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Abstract 
Latest results on continuous speech phone recognition from 
video observations of the tongue and lips are described in the 
context of an ultrasound-based silent speech interface. The 
study is based on a new 61-minute audiovisual database 
containing ultrasound sequences of the tongue as well as both 
frontal and lateral view of the speaker’s lips. Phonetically 
balanced and exhibiting good diphone coverage, this database 
is designed both for recognition and corpus-based synthesis 
purposes. Acoustic waveforms are phonetically labeled, and 
visual sequences coded using PCA-based robust feature 
extraction techniques. Visual and acoustic observations of 
each phonetic class are modeled by continuous HMMs, 
allowing the performance of the visual phone recognizer to be 
compared to a traditional acoustic-based phone recognition 
experiment. The phone recognition confusion matrix is also 
discussed in detail.   

  
Index Terms: silent speech interface, visual speech 

recognition 

1. Introduction 
In recent years, the design of devices allowing silent verbal 
communication has emerged as a new field in speech 
processing research. Such “Silent Speech Interfaces” (SSI) 
could be useful for voice communication in situations where 
silence must be maintained, or, conversely, in very noisy 
environments. An SSI might also be an alternative to tracheo-
oesophageal or electrolaryngeal speech for laryngeal cancer 
patients. To build an SSI, voice organ activity could be 
derived from EMG/EPG signals, as in [1], or, if whispered 
speech can be tolerated, using a “non-audible murmur 
microphone” (NAM [2]). In our work, an ultrasound 
transducer below the chin and a standard video camera (which 
would be integrated and miniaturized in a final application) 
are used to directly image the tongue and lips, respectively 
[3].  

In [4], we addressed the problem of continuous-speech 
phone recognition from ultrasound and optical sequences of 
the vocal tract as a first step toward corpus-based synthesis. In 
that work, a visual speech recognizer (VSR) was evaluated on 
a 43 minute database containing ultrasound tongue images 
and the lips in profile. The goal of the present article is to 
evaluate the robustness of our VSR on a larger database with 

a different speaker. To that end, a new audiovisual database 
containing 61 minutes of ultrasound and optical sequences of 
the tongue and lips was recorded together with the uttered 
speech signal. Corpus text was chosen so that the recorded 
database would be appropriate for later corpus-based 
synthesis. The acquisition system was also modified to record 
both frontal and lateral lip views.  

A schematic of the recognition/synthesis system is shown 
in figure 1. The visual phone recognizer predicts a target 
phonetic sequence from a continuous stream of visual features 
used to constrain a unit selection algorithm. This algorithm 
searches an audiovisual dictionary for the sequence of units 
which best matches input test data. This article focuses on the 
visual phone recognizer; the unit selection algorithm, which is 
an adaptation of the standard path search algorithm used in 
corpus-based speech synthesis, is described elsewhere [5]. 

Section 2 describes the acquisition of the new database, 
details its content and presents the visual feature extraction 
process. Section 3 details the implementation of the visual 
speech recognizer and evaluates its performance; a 
comparison between VSR using frontal and lateral lip images 
is also presented.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Framework for corpus-based synthesis 
driven by visual observation of the tongue and lips.  

 

Ultrasound 
video of the 
vocal tract 

Optical video 
of the 

speaker lips 
Recorded  

audio Text 

Visual Feature Extraction Speech Alignment 

Audiovisual Database 
 

 

Visual Phone 
Recognition 

T 
R 
A 
I 
N 
I 
N 
G 

T 
E 
S 
T 
 

Unit  
Selection 

Waveform  
Generation 

 

Accepted after peer review of full paper
Copyright © 2008 ISCA

September 22-26, Brisbane Australia2032



2. Building the Audiovisual Speech 
Database  

2.1. Data acquisition protocol and evaluation 

Data is recorded using the Vocal Tract Visualization Lab 
HATS system [6], which maintains the speaker’s head 
immobile and supports the ultrasound transducer under the 
chin without disturbing speech. The acquisition setup was 
modified to include two cameras to provide synchronized 
lateral and frontal view of the speaker’s lips together with the 
ultrasound images of the voice organ and the uttered speech 
acoustic signal, see figure 2. These three streams are mixed 
using an analog device, which unfortunately limits the frame 
rate of the acquisition chain to 30 Hz.  

 
Figure 2: Example of an ultrasound vocal tract image 
with embedded lip frontal and lateral view 

Because the recorded multimodal speech signal will serve 
both for phone-based visual speech recognition and as the 
basis of a diphone-based concatenative synthesizer, the 
textual material of the new database must be phonetically 
balanced and have good diphone coverage. For these two 
reasons, the CMU-Arctic corpus text [7], which is the basis of 
the Festvox Text-to-Speech system, was used for our new 
database. The Arctic database contains 1132 sentences 
divided into two sets (A and B) containing respectively 593 
and 539 items. Both sets are in phonetically balanced 
American English. Furthermore, with a phoneme set of 41 
elements (39 phonemes plus schwa and pause), diphone 
coverage in sets A and B is 78 % and 75.4 % respectively.   

During acquisition, the speaker was instructed to read all 
sentences of sets A and B as neutrally as possible. Data is 
recorded in one session during which the speaker remains 
fixed in the HATS system. Because no re-calibration 
techniques are employed in our current system, recording data 
in multiple sessions is not feasible. Since ultrasound imaging 
of the tongue and its connective tissues (muscle, fat) is very 
sensitive to modifications of the transducer position, head 
movement within a session is monitored using palatal traces 
obtained from 10 cc water deglutitions executed during brief 
pauses every 90 sentences. During swallowing, the tongue 
contacts the roof of the mouth, and the ultrasound beam 
traverses soft tissue until it is reflected by the palate bone [8]. 
Palatal traces from 4 widely separated deglutitions are shown 
in figure 3. The proximity of these traces insures that the 
speaker’s head remained stable during the acquisition. 

 
Figure 3: Superposition of palatal traces extracted 
from 4 deglutitions recorded periodically during data 
acquisition. 

The full Arctic A set was acquired, but speaker fatigue, 
after more than 2 hours in HATS, allowed only 80 % of the B 
set to be recorded; the total number of sentences was thus 
1020 rather than the expected 1132. After cleanup of the 
database, the resulting 61 minutes of speech was stored as 
109553 Bitmap frames and 1020 WAV audio files sampled at 
16000 Hz. The new database is thus 30 % larger than that 
used in our previous study. 

2.2. Phonetic alignment of the speech waveform  

The acoustic signal of each recorded sentence was first 
parameterized using 12 Mel-frequency cepstral coefficients, 
along with their energies and first and second derivatives. The 
phonetic forced-alignment procedure is a simplified 
recognition task in which the phonetic sequence is already 
known. This recognition task is achieved using an initial set 
of 40 HMM acoustic models trained on the transcribed multi-
speaker DARPA TIMIT speech database [9]. These 5-state 
(with one non-emitting initial state, and one non-emitting 
terminating state), 16 mixture, left-to-right HMM models are 
refined on and then used to segment the audio stream of the 
corpus. All HMM work in our study was done using the HTK 
front-end [10]. With 33637 phonemes labeled, the actual 
diphone coverage obtained for our audiovisual speech 
database was 79.4 % (1271 different diphones of a possible 
1599). 

2.3. Visual feature extraction 

Regions of interest for the tongue and the lips are first resized 
to 64x64 pixel images using cubic interpolation. In order to 
decrease the effects of speckle, each ultrasound frame is 
filtered using an anisotropic diffusion filter [11]. Then, the 
PCA-based “EigenTongues” decomposition described in [12] 
is used to encode each frame. An adaptation of the 
“EigenFaces” method [13], this technique projects each 
ultrasound image of the vocal tract into the representative 
space of “EigenTongues”, which can be interpreted as the 
space of the “standard vocal tract configurations”. A similar 
approach is used to code frontal and lateral images of the lips. 
Figure 4 illustrates how each ultrasound and optical image is 
coded by its coordinates βT, βF, βL, in the 
“EigenTongues/EigenLips” space. The indices n,m,p which 
quantify the number of projections onto the set of  
EigenTongues/EigenLips used for coding are obtained 
empirically by evaluating the quality of the image 
reconstructed from its first few components. Typical values of 
the triplet (n,m,p) used for this database are (20,15,15). 
Finally, visual feature sequences are oversampled from 30 Hz 
to 100 Hz using linear interpolation. The 
EigenTongues/EigenLips coefficients, with their first and 
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second derivative, are concatenated into the same “visual 
feature vector”, in a feature fusion strategy. 
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Figure 4: Encoding ultrasound and optical images of 
the tongue and lips using the EigenTongue/EigenLips 
decomposition. 

3. Visual Phone Recognition 

3.1. Protocol 

The observed visual sequences of each phonetic class are 
modeled by a left-to-right, 5-state (3 emitting states), 
continuous HMM (monophone only, due to our dataset size). 
Models parameters are estimated and refined using 
incremental embedded training during which the number of 
Gaussians per state is increased up to 32. As our experiment is 
intended to show the quality of the HMM-based modeling, 
neither a statistical language model nor phonotactic 
constraints are used in this study. 

The 1020 sentences of the database are divided into 34 
lists of 30 sentences. During performance estimation, each list 
is used once as the test set while the other 33 lists compose 
the training set, using a jackknife strategy [14]. The 
recognizer performance PVSR is defined as 

 
P
VSR

= 100 !
N " D " S " I

N

 (1) 

where N is the total number of phones in the test set, S the 
number of substitution errors, D deletion errors, and I 
insertion errors. Although frontal and lateral views of 
speaker’s lips are available in the newly recorded database, 
the two streams are not used together in the visual phone 
recognition process, to simulate the conditions of a simple, 
wearable prototype. A comparative study of visual phone 
recognition using ultrasound and frontal or lateral lips is 
however made. 

A traditional, acoustic-based phone recognizer is also 
evaluated on the same database using the HMM acoustic 
models estimated for the phonetic alignment of the audio-
visual database in section 2.2. The performance of this 
acoustic-based phone recognizer is considered as a ‘target’ for 
VSR on this database. 

3.2. Results and Interpretation 

Table 1 presents the global performance of the visual-based 
and acoustic-based phone recognizers, with performance of 
the visual phone recognizer broken down into frontal and 
profile visual lip input features. 

Results are significantly improved compared to [4], (54 % 
vs 60 %), but because the two databases have neither the same 
text material nor the same speaker, a strict comparison is not 
in order. The similar performances between [4] and this study 

may rather be interpreted as evidence of the method’s 
robustness. In fact, as results using the lateral lip view are 
almost identical in the two studies (54 % [4] vs 56 %), much 
of the improvement (60 %) appears to be due to the use of the 
frontal lip view. This result agrees with the human lipreading 
experiments described in [15] as well as the digit recognition 
task detailed in [16]. 

 
VSR = Tongue + Lips  ASR 
Lateral Frontal 

P 83.9 % 56 % 60 % 
Δ 0.7 % 0.9 % 0.9 % 
D 1226 4776 4424 
S  2389 7830 7036 
I 1985 2695 2430 
N 33637 

Table 1. Visual and acoustic based phone recognizer 
performance with a 95% confidence interval Δ 

The performance of the visual phone recognizer can be 
analyzed using a confusion matrix as displayed at figure 5.  
As could be expected, it is phones with similar articulatory 
gestures (tongue and lips), {[p],[b],[m]}, {[k],[g],[ng]}, 
{[f],[v]}, {[s],[z]} and {[t],[d],[n]}, which are the most often 
confused by the system. Some of the vowel mismatches are 
quite “reasonable”, such as [uh] (book) confused with [uw] 
(boot), and [iy] (beet) interpreted as [ih] (bit). The confusion 
of several phones with schwa [ah] can be explained by the 
well-known reduction phenomenon for vowels, or in other 
cases by the presence of a syllabic consonant, such as the [l] 
in “bottle”. Diphthongs for which a tongue glide is involved 
are sometimes confused with one of their pure vowel 
components, for example [ey] (bait), [oy] (boy) and [ow] 
being matched with [ah], [iy] and [ao] (caught) respectively. 
The matrix also clearly shows an error occurring mainly on 
dental and alveolar sounds {[th],[dh]} (thin, then) and 
{[t],[d],[s],[sh]}. This is explained by the lack of information 
about the tongue tip (apex) in the ultrasound images, which is 
sometimes hidden by the acoustic shadow of the mandible. 
The relatively high number of insertions has a negative 
impact on the global performance, and the use of a statistical 
language model would certainly be helpful here. Finally, the 
predicted phonetic sequence is plagued by a large number of 
deletion errors. The phones which are most often deleted are 
very short ones such as the schwa [ah], as well phones 
corresponding to rapid articulatory gestures such as {[t]-[d]-
[n]}. In fact, with a mean duration of 60 ms, the phone [t] is 
most often represented by fewer than two ultrasound frames 
with our current 30 Hz acquisition setup. A faster acquisition 
system is in the planning stages.  

As the partitioning of phonetic space used is very fine (40 
phonetic classes), our 60 % result is in fact pessimistic; it 
would no doubt be higher if some of the “reasonable” 
confusions mentioned, as well as mismatches due to incorrect 
phonetic labeling, were not considered “errors” in the 
performance computation. Too, such mismatches in the 
recognition stage need not necessarily lead to unintelligible 
synthesis. Some psychoacoustic effects and results provided 
by speech perception theory could potentially also be used to 
advantage. Thus, though as yet not perfect, our results are 
already promising enough to warrant investigating the 
feasibility of a phonetic vocoder driven by ultrasound and 
optical images of the tongue and lips.  
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4. Conclusions and perspectives 
The visual phone recognizer is able to predict a 60 % correct 
phonetic target sequence from a continuous stream of video-
only data. Applied to two different databases, with different 
textual materials and speakers (one male, one female), the 
proposed method appears robust, and could be a good starting 
point for phonetic vocoder driven only by visual observation 
of the voice organ. It is clear, however that the problem of 
phone insertion and deletion must be addressed more 
aggressively. The use of a language model and the acquisition 
of data at a higher rate are to be investigated in future work. 
We also intend to take into account possible asynchronies 
between articulators and compare the feature fusion strategy 
to a multistream HMM-based approach.   
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Figure 5: Confusion matrix for phone recognition from ultrasound tongue sequences and frontal lip views. The color 
space map was chosen to emphasize the errors. Phone labels are in the TIMIT format. The histogram shows the number 

of occurrences of each phone in the database. 
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