diffusion filter [8]. Then the 
PCA-based EigenTongues/EigenLips decomposition [9] is 
used to encode the tongue and lips by considering their 
positions as a linear combination of standard configurations. 
The number of useful EigenTongues and EigenLips 
coefficients to keep is fixed empirically at 20 and 15 
respectively. Features are finally resampled at 100 Hz using 
linear interpolation before being concatenated with first and 
second derivatives into a single vector. 

2.4. Recognition protocol and performance 

Observed sequences of each phonetic class are modeled by a 
left-to-right, 5-state (3 emitting states, 32 gaussians per state), 
continuous monophone HMMs. No statistical language model 
is used at this stage so as to allow evaluation of the quality of 
the HMM-based modeling alone. The database is divided into 
34 lists of 30 sentences. In the performance estimation, a 
jackknife strategy [10] uses each list once for validation while 
the other 33 make up the training set.  

The recognizer performance PVSR is defined as 

 
P
VSR

= 100 !
N " D " S " I

N

 (1) 

where N is the total number of phones in the test set, S the 
number of substitution errors, D deletion errors, and I 
insertion errors. To establish a performance target for the 
visual recognizer, a standard acoustic-based phone recognizer 
is evaluated on the same database. This uses 40 context-
independent, left-to-right, 5-state, 16-mixture, continuous 
monophone HMMs estimated on each training pass. 

Table 1 compares performances of the visual-based and 
acoustic-based phone recognizers. VSR performance is 
already almost 80 % of that obtained using ASR, indicating 
that initial synthesis experiments are indeed justified. A full 
discussion of the visual phone recognition step is given in [3].  

 
VSR = Tongue + Lips  ASR 
Lateral Frontal 

P ± Δ 83.9 ± 0.7 % 56 ± 0.9 % 60 ± 0.9 % 

Table 1. Visual and acoustic based phone recognizer 
performance P for a 95% confidence interval Δ 

3. Corpus-Based Synthesis 

3.1. Unit selection 

The visual speech recognizer is able to identify a discrete 
sequence of phones in a continuous stream of visual features. 
The recorded database, automatically labeled at the phonetic 
level (section 2.2), can in turn be considered as an audiovisual 
dictionary of speech units in which each visual item has an 
equivalent in the acoustic domain. In our proposed phonetic 
vocoder, the visual phone recognizer drives corpus-based 
synthesis assisted by a unit selection procedure. Starting from 
the predicted phonetic target, the algorithm searches the 
optimal sequence of diphones that maximize similarity to 
input test data in visual space while limiting unit 
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concatenation cost in the acoustic domain. This algorithm is 
based on the standard path search algorithm used in 
concatenative speech synthesis described in [11]. The overall 
scheme is illustrated in figure 3. 

Assuming a test sequence of visual features v = v1…vN 
where N is the length of sequence, and τ =τ1…τT the temporal 
segmentation of v given by the visual phone recognizer, the 
sequence tτ of T target units is defined by: 

 t
!
= [t

!1
],...,[t

!
T

] = [v
!1
,...,v

!2
],...,[v

!
T "1
,...,v

!
T

]  (2) 

The unit selection algorithm finds, among all appropriate 
units, the optimal sequence {uk} that best matches the target 
tτ. The quality of the match is determined by two costs, Ct and 
Cc.  

The target cost Ct expresses the visual similarity between 
target units and the units selected in the dictionary and is 
given by: 

 C
t
(u

k
,t

! i
) = DTW (u

k
,t

! i
)  (3) 

where DTW(a,b) is the cumulative distance obtained after a 
dynamic time warping between the two sequences of visual 
feature vectors. This non-linear alignment procedure takes 
naturally into account temporal stretching and compression of 
the motion of the articulators.  

The concatenation cost Cc estimates the spectral 
discontinuity introduced by the concatenation of two units 
uLEFT  and uRIGHT and is given by:  

C
c
(u

LEFT
,u

RIGHT
) = D MFCC(u

LEFTEND
),MFCC(u

RIGHT1
)( )  (4) 

where D is the Euclidean distance and MFCC(ul) are MFCC 
coefficients of the unit u at frame l.  

Because the audiovisual dictionary can be considered as a 
fully connected state transition network, the search for the 
least costly path that best matches the test sequence can be 
determined by a Viterbi algorithm [12]. In this network, each 
state is occupied by a unit. State occupancy is estimated using 
the visual-based target cost function and transition between 
states is evaluated by the acoustic-based concatenation cost.  

3.2. HNM-based speech waveform generation 

After the selection stage, speech can be synthesized by 
concatenating acoustic components of selected diphones. 
However, because no prosodic information such as pitch, 
energy and duration, is used during the unit selection stage, 
pitch and time-scale adaptations are necessary. Acoustic 
modifications are achieved using a “Harmonic Plus Noise” 
representation of the speech signal [13]. In the HNM 
framework, the spectrum of a speech frame s(t) is described 
as the sum of a harmonic part H(t) and a noise part B(t): 

s(t) = H (t) + B(t) = Ak cos 2!kf0t( ) +"k

k=1

N

#$
%
&

'

(
) + Ngauss *F(t)$% '(

 (5) 

where N is the number of harmonics included in H(t), f0 is the 
estimated fundamental frequency, Ngauss a gaussian noise 
frame and F(t) an autoregressive filter. Our implementation 
employs 12 harmonic components along with a 16th-order 
auto-regressive model for the noise part.    

HNM is a pitch-synchronous scheme that is flexible 
enough to implement good-quality prosodic modifications. In 
our case, acoustic modifications consist of phone duration 
adaptation, and pitch and spectral smoothing. Phone durations 
are adapted according to the temporal segmentation provided 
by the HMM-based phone recognition step described in 

section 2. Because no information about the global evolution 
of pitch is directly available in a silent speech application 
(absence of glottal activity), a strong smoothing of the 
fundamental frequency over the sentence is applied. Such a 
basic treatment helps limit non-realistic prosodic variations 
but (empirically) can degrade voice naturalness. As a final 
step, the HNM parameters are smoothed near diphone 
boundaries using linear interpolation.  

The example chosen for figure 3 illustrates the interplay 
between the two cost functions. The diphone [w-ih] is 
selected correctly for its similarity to the test sequence. 
However, the next diphone [ih-ah] does not match well with 
the input sequence (as at the end of phone [ah]); the selection 
of this unit is mainly due to its acoustic continuity with the 
previous unit. We note that in the present algorithm, the target 
and concatenation cost are weighted manually. 

 
Figure 3: Corpus-based synthesis procedure (T=3) 

3.3. Experimental results 

The quality of the synthesized waveform obviously depends 
strongly on the performance of the visual phone recognizer. In 
our current framework, the unit selection synthesis is driven 
exclusively by the predicted phonetic sequence, and thus an 
error during the recognition stage will necessarily corrupt the 
synthesis. With visual phone recognizer accuracy of only 
60%, consistently intelligible synthesis is not yet possible.  

A first empirical evaluation of our “silent vocoder” is 
presented in figure 4. Example 1 represents a ‘typical’ 
performance of the system, with 69 % of the phones correctly 
identified, while the phrase of example 2 has 95 % of phones 
correctly matched. Two distinct types of errors are apparent 
(see also [3]): first, phones with similar articulatory gestures, 
such as {[p],[b],[m]} are sometimes confused; secondly, very 
short phones such as {[t],[b],[n]} can be missed due to the 30 
Hz acquisition rate. The multimedia file provided for the 
second example illustrates the ability of the synthesis 
technique to produce an intelligible speech signal with 
“acceptable” prosody when the predicted phonetic target is 
correct. There are still difficulties identifying short pauses or 
within-sentence silences (anticipation phenomena), and better 
results are obtained on short sentences with no more than one 
or two prosodic groups.  Clearly, a more detailed study of the 
impact of different types of error on synthesis quality will be 
necessary. Thus, although our system is still not fully 
functional, this approach for a segmental speech coder driven 
only by visual observation seems promising. 
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4. Conclusions and Perspectives 
The proposed segmental speech coder driven by video-only 
data combines an HMM-based visual phone recognition stage 
with an audiovisual unit selection algorithm and robust HNM-
based synthesis techniques. To date, synthesis quality depends 
only on the performance of the visual phone recognizer, 
currently at 60 %. To improve the recognition stage, several 
solutions are envisioned. The use of a statistical language 
model or phonotactic linguistic constraints in the HMM 
decoding stage will be investigated. A new, higher rate 
acquisition system is also under development in order to 
reduce the number of phone deletion errors. As our modeling 
technique does not presently take into account possible 
asynchronies between articulators, the use of multistream 
HMMs [14] could prove useful. The unit selection algorithm 
furthermore is currently driven only by the output of the 
phone-based recognizer; it might be more fruitful to consider 
a combination of HMM-based stochastic modeling and data-
driven techniques. A deeper dictionary search, also including 
longer units, such as polyphones, could capture more 
contextual effects and improve general performance. Finally, 
the system should be evaluated on more realistic test 
databases containing either whispered or totally silent speech. 
Such data will be very useful to learn about the particularities 
of tongue and lip movement in silent speech.   
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Example 1 - A flying arrow passed between us - PVSR = 69 % 
Reference sil  ah  f  l  ay  ih  ng  ae  r  ow  p  ae  s  t  b ah    t       w  iy  n  ah  s  sil 
VSR sil  ah  f  l  ay  ih  ng  eh  r  ow  m ae  s        ah p t uw w  iy      ah  s  sil  

 
Example 2 - They laughed like two happy children - PVSR = 95 % 

Reference sil  dh  ey  l  ae  f  t  l  ay  k  t  uw  hh  ae  p  iy  ch  ih  l  d  r  ah  n  sil 
VSR sil  dh  ey  l  ae  f  t  l  ay  k  t  uw  hh  ae  p  iy  ch  ih  l      r  ah  n  sil  

 
Figure 4: Phone recognition and associated corpus-based synthesis from video-only data                               

(fundamental frequency in light blue) 
Multimedia files submitted 

“exampleX_synth.wav” with X=1,2 : Synthesis from video-only speech data 
“exampleX_orig.wav” with X=1,2 : Original sentence (target)  
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