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Abstract

We present a model of the specialist olfactory system of selected moth species and the

cockroach. The model is built in a semi-random fashion, constrained by biological

(physiological and anatomical) data. We propose a classification of the response patterns

of individual neurons, based on the temporal aspects of the observed responses. Among

the observations made in our simulations a number relate to data about olfactory

information processing reported in the literature, others may serve as predictions and as

guidelines for further investigations. We discuss the effect of the stochastic parameters of

the model on the observed model behavior and on the ability of the model to extract

features of the input stimulation. We conclude that a formal network, built with random

connectivity, can suffice to reproduce and to explain many aspects of olfactory

information processing at the first level of the specialist olfactory system of insects.

Introduction

We study the detection of sexual pheromones by insects, with a view to the more general

modeling of the olfactory pathway. We use the known anatomical data of the olfactory

system, and retain the level of detail we deem necessary to produce biologically relevant

behavior. Thus, we do not attempt to represent the particulars of dendritic passive
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propagation, or the precise local input-output functionality of individual synapses. We

model them by simple ingredients such as propagation delays and activation thresholds.

Precise biological data on the wiring is not available, therefore we introduce randomness

in the connectivity.

A variety of approaches to the modeling of olfactory systems have been presented thus

far: the pioneering work of Rall and Shepherd (1968) exploits a wealth of detail

concerning the precise shape of mitral cell dendrites in order to compute electrical

potentials; Wilson et al (Wilson & Bower 1988; Wilson & Bower 1989; Haberly &

Bower 1989) replicate certain basic features of responses by extensive simulations of

larger cell sets exploiting the same data;  Lynch and Granger (Lynch et al. 1989; Lynch &

Granger 1989) study associative memory and synaptic adaptation in piriform cortex,

including considerable detail about synaptic processes, and a Hebb-type learning rule; Li

and Hopfield (1989) attempt to abstract a set of relevant parameters from the biological

details of the olfactory modular organization, with a highly simplified model: interneurons

are lumped into single variables. In contrast, we study the individual and collective

behavior of neurons whose dendrites make contacts within the so-called macroglomerulus

(or macroglomerular complex MGC), which is responsible for sexual pheromone

recognition. The aim of our work is to analyze the emergence of the responses necessary

for odor recognition and localization.

Biological background

In the olfactory system of insects, two sub-systems process behaviorally important odor

classes: the specialist subsystem detects sexual pheromones, while the generalist

subsystem recognizes food odors (for a review see (Masson & Mustaparta 1990)). In the

following, we focus on the specialist subsystem. It receives information from sensory

neurons, which are sensitive to non overlapping molecule spectra ("labelled lines"). The

axons of sensory neurons project onto the antennal lobe local interneurons, which

possess no axons, and onto the antennal lobe projection or output neurons. The latter

transfer signals to other centers for further integration with other sensory modalities. The

huge convergence between pheromone sensitive and projection neurons, which Ernst and

Boeckh (1983) estimate as 5000:1 in the cockroach, leads to a characteristic spatial

organization of all synaptic connections in sub-assemblies termed glomeruli, which are

identifiable and species-specific. In the case of interest to us, (e.g. in certain moth species

and in the cockroach), this reduces to a single MGC (Figure 1).

We use data pertaining to the moth species Manduca sexta and to the cockroach

Periplaneta americana (for reviews see (Christensen & Hildebrand 1987a; Boeckh &

Ernst 1987)). The complex responses to stimulation by pheromone blends, as observed

intracellularly in projection neurons, indicate that integrative processes take place in the
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MGC. In the moth, the depolarization of a local interneuron can cause inhibition of

background activity in a projection neuron. There is also evidence that local  interneurons

are responsible for much or all of the inhibitory synaptic activity (Christensen &

Hildebrand 1987b). Furthermore, the long-latency excitation exhibited by some

projection neurons suggests that polysynaptic pathways are present between pheromone-

responsive primary afferent axons and the projection neurons. In fact, it has been

demonstrated, in the cockroach,  that the receptor axons synapse mainly with local

interneurons (Boeckh et al. 1989; Distler 1990).

The formal model

Neurons may be at rest (x=0) or above firing threshold (x=1). They are probabilistic

neurons with memory: the probability P[xi(t)=1] that the state xi(t) of neuron i at time t is

1 is given by a sigmoid function of the neuron membrane potential vi(t) at time t :

P xi(t)=1  = 1
1+e- vi(t)-Θi /T,

which is biased by a positive threshold Θi, and where T is a parameter, called

temperature, which determines the amount of noise in the network (random fluctuations

of the membrane potential).

 In discrete time, the fluctuation of the membrane potential around the resting potential,

due to input ei(t) at its postsynaptic sites, is expressed as:

vi(t) = (1 - 
∆t

τi
  ) * vi(t-∆t) + 

∆t

τi
  * ei(t-∆t)

where τi is the membrane time constant, and ∆t is the sampling interval, with:

ei(t) = Σ [wij * xj(t - rij)]

where wij is the weight of the synapse between neuron j and neuron i, and rij is its delay.

The weights are binary. The value of the transmission delay associated with each synapse

is fixed but chosen randomly; it is meant to model all sources of delay, transduction and

deformation of the transmitted signal from the cell body or dendro-dendritic terminal of

neuron j to the receptor site of neuron i. The mean value of the delay distribution is longer

for inhibition than for excitation: we thereby take into account approximately the fact that

IPSC's usually have slower decay than EPSC's, and may accumulate to act later than

actually applied.

We consider three types of neurons: receptor, inhibitory and excitatory. Two types of

receptor neurons (A and B) are sensitive only to input A or B, where A and B represent

two odor components. For all A (resp. B) type receptor neurons, we have ei(t) = A(t),

(resp. B(t)), where A(t) is the concentration of component A. Receptor neurons may

make axo-dendritic (rij = 0), excitatory synapses with both types of interneurons.
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Interneurons may make dendro-dendritic synapses (rij ≠ 0) with any other interneuron,

but the connectivity c will be sparse.

Results

To analyze the behavior of such network, we first introduce a classification of the

possible response patterns of the neurons, which has been found useful for the analysis

of olfactory response patterns (Meredith 1986; Kauer 1974; Fonta et al. 1991).

In the network under investigation1, which exhibits a typical distribution of response

patterns, we observe three classes of patterns: purely excitatory, purely inhibitory, and

mixed (both inhibitory and excitatory) responses. Excitation and inhibition are defined in

relation to the neuron spontaneous activity. The mixed response patterns subdivide into

three groups, according to the relative durations of the inhibition and excitation phases

(Figure 2A, 2B).

We analyze the behavior of the network in response to four characteristics of the input

patterns (pure odors, A or B,  and mixed odors, A and B), which are behaviorally

important (see (Kaissling & Kramer 1990)): (1) amplitude, (2) stimulus shape, (3)

frequency of stimulus presentation, (4) ratio of the components in mixed odors. The

behavior of the model network exhibits several characteristics that agree with biological

data: selective neurons respond to only one of the two odor components, non-selective

neurons respond to both components. The neurons exhibit a limited number of response

patterns, most of them a combination of excitation and inhibition (Figure 3A, 3B).

The recognition of the concentration ratio of odor components is of behavioral

importance, but it is not known whether the detection of a precise ratio is achieved at the

level of the glomerulus or at higher olfactory centers. Here, we observe amplitude and

temporal variations of the response patterns of individual interneurons as a function of the

concentration ratio. Interneurons with oscillatory responses code, by temporal changes in

their response patterns (Figure 4A), for ratio variations of the input stimulation. In

addition, pairs of neurons respond simultaneously to mixed input of a specific input ratio:

in contrast, the first spikes of the responses to other ratios are separated by 25-50 ms;

thus, the response latency could be one of the response parameters which indicate ratio

detection (Figure 5).

                                                
1 50 neurons; connectivity c=10% (190 synapses); synaptic strength wij=+1/ -1; 30% receptor neurons,

30% excitatory interneurons, 40% inhibitory interneurons; sampling step ∆t=5 ms, which is enough to

study the maximal physiological spiking frequencies (Christensen et al. 1989a); membrane time constant

τj=25 ms; synaptic delays are chosen from a uniform distribution between 10 ms and 50 ms for excitatory

synapses, and between 10 and 100 ms for inhibitory synapses; the parameters of the sigmoids are T=1 and

Θ=1 for receptor neurons, T=0.375 and Θ=1.5 for the others.
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The odor plume formed downwind from the calling female possesses a highly variable

structure. Pulsed stimulation improves a male moth ability to orient towards an odor

source (Baker et al. 1985; Kennedy 1983). We have therefore observed the behavior of

the interneurons in response to pulsed stimulation. We find that some interneurons cannot

follow pulsed stimulation beyond a specific cut-off frequency (Figure 4B). The ability of

these neurons to detect a certain frequency range depends on their response pattern; the

cut-off frequency of each neuron depends on the duration of the stimulation and on the

interstimulus interval. Neurons that respond with mixed excitation and inhibition show

irregular responses and cannot follow high frequency stimulation. Neurons that respond

with excitation mostly respond continously to high frequency stimulation. These

behaviors depend mainly on the relations between the stimulation frequency, the

interstimulus interval, and the temporal parameters of the model. Synaptic delays

determine the behavior of mixed responses, while membrane time constants determine the

behavior of excitatory responses.

The stimulus profiles (rise and fall times of the odor signal) indicate — irrespective of the

stimulus concentration — the distance between the location of odor perception and the

odor source. We observe a number of interneurons that reflect the profile of the

stimulation irrespective of its concentration. This depends again on the response patterns;

neurons that exhibit purely excitatory responses reflect the input profile by response

latency and response duration, whereas neurons that exhibit an oscillatory response have

completely different temporal response patterns as a function of the input profile (Figure

4C).

In this section, we have shown that the response patterns of individual neurons reflect

various characteristics of the input pattern. Selective neurons indicate the presence,

amplitude, and stimulus profile of one component (depending on their response pattern);

non-selective neurons indicate the presence, amplitude, and stimulus profile of the

mixture of the two components. Some non-selective neurons also reflect the quality of the

mixture, that is, the ratio of the components.

Influence of the distribution of neurons and synapses

The number and the diversity of the response patterns depend on the total number of

neurons, on the distribution of excitation and inhibition in the network, on the number of

connections and feedback loops, and on the temporal parameters (i.e. synaptic delays,

membrane time constants).

The diversity of response patterns grows with the percentage of synapses in the network

(all other parameters remaining unchanged). At connectivity c<2%, afferent synapses

cause purely excitatory responses (R1); around c = 2%, simple mixed responses (R2) and
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inhibitory responses (R6) appear; at about c = 8%, the majority of the interneurons

respond mainly with excitation (R1 and R2). The full diversity and distribution of

response patterns described above is observed for most networks around c = 10%. With

an increasing number of synapses, the number of response patterns decreases. Due to an

increasing network activity, the response patterns tend to oscillate, and the network

saturates.

Similarly, increasing the inhibitory synapse number beyond fifty percent introduces

oscillations, the total activity in the network decreases. Beyond 60% inhibition, only R3

responses (phasic burst followed by a long inhibitory period) survive. If there is too

much excitation in the network (more than forty percent excitatory neurons or more than

forty percent receptor neurons), the network becomes unstable and saturates .

Discussion

In this section, we discuss the relevance of the results to the specialist system of insects.

The model exhibits several behaviors that agree with biological data, and it allows us to

state several predictive hypotheses about the processing of the pheromone blend.

In the model, we observe two broad classes of interneurons: selective (to one odor

component) and non-selective neurons. The fact that a distinct representation of

pheromone components in parallel pathways coming from the antenna is preserved by

some antennal lobe neurons (local interneurons and projection neurons), but not all of

them, has been reported in several species: in moths (Manduca sexta (Christensen &

Hildebrand 1987a, 1987b, 1989b)), (Bombyx mori (Olberg 1983)), and in the cockroach

Periplaneta americana (Boeckh 1976; Burrows et al. 1982; Boeckh & Selsam 1984; Hösl

1990).

Selective neurons and non-selective neurons exhibit a variety of response patterns, which

fall into three classes: inhibitory, excitatory and mixed. Such a classification has indeed

been proposed for olfactory antennal lobe neurons (local interneurons and projection

neurons) in the specialist olfactory system in Manduca (Christensen et al. 1989a;

Christensen & Hildebrand 1987a; 1987b). Similar observations have been reported for

Bombyx mori (Olberg 1983) and for the cockroach (Burrows et al. 1982; Boeckh &

Ernst 1987).

In our model we observe a number of local interneurons that cannot follow pulsed

stimulation beyond a neuron-specific cut-off frequency. This frequency depends on the

neuron response pattern and on the duration of the interstimulus interval. These results

agree with data pertaining to antennal lobe neurons (interneurons and projection neurons)

in Manduca sexta (Christensen & Hildebrand 1988) and in Heliothis virescens

(Christensen et al. 1989b). In both species, some antennal lobe neurons follow pulsed

input with phasic bursts up to a cut-off frequency
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Physiological evidence in several species (Christensen & Hildebrand 1987b; Burrows &

et al 1982) has led to the hypothesis that some projection neurons (or local interneurons),

may code for pheromone concentration and quality by measuring differences in response

latency and duration, instantaneous spike frequency, and total number of spikes.

Furthermore, the overall response to the correct blend of pheromones may be qualitatively

different from the response to some other ratio of pheromones (Christensen & Hildebrand

1987b). Our model exhibits characteristics (Figure 4A, 5) which could substantiate these

suggestions. They will be analyzed and discussed in more detail in a forthcoming

publication.

Conclusion

We have presented an original model of olfactory information processing in the

macroglomerulus of insects. This model incorporates very simple ingredients; its

connectivity is chosen randomly, from distributions which take into account complete,

albeit approximate, biological knowledge. From these simple assumptions, a variety of

neuronal responses emerge, some of them strongly resembling those observed in living

systems. Our model performs feature extraction on the signal represented in separate

input lines. A number of features concerning the single odor components as well as their

blend are represented in parallel lines by the interneuron network. These results agree

with the hypothesis that there are "separate but parallel lines of olfactory information flow

between the antennal lobe and the protocerebrum, each line carrying information about

different aspects of a pheromonal stimulus" (Christensen et al 1989a). The use of random

connectivity and synaptic delays gives us a means to study the conditions under which

such feature extraction can arise, and the diversity of output patterns that are thereby

exhibited. Thus, a model built with random connectivity suffices to explain, reproduce

and predict a number of signal processing properties on the olfactory specialist sub-

system. The variation of random distribution parameters and delays gives insights into the

means whereby natural neural nets may be modulated by higher control mechanisms, be

they genetic, adaptive or instructive.
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FIGURE CAPTIONS

Figure 1: Schematic representation of the specialist olfactory system. In the

macroglomerulus, receptor cell axons connect with local interneurons (restricted to the

antennal lobe), and with projection neurons, which convey information to higher centers.

Figure 2A: Response patterns: the amount of activation and inactivation is shown as a

function of the stimulation (there ∆t = 5 ms).

    R1    : Activation for the duration of the stimulation. The spiking frequency varies as a

function of the amplitude of the input.

    R2    : The activation is followed by an inactive phase after the end of the stimulation.

    R3    : Phasic burst, followed by an inactive phase of the same duration as the stimulus.

    R4    : Phasic burst, followed by a tonic phase of diminished activation or by a phase of

non-response, and by a short inactive phase after the end of the stimulation.

    R5    : Phasic burst, followed by several phases of inactivation and activation

(oscillatory response).

    R6    : Inactivation during the application of the stimulation. The amplitude of the

negative potential is a function of the amplitude of the stimulation.

Figure 2B: Neurons responding with R1 - R6 (duration of each stimulation: 200 ms).

Figure 3: Responses of selective (3A) and non-selective (3B) neurons to stimulation

with one and both odors (duration of each stimulation: 200 ms).

Figure 4: Responses of selective and non-selective neurons with varying response

patterns to stimulation with varying input characteristics:

4A: Stimulation with varying ratios of the input components, the sum of the  amplitudes

of the two components being constant. Several neurons respond with varying temporal

response patterns to changing ratios (duration of each stimulation: 50 ms).

4B: Neuron 7 responds with phasic bursts to stimulation at low frequencies, and

responds continually to stimulation at the same frequency but with shorter inter-stimulus

intervals,  because the interstimulus interval approches the membrane constant of the

neuron (upper diagram: stimulation duration 30ms, interstimulus interval 20ms; middle

diagram: stimulation duration 40ms, interstimulus interval 10 ms; bottom diagram:

stimulation duration 20ms, interstimulus interval 10ms).

4C: Stimulation by input with varying profiles, the rise and fall times vary from 10 ms to

50 ms (stimulation duration 100ms).
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Figure 5: Importance of response latencies for ratio detection (stimulation duration

50ms).
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