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ABSTRACT

The processes whereby developing neurones acquire morphological features that are

common to entire populations (thereby allowing the definition of neuronal types), are

still poorly understood. A mathematical model of neuronal arborisations may be useful

to extract basic parameters or organisation rules, hence helping to achieve a better

understanding of the underlying growth processes.

We present a parsimonious statistical model, intended to describe the topological

organisation of neuritic arborisations with a minimal number of parameters. It is based

on a probability of splitting which depends only on the centrifugal order of segments.

We compare the predictions made by the model of several topological properties of

neurones with the corresponding actual values measured on a sample of honeybee

(olfactory) antennal lobe neurones grown in primary culture, described in a previous

study. The comparison is performed for three populations of segments corresponding

to three neuronal morphological types previously identified and described in this

sample. We show that simple assumptions together with the knowledge of a very small

number of parameters, allow the topological reconstruction of representative (bi-

dimensional) biological neurones. We discuss the biological significance (in terms of

possible factors involved in the determinism of neuronal types) of both common

properties and cell-type specific features, observed on the neurones and predicted by

the model.
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1 Introduction

The dendritic trees of neurones exhibit a large range of sizes, shapes and

ramification patterns. Nevertheless, common morphological characteristics

shared by groups of neural cells can be identified, and may serve as the basis

for the identification of neuronal types. However, the developmental

mechanisms underlying the acquisition of cell-type specific features are still

poorly understood. The development of mathematical descriptions of neuronal

arborisations and their application to build functional models and growth

models, have contributed to our knowledge of the physiological and

developmental significance of morphological regularities (Burke et al., 1992;

Nowakowski et al., 1992; Dityatev et al., 1995). The recent development of

elaborate models of dendritic arborisations, make it possible to infer, from the

modelled properties of mature neurones, some aspects of their growth (Dityatev

et al., 1995; Van Pelt et al., 1997; Van Pelt, 1997). In the present study, we

wish to shed light on some of the possible mechanisms whereby neurones

produce neuritic arborisations in culture. We develop a simple, parsimonious,

statistical model, based on a splitting probability distribution only, intended to

give a quantitative description of neuronal trees. The model is parsimonious in

that it requires only two parameters in order to account for the splitting

probability distribution. These two parameters of the model are then fitted to

data obtained from a population of cultured neurones taken from a previous

study (Devaud et al., 1994) and the predictions of the resulting model are tested

by comparing the topological properties of the segments that make up the

experimental arborisations, i.e. distributions of some relevant morphometrical

parameters or relationships between some of them, with the computed

equivalents. In this approach, we analyse separately the different morphological

types of the neuronal sample, and check that the model can be easily adapted to

each of them, despite its small number of parameters. The detailed

mathematical relations about the different probability laws and the different

means used in this study are presented in Appendix.
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2 Morphometric characterisation of the neuritic trees

The study was done on a large data set obtained from 361 neurones of the

honeybee antennal lobe, cultured for one week at a low density in a conditioned

medium (at that time most growth processes had stopped). A detailed

description of the culture preparation and of the procedure for acquiring images

of the neurones has been given elsewhere (Devaud et al., 1994).The neuritic

arborisation of the cultured bi-dimensional neurones is described as a set of

hierarchically-arranged segments. A segment is defined as a portion of neurite

comprised between two ramification nodes (intermediate segments), or between

a node and a tip (terminal segments) (Van Pelt & Verwer, 1983). On the whole,

the sample contains more than 7,000 segments.

In contrast to the first approach used on this sample (Devaud et al., 1994), this

work focuses on the population of segments which compose the neurones,

instead of the neurones themselves. Hence new morphometric parameters have

been used specifically for the characterisation of the segments:

- Order (q). It represents the topological distance from the soma. Its

value is an integer incremented at every bifurcation (‘centrifugal order’, for

review see Uylings et al., 1975). An order value of 1 is assigned to the primary

segments, i.e. those emerging directly from the soma (Capowski, 1989).

- Degree (D). It represents the number of tips of a subtree (or partition)

stemming from a segment (Verwer & Van Pelt, 1987). In a binary tree, it is

related to N, the number of segments of the partition, by N = 2D – 1 (Verwer et

al., 1992). For a terminal segment, D = 1, and  for  an  intermediate  segment,

D ≥ 2.

- Asymmetry index (A) (Van Pelt et al., 1992). It can be associated to

intermediate segments only (D ≥ 2): if D1 and D2 are the degrees of two "sister"

segments beginning at the bifurcation of the considered segment, the

asymmetry index of this bifurcation is given by the following formula:

221
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A if  D1 + D2 =D > 2,

0=A if  D1 = D2 = 1.

The larger the value of A, the larger the asymmetry of the partition. A belongs

to [0,1], and  A = 0 when the arborisation is symmetrical (D1 = D2), whereas

A=1 when the arborisation is completely asymmetrical (D1 = 1 and D2 = D - 1).
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We had previously been able to identify, using a detailed morphometric

description, three neuronal types (referred as types 1, 2 and 3) (Devaud et al.,

1994). Both metrical and topological differences were observed between these

types on the basis of measurements of, respectively, the maximal lengths, total

lengths and areas of the dendritic trees, and their neuronal degrees and maximal

segment orders. Thus, type 1 neurones are ‘elongated’, ‘large’ and ‘highly

ramified’; type 2 neurones  are ‘poorly elongated’, ‘small’ and ‘poorly

ramified’; type 3 neurones are ‘elongated’, ‘large’ and ‘very poorly ramified’.

In this study, we will only focus on the topological properties of these types

(the mean values of the correspondent parameters are given in Table I). In order

to take into account these specificities in the present study, the segments were

grouped according to the types of the neurones they belong to: the numbers of

segments of type 1, 2 and 3 are respectively 3911, 1485 and 1732. The

parameters of the model were fitted to the measured values separately for the

segments belonging to neurones of each type.

3 Assumptions of the model

The basic assumptions of the model are:

1. All neuritic arborisations are binary (Verwer et al., 1992), i.e. the rare

multiple ramifications (only 0.7% of the ramifications in our experimental

sample) are considered as successive bifurcations separated by very short

segments whose length is smaller than the microscope resolution.

2. The splitting probability Pq, i.e. the probability for a segment to bifurcate into

two new segments, depends on its order q only. In particular, the splitting

probability of a given segment is supposed to be independent of that of its

"sister" segment, which means that no explicit competition between the

segments growing from the same bifurcation is introduced in the model

("independence hypothesis"). Under this assumption, it is legitimate to work on

sets of neuritic segments, not on individual neurones.

3. A segment can be either an intermediate segment or a terminal one: as a
consequence, the probability for a segment being terminal is simply ( )qP−1 .

These first three assumptions mean that we consider the neuronal trees under

study as random binary trees grown according to a Bienaymé-Galton-Watson

process (Athreya & Ney, 1972, Kliemann, 1987).
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4. To adapt the expression of the splitting probability as a function of the

segment order to the experimental measures, we looked for the function that

would give the best fit to the dependence of the ratio of the number of
intermediate segments ( I

qN  ) to the total number of segments (Nq), on their

order. Since a segment is defined as intermediate if there is a bifurcation at its

extremity, the number of intermediate segments at a given order q equals the

number of ramifications (Verwer et al., 1992), each of them being the point of

departure of two segments of order q+1:

2
1+= qI

q

N
N .

It can be proved simply (see Appendix 1, and Burke et al., 1992) that this ratio

is an unbiased estimator of the splitting probability :
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The observed evolution of this ratio as a function of the order is shown in Fig. 1

for each neuronal type. As the order increases, the relative number of

intermediate segments decreases regularly, indicating that more and more

segments stop their growth. A non-linear regression shows that the functions

that best fit these three functions are exponential, of the form:

( )q
qP ⋅−⋅= βαe

2

1* [1]

where the two parameters α and β (at the origin of the parsimony of the model)

take  on  different  positive  values for each of the three neuronal types (see

Table II) .

4 Analytical properties

4.1 Order distribution

The comparison between the computed order distributions and the experimental
ones is a simple way of checking that the splitting probabilities *

qP (one per
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neuronal type) have been correctly estimated. The computation of the order

distributions is based on equation [3], a consequence of the recurrent relation
[2], where 1N  is the number of primary neurites:

*
1

*
1

* 2 −− ⋅⋅= qqq PNN for q > 1 [2]

Substituting *
qP  by its expression (equation (1)), *

qN  becomes:

⇒
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beNN . As x and *
maxN are not necessarily integers, the maximal

generation size (or ‘width’ of the tree) can be simply defined by taking the
integer part of *

maxN .

If the probability Pq is strictly lower than 0.5, the extinction probability of a

Galton-Watson tree is equal to 1(Athreya & Ney, 1972); therefore, a splitting

probability that decreases exponentially leads necessarily to such a situation.
We define an integer limit value for q, qmax, such as 1* ≥

maxqN  and 1*
1 <+maxqN .

This limit can be estimated as follows: if xmax is the solution of 1* =
maxxN , then
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and qmax can be defined as the integer part of xmax: it represents the ‘height’ of

the tree. In the following sections, all equations should be considered as valid

for q ≤ qmax.

4.2 Distribution of the degree and evolution of the mean degree with order

In Appendix 2, we show that the probability for a segment of order q to have a

degree D = d can be expressed by the following recurrent relation:
( ) ( )
( ) ( ) ( )

( ) qq
q

qq
d

k
qqqq

qq

ddDp

dkdDpkDpPdDp

PDp

−

−
−

=
++

>=>=

≤




 −=⋅=⋅=>=

−==

∑
max

max

2if01

2if1

11

1

1
11 [5]

In order to perform the computation of the degree distribution, we simply apply

the recurrent rule to the estimated probabilities and we choose to initialise this
rule with : ( ) ( )**

maxmax
11 qq PDp −==  and ( ) 01*

max
=>= dDpq . The estimation of
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the number of segments with degree d at order q is  ( ) ( )dDpNdn qqq =⋅= *** ;

hence the number ( )dn* of segments with degree d, irrespective of the order is:

( ) ( ) ( )∑∑
==

=⋅==
maxmax

1

**

1
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q

q
qq

q

q
q dDpNdndn [6]

We also show (see Appendix 2) the following recurrent relation for the mean

degree:
[ ] ( ) [ ]DEPPDE qqqq 121 +⋅⋅+−= [7]

valid for [ ]1,..,1 max −∈ qq . If we denote by *
qD  the estimation of the mean

degree at order q, then [7] becomes: ( ) *
1
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Replacing *
qP by its expression in [1], we finally obtain:
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The mean value of the degree as a function of the order q is finally:
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which is not only dependent on α and β, the two parameters of the splitting

probability function, but also depends on N1, the number of primary neurites,

through qmax, computed with equation [4].

4.3 Distribution of the asymmetry index and evolution of the mean

asymmetry index with order.

We show in Appendix 3 that the conditional probability for an intermediate

segment at order q to have both a degree d and an asymmetry index a can be

expressed as a function of the probabilities of its “daughter” segments to have

some particular degrees (δ is the Kronecker symbol):
( )

( ) ( ) ( )
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As previously, the computation is made by applying this rule to the estimated

probabilities (labelled with *). The estimation of the number of segments that,
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at order q, have both degree d and asymmetry index a is
( ) ( )1,, *** >==⋅= ddDaApNadn q

I
qq , where ***
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I
q PNN ⋅=  is the estimation

of the number of intermediate segments at order q. In other terms,
( ) ( ) **** 1,, qqqq PddDaApNadn ⋅>==⋅= . Thus, the number of segments of

asymmetry index a, irrespective of the order and the degree, is:

( ) ( ) ( ) *

1 2

**

1 2

**
max maxmax max

1,, q

q

q

d

d
qq

q

q

d

d
q PddDaApNadnan

qq

⋅>==⋅== ∑ ∑∑ ∑
= == =

[11]

where qq

q
d −= max2max .

 The mean value of the asymmetry index A for a segment of order q can be

estimated using the expression derived in Appendix 3:
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5 Comparison with the measurements performed on actual neurones

In order to test the validity of the model, we compared its predictions with the

experimental measures made on the sample of cultured honeybee neurones. The

distribution of the proportion of intermediate segments were fitted by the

exponential function for the three populations of segments corresponding to the

three neuronal types present in the sample (Fig. 1). The values of the parameters

α and β of the exponential function and N1 the number of primary neurites were

then used to reconstruct the order distribution, in order to asses the quality of

the exponential fit. The analytical properties presented in the previous section

were then used to compute data that had not been exploited to define the

parameters of the model: the degree and the asymmetry index distributions, as

well as the evolution of the mean degree and the mean asymmetry index with

the order. These data predicted by the model were compared with the

experimental data considering the neurone types separately in each case.
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Figure 1. Evolution of the splitting probability with centrifugal order. Each panel

corresponds to one of the three neuronal types; it displays the observed distribution of the

proportion of intermediate neuritic segments at different orders ( q
I
q NN / ), plotted as a

histogram, and the decreasing exponential function, Pq that best fits the distribution. The

parameters α and β, and R-squared are given in Table II.

5.1 Exponential fit and order distribution

For each neuronal type, the values of the parameters α and β, for which the

highest goodness-of-fit was given by an exponential regression, are presented in

Table II, with the value of  the R-squared (higher to 95% in the three cases).

The order distributions computed according to equation [3], with the estimated

values of the two parameters α and β, have been tested as theoretical

distributions for the experimental ones with a χ2 test, whose values and

probabilities are also given in table II. The measured values of N1 (the number

of primary segments) for the three types being 211, 107 and 186, the predicted

values of qmax, according to equation [4], are 14, 10 and 9, respectively.

Experimental and theoretical order distributions are plotted in Fig. 2, which

shows a good correlation for the three types.

Table II: Estimated coefficients αα and ββ (mean ± standard error) of the fitted exponential

function modelling the probability of splitting, Pq.

Neuronal type α α (±std error) β β (±std error) R-squared χ2 test (d.f., p)

Type 1 0.609 ± 0.001 0.137 ± 0.0002 98.9 % 5.28 (14, p = 0.98)

Type 2 0.848 ± 0.002 0.247 ± 0.0008 98.6 % 3.15 (10, p = 0.97)

Type 3 0.862 ± 0.001 0.313 ± 0.0007 99.2 % 5.46 (9, p = 0.79)

Segment order

Type 1 Type 2 Type 3
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The regression has been performed with Advanced Regression of Statgraphics Plus, on all the

values of Pq corresponding to the orders where intermediate segments were experimentally

observed (NI
q > 0), weighted by the number of segments at each order (Nq). The χ2 test results

from the comparison of the computed order distributions (equation [3]) with the experimental

ones: the degree of freedom corresponds to the computed value of qmax , and p is the probability

that the experimental distribution may derive from the computed one.

5.2 Degree distribution and evolution of the mean degree with order

The computation of the degree distributions of the three segment types was

performed from equation [6], and the simulated data were compared to the

experimental ones with a χ2 test. Each test, for each neuronal type, was applied

to a number of bins corresponding to the maximal degree observed

experimentally, this number also defined the degree of freedom for the test ( see

Table III).

Figure 2. Frequency distributions of the order. Each graph corresponds to one of three

neuronal types; it displays the observed frequency distribution of the centrifugal order of the

neuritic segments, plotted as a histogram, and the distribution predicted with equation [3], as a

continuous line.

The evolution of the mean degree with order q, *
qD , computed from equation

[9], is shown in Fig. 3. For the three neuronal types, the magnitude of the

difference between the computed mean degree and the experimental one,

averaged on different q, was computed in order to compare it with the error

around the experimental estimation of the value of the mean degree per order.

These values are also given in Table III. As expected from the different

0
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intensities of ramification previously measured for the three types (see the

values of the mean degree per neurone in Table I), the highest degree values are

found in segments from type 1 neurones while those from type 3 neurones

exhibit the lowest values.

Figure 3.  Evolution  of  the  mean  degree  with  order .

The  mean  degree  ( ± standard error) of the neuritic

segments is plotted versus their centrifugal order for the

three types of neurones, labelled as squares (type 1),

triangles (type 2) and circles (type 3). The values expected

from the model and computed with equation [9] are plotted

as continuous lines.

Table III: Comparison of the computed and

experimental degree distributions by a χχ2 test.

Neuronal type χ2 (d.f., p) Mean ( qq dD −* ) Mean (std error ( qd ))

Type 1 29 (26, p = 0.3) 0.046 0.14

Type 2 4.2 (15, p = 0.99) 0.088 0.18

Type 3 7.14 (14, p = 0.91) 0.038 0.07

The probability p of the χ2 test corresponds to the probability that the experimental degree

distribution and the computed one (equation [9]) derive from the same distribution. The degree

of freedom corresponds to the maximal experimental degree observed in each neuronal type.

The mean values derived from experimental data ( qd  is the mean experimental degree of the

segments of order q) and from the comparison of these data with the computed ones ( *
qD )

provide a quantitative estimate of the quality of the model. Here the mean standard error around

the mean experimental degree is much larger than the mean absolute difference between the

experimental mean and the computed one.

5.3 Asymmetry index distribution and evolution of the mean asymmetry

index with order

Equation [11] allows the computation of the asymmetry index distributions. As

previously, the only parameters that are necessary to compute these
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distributions are α, β and N1 through the value of qmax. However, the number of

the possible terms in the sum, where d goes from 2 to qq −max2 , may be very large

(up to 213). This is much larger than the experimental maximal degree observed

(26, for a segment of a type 1 neurone). In order to avoid the computation of

unnecessary terms, a limit of the degree was chosen arbitrarily equal to 40

(higher than 26 but not too high). In other terms, in the sum of equation [11], d

goes from 2 to min(40, qq −max2 ). This limited degree leads to a limitation of the

possible values for the asymmetry index, since it is a fraction with (d - 2) as

denominator (see Appendix 3).

A statistical comparison between the computed asymmetry index distributions

and the experimental ones is more complex than for the degree, since the

asymmetry index is neither discrete nor really continuous. As an example, we

consider the intermediate segments of type 1 neurones: there are 1850 of them,

split up into 44 different values of A = a, while the corresponding computed

distributions are spread over more than 200 possible values of a. If we consider
only the asymmetry indices for which ( )an*  is equal to or larger than 1

(according to equation [11], ( )an*  is not necessarily an integer), their number is

reduced to 40 values. Some of them are equal to the experimental values

(typically: 0, 0.3333 and 1), but the majority of them are not. We can now

consider three ways of processing the computed and experimental data in order

to compare them. The first one consists in trying a comparison using a test

usually applied to continuous distributions : the Kolmogorov-Smirnov test,

knowing that it may be particularly severe in the case of semi-continuous data.
The second one consists in building a histogram with ( )an*  limited to the 44

values of the experimental asymmetry index and comparing it with the

experimental histogram with a χ2 test. The third one consists in the

reconstruction of experimental and computed histograms with an arbitrary

number of bins, for instance 100, distributed regularly over the interval [0,1]; a

χ2 test could also be applied to these histograms. These two χ2 tests did not

reveal any significant difference between the computed and the experimental

histogram, nor did the Kolmogorov-Smirnov test. The results of the latter are

presented for the three neuronal types in Table IV.
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Table IV: Comparison of the computed and experimental asymmetry index distributions

by a Kolmogorov-Smirnov test.

Neuronal type DKS (var, prob.) Mean( qq aA −* ) Mean(std error( qa ))

Type I 0.038 (1.15, p = 0.14) 0.060 0.052

Type II 0.067 (1.22, p = 0.10) 0.038 0.047

Type III 0.054 (0.99, p = 0.27) 0.051 0.028

DKS is the maximum value of the absolute difference between the respective cumulative

functions of the computed distribution and of the experimental one. The Kolmogorov-Smirnov

test is then applied by computing a convenient function of ‘var’, itself a function of DKS (Press

et al. 1992). Values of p lower than 0.05 would indicate a significant difference between the

experimental and computed (equation [11]) distributions; as it is not the case here we conclude

that the experimental distributions are correctly represented by the computed ones. As

previously for the degree, the mean values derived from experimental data ( qa  is the mean

experimental asymmetry index of the segments of order q) and from the comparison of these

data with the computed ones ( *
qA ) provide a quantitative estimate of the quality of the model.

Here the mean standard error around the mean experimental asymmetry index is close to the

mean absolute difference between the experimental mean and the computed one.

The evolution of the mean asymmetry index, *
qA , with order q, computed from

equation [12], is represented in Fig. 4 together with the experimental values. As

in the case of the degree, the magnitude of the difference between the computed

mean asymmetry index and the experimental one, averaged over different q, has

been computed in order to compare it with the error around the experimental

estimation of the mean value of the asymmetry per order. These values are also

displayed in Table IV. In Fig. 4, it can be observed that, whatever the neuronal
type, the common tendency is a decrease of *

qA  with the order, which means

that on the average the segments of higher order are more symmetric. This

feature is more pronounced in segments taken from type 3 neurones, which is in

keeping with their general morphology consisting of a main neurite with

essentially single neurites emerging from it. If, on the whole, the computed

function appears as a good fit of the experimental values, it is noticeable that,
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for the three types, the value of *
1A  underestimates the experimental value. This

is especially the case for type 1 neurones: this can be understood as the

consequence of the dominance of a main primary neurite, with a few single

emerging neurites at low order, and many ramified segments at higher order.

Figure 4. Evolution of the mean asymmetry index with order. Each graph corresponds to

one of the three neuronal types; it displays the values of the asymmetry index (mean ± std error)

of the neuritic segments versus their order. The values expected from the model and computed

with equation [12] are plotted as continuous lines.

6 Discussion

We have presented a quantitative study of some basic parameters of neuronal

trees over a large population of cultured neurones, and developed a simple

model based on an order-dependent splitting probability. This model is

parsimonious since we are able to characterise topological regularities in the

organisation of the neuritic trees, and to predict them, with functions derived

only from the exponential function that relates the splitting probability to the

segment order. We did not address the question of individual morphologies;

instead we intended to extract relevant characteristics of a large population

from the strong "noise" produced by individual morphological variations. We

are able to reconstruct several morphometric characteristics of the whole

population without considering the characteristics of each cell, but taking into

account, when necessary, the particularities of each neuronal type. It should be

noticed that, using the mathematical rules presented before and the parameters

that characterise the exponential splitting probability as a function of the

segment order, we are not only able to derive the main topological properties of

a large set of segments, provided the number N1 of primary segments of such a

set is given, but also a good representation of some topological features of a

1 2 3 4 5 6 7 8 9
0

0.5

1

1 12 23 34 45 56 7 8
0 0

0.5 0.5

1 1

Segment order Segment orderSegment order

Type 1 Type 2 Type 3
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typical neurone that would be representative of the type of neurones the set of

segment is extracted from, provided the mean number of primary neurites per

neurone is given. Such features are given in Table V, and can be compared with

the values in Table I. Previous studies provided a demonstration that a

branching probability (applied to branching events occurring during neuritic

growth) is an important parameter for a parsimonious description and

modelling of growing neuronal trees (Van Pelt et al., 1986; Kliemann, 1987;

Verwer & Van Pelt, 1992; Carriquiry et al., 1992). Although we use a splitting

probability (deduced from fully grown neurones), we also find that introducing

an order-dependent relationship broadens the range of predictable morphologies

(Van Pelt et al., 1986; Kliemann, 1987; Verwer & Van Pelt, 1990; Dityatev et

al., 1995). It should be noted that this dependency upon the order is not an

absolute requisite, as some neuronal morphologies can be predicted - at least as

far as their topological organization is concerned - with a good degree of

confidence with a model based on an order-independent probability (Verver &

Van Pelt, 1990). The most realistic neuronal shapes were obtained with

decreasing branching probabilities with increasing order (Van Pelt et al., 1986;

Van Veen & Van Pelt, 1994; Dityatev et al., 1995; Uemura et al., 1995). Here,

the excellent correlation between the distributions predicted from the

probability law and the data obtained on actual segments strongly support the

assumption of an exponential dependence.

Table V: Topological characteristics of a typical neurone for each neuronal type,

according to the exponential splitting probability law.

Topological parameters Type

1 2 3           

Neuronal degree 14 9 7

Maximal segment order 9 7 6

Taking into account the mean number of primary neurites per neurone, as given in Table I,

introduced as N1 (which is not an integer value in that case) in equation [4], with α and β, the
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parameters of the exponential splitting  probability law, we define qmax, the maximal segment

order for a typical neurone. It is then easy to compute with equation [9] the value of the mean

degree of a primary segment: *
1D . Finally, as the degree of a neurone is the sum of the degrees

of all its primary neurites, the typical neuronal degree can simply be obtained by rounding off

the multiplication of *
1D by N1.

The very low proportion of multifurcations in our sample of neurones, as in

many neuronal types (Percheron, 1979; Verwer & Van Pelt, 1985; Dityatev et

al., 1995), led us to consider the neuronal trees under study as binary trees

(Burke et al., 1992). In this respect, we followed most previous studies in which

they were considered as the result of a limited spatial resolution rather than an

inherent growth process (e.g. Stuermer, 1984; Hollingworth & Berry, 1975;

Verwer & Van Pelt, 1990). Verwer & Van Pelt (1985) showed that the

calculation of a branching probability without taking into account the

multifurcations provided very poorly biased predictions, provided the frequency

of multifurcations is low. These conclusions, along with our own results

showing a high goodness-of-fit between our predicted data and the measured

values, lead us to believe that our approximation results in a minor loss of

information, and thus does not yield a strong bias.

Our results also suggest that, at least in our sample, the topology of neurones

can be modelled without having to consider competitive processes other than

the ones which may have been involved to give the observed distribution of

terminal and intermediate segments, which is used for the adjustment of the

splitting probability. Since all the theoretical distributions were obtained under

the assumption that the growth of a segment does not depend on that of its

"sister" segment (independence hypothesis), the high level of accuracy with

which the experimental distributions were estimated strongly supports its

validity. In particular, this holds true for the asymmetry index, a parameter

sensitive to the developmental history of the tree (Van Pelt et al., 1992). This is

in accordance with the results obtained in various studies from growth models,

based, either explicitly (Kliemann, 1987; Nowakowski et al., 1992) or

implicitly (Ireland et al., 1985; Li & Qin, 1996), on assumptions similar to our

independence hypothesis. In contrast, a lateral inhibition has been considered

by some authors (Li et al., 1992; 1995) to account for the internal limitation of

material necessary to the extension of neurites at many growth cones. However,
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such a limitation can be introduced without considering a lateral inhibition, by

taking into account the finite length of the neuronal trees (Van Veen & Van

Pelt, 1993), which has been done here by introducing a maximal value for the

order (qmax).

Previous studies have shown that the topological variations observed in actual

dendritic arborisations are highly dependent on the growth rules followed

during development (Van Pelt et al., 1986; 1992; 1997). Hence modelling

"established" morphologies of neurones which have terminated their growth

may allow one to infer some of the processes involved in the acquisition of

basic properties of the arborisations. In particular, our approach based on the

comparison of neurones which have been shown previously to belong to

separate types, on the basis of morphological characteristics including metrical

ones, may provide insights into the determinism of common and different

aspects of type-specific neuronal shapes. First, we show that the three neuronal

types under investigation can be reliably described in a unique way by the

model presented here: the exponential probability law depending on the order

gives an excellent prediction of their topological properties, independently of

their strong differences in shape (see Devaud et al., 1994). This common

feature may be related to the similar conditions of growth in culture, since, in

vivo, these neurones frequently present morphologies which do not correspond

to a continuous decrease in the splitting probability. Most of them develop very

dense distal ramifications (Fonta et al., 1993; Devaud & Masson, 1999), which

suggests that their splitting probability does not decrease as quickly as in vitro.

This is consistent with the demonstration that non-stationarity in the

dependence on order caused by environmental factors can result in major

changes in the topology of arborisations (Van Pelt, 1997). Such factors capable

of altering the law of branching probability include contacts made with

afferents (Sadler & Berry, 1989; Carriquiry et al., 1992) and growth factors

(Dityatev et al., 1995).

Still, our finding that the constraints defined by a common topological

organisation allow an important variability between neuronal types supports the

observations of others (Nowakowski et al., 1992; Van Pelt et al., 1997). At

least in the present case, this variability is more likely to be related to intrinsic

differences between neurones, since their development occurred in a

homogeneous cell-culture medium and without cell-to-cell contacts (Devaud et
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al., 1994). In this respect, the values of the parameters α and β of the

exponential function describing the splitting probability, more than the type of

function itself, seem to be relevant for the study of such differences. Using this

criterion, neurones of types 2 and 3 have quite similar characteristics, including

in terms of asymmetry, while type 1 neurones appear to be different. Hence the

α and β parameters may be related to neurone-type specific processes of

growth. They appear to be poorly correlated to the metrical features of

neurones, since, for instance, type 1 and 3 neurones were shown to have similar

sizes (as measured by the total area occupied by the arborisation and the

maximal neuritic length; see Devaud et al, 1994).

Furthermore, for all neurones, irrespective of their type, the model

underestimates the asymmetry index at the first order, while the predictions fit

very well the measurements made at higher orders. Although we cannot discard

the possibility that it might be an effect of the regeneration of a neuritic stump

already grown by some neurones at the time of plating, this is unlikely given

the low occurrence of this process - less than 15% (Devaud, 1997).

Alternatively, this result may suggest that the ramification of the primary

neurite obeys different mechanisms than the other segments, at least in the

sample under study.

In summary, we have presented a simple, parsimonious model which allows a

good characterisation of the topology of neurones. To address the question of

the determinism of neuronal types, we applied the model to a sample in which

three different types of neurones had been previously characterised. We show

that these types share in common a basic topological organisation (represented

by a splitting probability decreasing exponentially with the segment order), but

exhibit specific variations (in particular in the coefficients of the exponential

function). Our hypothesis that the exponential dependence on the order may be

determined by the conditions of growth provided by the in vitro environment,

while the different values of the parameters may represent cell-type specific

properties, should be tested in the near future by modifying the environment,

and by modelling the topology of the same neurones in vivo.
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APPENDIX

1 Estimation of the splitting probability

1.1 Definitions

We suppose that the neuronal trees are random binary trees grown following a

Bienaymé-Galton-Watson branching process. The splitting probability of a

segment of order q is Pq, the probability of generation of two segments of order

q+1, probability which depends on the order. The only alternative for such a

segment is not to branch, with probability (1 - Pq). The number of segments at

order q is labelled Nq.

1.2 Probability of observing Nq = 2n segments at order q

The segments are supposed to grow independently of each other; this

assumption allows us to express the conditional probability that the number of

segments at order q+1 equals 2n, knowing that at order q we have 2k segments,

as:
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This probability corresponds exactly to the probability to observe n

intermediate segments among the 2k segments at order q (binomial law).

Relation [1] can be written as:
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This allows us to write the unconditional probability under the following

recurrent form:
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where 1N  is the number of primary neurites and ( 1
1 2 −⋅ qN ) is the maximal

possible value for Nq = 2k, (k must be lower than ( 2
1 2 −⋅ qN )); 
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1n
I  is the

integer part of 
n +1

2
, the minimal possible value of k (which is

n

2
, if n is even
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and 
n +1

2
 when n is odd).

1.3 Recurrent expression of Nq and estimation of Pq

By definition, the first moment of Nq+1 is:
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Finally:
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Consequently, an unbiased estimator of Pq is 
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2 Estimation of the degree probability

2.1 Probability of having a given tree

Consider the case where Pq decreases with q, in such a way that:

2

1
,~/~ <>∀∃ qPqqq . As a consequence, the tree is necessarily finite (Athreya

& Ney, 1972) and we can define its maximal order qmax. A binary tree can be

described, for instance, by the number of its branches at each order:
{ }

xmaqq NNNNN ;...;.......;;; 321 . Note that such a description is not univocal:
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different trees may have the same description. Now we want to express the

conditional probability P of having a given set of tree, knowing N1 = n1:
( )1113322 0;2;...2;...;2;2

maxmaxmax
nNNnNnNnNnNP qqqqq ====== +
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=+ nnnnnP qqq .

if { }max1 ....,,1,2 qinn ii ∈∀≤+ , then according to Bayes’ theorem (see, e.g.,

Johnson & Bhattacharyya):
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As soon as 3max ≥q , this probability can be written as:
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2.2 Recurrent relation on the first moment of the degree

The degree D of a tree is the number of its extremities; in a binary tree which

starts with a single segment, D is related to the total number N of segments by

(Verwer et al., 1992)

2

1+= N
D [16]

This rule can be easily generalised: let us take a binary tree characterised by the
following sequence: { }

max
2;..;2;2; 321 qnnnn . The degree of such a tree is:
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If { }132 max
2;..;2;2 nnnnP q  is the probability of occurrence of a tree with the

sequence { }1max32 2;..;2;2 nnnn q  knowing N1 = n1, the first moment of the degree

of such a tree (with n1 segments at order 1) is:
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with, for 3max ≥q ,
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as previously seen (equation [15])
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Equation [20] defines the first moment of the degree for a tree starting at order

1 with n1 segments. In the following, we consider the degree of a partition

starting with a single segment at order q. The mean value of the degree at order
q is labelled [ ]DEq , which can be written as:
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In order to simplify this expression, let us write a sub-tree beginning at order q
{ }qqqq nnn 12;..;2;2

max21 ++  as { }
max

12
qqxn , and the set of all possible configurations

of sub-trees starting at order q and ending at order qmax > q, { }
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xn , then:
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where { }qxn 12  represents one of all the possible sub-trees starting with one

segment at order q, and { }q
xn  represents the whole set of these sub-trees, with all

the possible qmax, from q to ∞ .

We can rewrite the first moment of the degree as:
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From this expression, we can now derive the following recurrent relation:
[ ] ( ) [ ]DEPPDE qqqq 121 +⋅+−= [24]

The expression for [ ]DEq 1+  is:
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which, taking into account equation [23], is equivalent to:
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then:
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which is exactly as:
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Consequently:
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Then, since the numbers of segments at each order can be added and the

splitting probabilities are independent for each segment:
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Introducing the variable xxx nml += :
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which is equivalent to:
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{ }122 +qxlP , the probability of a given sub-tree starting with two segments at

order q+1 is related to { }qxq lP 12,2 1+ , the probability of the same sub-tree, but

beginning with a single segment at order q and splitting into two segments of

order q+1 by the following relation:

{ } { } { } { } qqxqqqxqxq PlPPlPlP ⋅=⋅= ++++ 1111 22122212,2 [35]

thus, as long as 0≠qP :
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then:
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This is identical to equation [24].

2.3 Recurrent expression of the degree probability distribution per order

We can develop expression [24] in order to obtain a recurrent relation for the
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probability of a segment of order q to have a degree dD = . The definition of

the mean value of D for a segment of order q is:

[ ] ( )dDpdDE q
d

q =⋅= ∑
∞

=1

[39]

where ( )dDpq =  is the probability we are looking for: ( ) 1
1

==∑
∞

=n
q nDp  .

Applying equation [39] at the order q+1, and using the recurrent relation [24],

we have:
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[ ] ( )
( ) ( )

( ) ( )

















=⋅=⋅+

=⋅=⋅
+−=

∑ ∑

∑ ∑
∞

=
+

∞

=
+

∞

=

∞

=
++

1
1

1
1

1 1
11

1

n
q

m
q

m n
qq

qqq

nDpmDpn

mDpnDpm

PPDE  [43]

and

[ ] ( )
( ) ( )

( ) ( )

















=⋅=⋅+

=⋅=⋅
+−=

∑∑

∑∑
∞

=
+

∞

=
+

∞

=

∞

=
++

1
1

1
1

1 1
11

1

m
q

n
q

m n
qq

qqq

nDpmDpn

mDpnDpm

PPDE [44]

If we change the variables: d n m= +  and k m= , then d k n− =  and we

obtain:
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which can be rewritten as:
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Thus:
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The only way to obtain equation [39] at order q is to identify the probability
( )dDpq =  to the following terms:
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Note that for a finite binary tree, with the maximal order qmax, this definition of
( )dDpq =  is valid only for qqd −≤ max2 : for qqd −> max2 , ( ) 0== dDpq .

3 Estimation of the asymmetry probability

3.1 Expression of the asymmetry probability per order

The probability for a segment at order q to have an asymmetry index a

is: ( ) ( ) ( )∑
=

=⋅===
qd

d
qqq dDpdaApaAp

max

2

[47]

where dmaxq
 is the maximal possible value of the degree of a segment of order q,

i.e. qq
qd −= max2max , ( )dDpq =  is the probability for a segment of order q to

have a degree d (see equation [46]), and ( )daAp =  is the conditional

probability for a segment of order q to have the asymmetry index a knowing

that it has the degree d.



31

( ) ( ) ( ) ( )∑ ∑
=

−

=
++ 





 −=⋅=⋅⋅===

qd

d

d

k
qqqqq kdDpkDpPdaApaAp

max

2

1

1
11 [48]

( ) ( ) ( ) ( )∑ ∑
=

−

=
++ −=⋅=⋅=⋅==

qd

d

d

k
qqqqq kdDpkDpdaApPaAp

max

2

1

1
11 [49]

From relation [46], we write:
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Replacing ( ) ( )kdDpkDp qq −=⋅= ++ 11  by ( )( )1, >− dkdkpq , the probability

for a segment of order q which has two son-segments to have the first one of

degree k and the second one of degree (d - k), we have:
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( )( )kdkaApq −= ,  can be replaced by its value :
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where δ is the Kronecker symbol :
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Thus, there are two non-zero terms in the second sum if a > 0,
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and only one if a =0:
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The conditional probability for a segment to be both of degree d and asymmetry

index a at order q, knowing that the segment is an intermediate one (d > 1) can

be written as:
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with the possible following values of a:
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