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Abstract

We present the theoretical results about the construction of confidence intervals for a

nonlinear regression based on least squares estimation and using the linear Taylor

expansion of the nonlinear model output. We stress the assumptions on which these

results are based, in order to derive an appropriate methodology for neural black-box

modeling; the latter is then analyzed and illustrated on simulated and real processes.

We show that the linear Taylor expansion of a nonlinear model output also gives a

tool to detect the possible ill-conditioning of neural network candidates, and to

estimate their performance. Finally, we show that the least squares and linear Taylor

expansion based approach compares favourably with other analytic approaches, and

that it is an efficient and economic alternative to the non analytic and computationally

intensive bootstrap methods.
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Notations

We distinguish between random variables and their values (or realizations) by using

upper- and lowercase letters; all vectors are column vectors, and are denoted by

boldface letters; non random matrices are denoted by light lowercase letters.

.



x non random n-input vector

Yp = Yp  x random scalar output depending on x

E Yp | x mathematical expectation, or regression function, of Yp  given x

W random variable with zero expectation denoting additive noise

s2 variance of W

xk, ypk k=1 to N data set of N input-output pairs, where the xk  are non random

n-vectors, and the ypk  are the corresponding realizations of the

random outputs Yp
k = Yp | xk

xk T qqqq, qqqq ∈ Rn family of linear functions of x parameterized by qqqq

qqqqp unknown true q-parameter vector (q=n in the linear case)

x = x1 x2 … xN T non random (N,n) input matrix

Yp = Yp
1 Yp

2 … Yp
N T

 random N-vector of the outputs of the data set

W = W1 W2 … WN T
 random N-vector with E W  = 0000

J qqqq value of the least squares cost function

QQQQLS least squares estimator of qqqqp

qqqqLS least squares estimate of qqqqp

R = Yp – x QQQQLS    least squares residual random N-vector in the linear case

r value of R

m x range of x (linear manifold)

px orthogonal projection matrix on m x

S2 estimator of s2

s2 value of S2

f x, qqqq , qqqq ∈ Rq family of nonlinear functions of x parameterized by qqqq

f x, qqqq N-vector f x1, qqqq… f xk, qqqq… f xN, qqqq T 

R = Yp – f x,QQQQLS least squares residual random N-vector

ξ = xxxx1 xxxx2 … xxxxN T unknown non random (N, q) matrix with xxxxk = 
∂f xk, qqqq

∂qqqq
 
qqqq = qqqqp

m ξ range of ξ

pξ orthogonal projection matrix on m ξ

z = z 1 z 2 … zN T matrix approximating ξ with z k = 
∂f xk, qqqq

∂qqqq
 
qqqq = qqqqLS

m z range of z

pz  orthogonal projection matrix on m z

IN (N,N) identity matrix

qqqqLS
(k) leave-one-out (the k-th example) least squares estimate

ek k=1 to N leave-one-out errors

nh number of hidden neurons of a neural network

H random Hessian matrix of the cost function

h value of the Hessian matrix of the cost function

sref
2  x reference variance estimate

var f x, QQQQLS LTE LTE estimate of the variance of a nonlinear model output

var f x, QQQQLS Hessian Hessian estimate of the variance of a nonlinear model output

var f x, QQQQLS sandwich  sandwich estimate of the variance of a nonlinear model output

Abbreviations

CI confidence interval

LOO leave-one-out

LS least squares

LTE linear Taylor expansion

SISO single input - single output

MISO multi input - single output

MSTE mean square training error

MSPE mean square performance error



I.  INTRODUCTION

For any modeling problem, it is very important to be able to estimate the

reliability of a given model. This problem has been investigated to a great extent in

the framework of linear regression theory, leading to well-established results and

commonly used methods to build confidence intervals (CIs) for the regression, that is

the process output expectation [Seber 1977]; more recently, these results have been

extended to nonlinear models [Bates & Watts 1988] [Seber & Wild 1989]. In neural

network modeling studies however, these results are seldom exploited, and generally

only an average estimate of the neural model reliability is given through the mean

square model error on a test set; but in an application, one often wishes to know a CI

at any input value of interest. Nevertheless, thanks to the increase of computer

power, the use of bootstrap methods has increased in the past years [Efron &

Tibshirani 1993]. These non analytic methods have been proposed to build CIs for

neural networks [Paass 1993] [Tibshirani 1993] [Heskes 1997], but with the

shortcoming of requiring a large number of trainings.

This paper presents an economic alternative to the construction of CIs using

neural networks. This approach being built on the linear least squares (LS) theory

applied to the linear Taylor expansion (LTE) of the output of nonlinear models, we

first recall how to establish CIs for linear models in section II, and then approximate

CIs for nonlinear models in section III. In section IV, we exploit these known

theoretical results for practical modeling problems involving neural models. We show

that the LTE of a nonlinear model output not only provides a CI at any input value of

interest, but also gives a tool to detect the possible ill-conditioning of the model, and,

as in [Monari 1999] [Monari & Dreyfus], to estimate its performance through an

approximate leave-one-out (LOO) score. A real-world illustration is given through an

industrial application, the modeling of the elasticity of a complex material from some

of its structural descriptors. Section V compares the LS LTE approach to other

analytic approaches, and discusses its advantages with respect to bootstrap

approaches.

We consider single-output models, since each output of a multi-output model

can be handled separately. We deal with static modeling problems for the case of a

non random (noise free) n-input vector x = x1 x2 … xn
T , and a noisy measured

output yp which is considered as the actual value of a random variable Yp = Yp  x 

depending on x. We assume that there exists an unknown regression function

E Yp | x  such that for any fixed value of x :

Yp | x = E Yp | x  + W | x (1)

where W | x  is thus a random variable with zero expectation. A family of

parameterized functions f x, qqqq , x ∈ R n, qqqq ∈ Rq  is called an assumed model. This

assumed model is said to be true if there exists a value qqqqp of qqqq such that, ∀ x  in the

input domain of interest, f x, qqqqp  = E Yp | x . In the following, a data set of N input-

output pairs xk, ypk k=1 to N  is available, where the xk = x1
k x2

k … xnk
T  are non random

n-vectors, and the ypk  are the corresponding realizations of the random variables

Yp
k = Yp | xk 1. The goal of the modeling procedure is not only to estimate the

regression E Yp | x  in the input domain of interest with the output of a model, but

also to compute the value of a CI for the regression, that is the value of a random

interval with a chosen probability to contain the regresssion. For the presentation of

the results of linear and nonlinear regression estimation, we deal with the true model

(a model which is linear in the parameters in section II, a nonlinear one in section III),

i.e. we consider that a family of functions containing the regression is known. In

1 We recall that we distinguish between random variables and their values (or realizations) by using

upper- and lowercase letters, e.g. Yp
k and yp

k; all vectors are column vectors, and are denoted by

boldface letters, e.g. the n-vectors x and x k ; non random matrices are denoted by light lowercase

letters (except the unambiguous identity matrix).



section IV, we consider the general realistic case of neural black-box modeling where

a preliminary selection among candidate neural models is first performed because a

true model is not known a priori.

II.  CONFIDENCE INTERVALS FOR LINEAR MODELS

We consider a true linear assumed model, that is the associated family of linear

functions xT qqqq,    x ∈ R n, qqqq ∈ Rn  contains the regression; (1) can thus be uniquely

rewritten as:

Yp | x = xT qqqqp + W | x (2)

where qqqqp is an unknown n-parameter vector. Model (2) associated to the data set

leads to:

Yp = x qqqqp + W (3)

where x = x1 x2 … xN T  is the non random (N,n) input matrix, Yp = Yp
1 Yp

2 … Yp
N T

 

and W = W1 W2 … WN T
  are random N-vectors, with E W  = 0000. Geometrically, this

means that E Yp  x  = x qqqqp belongs to the solution surface, the linear manifold m x

of the observation space R N  spanned by the columns of the input matrix2 (the range

of x). We assume that m x  is of dimension n, that is rank x  = n . In other words, the

model is identifiable, i.e. the data set is appropriately chosen, possibly using

experimental design.

II.1.  The linear least squares solution

The LS estimate qqqqLS of qqqqp  minimizes the empirical quadratic cost function:

J qqqq  = 1
2

 ypk – xk T qqqq
2∑

k=1

N
 = 1

2
 yp – x qqqq T yp – x qqqq (4)

2  m x  is sometimes called the “expectation surface” [Seber & Wild 89]; as a matter of fact, the

solution surface coincides with the expectation surface only when the assumed model is true.

The estimate qqqqLS is a realization of the LS estimator QQQQLS  whose expression is:

QQQQLS = xT x -1 xT Yp  = qqqqp + xT x -1 xT W (5)

Since the assumed model is true, this estimator is unbiased. The orthogonal

projection matrix on m x  is px = x xT x -1 xT . It follows from (5) that the unbiased LS

estimator of E Yp  x  is:

x QQQQLS = x qqqqp + px W (6)

that is the sum of E Yp  x  and of the projection of W on m x , as shown in Figure 1.

Let R denote the residual random N-vector R = Yp – x QQQQLS    , that is the vector of the

errors on the data set, then:

R = IN – px  W (7)

Under the assumption that the Wk  are identically distributed and uncorrelated

(homoscedastic), i.e. the noise covariance matrix is K W  = σ2 IN , it follows from (5)

that the variance of the LS estimator of the regression for any input x of interest is3:

var xT QQQQLS  = σ2 xT xT x -1 x (8)

Using (7), we obtain the unbiased estimator S 2 = R
T R

N – n
  of s2; the corresponding

(unbiased) estimate of the variance of xT QQQQLS  is thus:

var xT QQQQLS  = s2 xT xT x -1 x (9)

where s is the value of S.

II.2.  Confidence intervals for a linear regression

If the Wk  are homoscedastic gaussian variables, that is W → NN 0000, σ2 IN :

ThL1. QQQQLS – qqqqp → Nn  0000, σ2 xT x -1 (10)

ThL2. RT R
σ2

  → χN-n 
2 (11)

ThL3. QQQQ LS is statistically independent from RT R .

3 We recall that x (boldface) is the input vector (n, 1) of interest, and that x is the experimental (N, n)

input matrix.



The proof of the above theorems follows from Figure 1 and from the Fisher-Cochrane

theorem [Goodwin & Payne 1977], see for instance [Seber 1977].

The goal is to build a CI for the regression value E Yp  x  = xT qqqqp , for any input

vector x of interest. The variance of the measurements s2 being unknown, let us

build a normalized centered gaussian variable where both E Yp  x  and σ appear:
xT QQQQLS –  E Yp  x

σ xT xT x -1 x
 → N  0, 1 (12)

Thus, using the Pearson variable (11), which is independent from (12) according to

ThL3, we obtain the following Student variable:
xT QQQQLS –  E Yp  x

S xT xT x -1 x
 → Student N – n (13)

A 100 1–α % CI for E Yp  x  is thus:

xT qqqqLS ± t N-n α  s xT xT x -1 x (14)

where t N-n  is the inverse of the Student(N-n) cumulative distribution.

Note that (14) allows to compute a CI corresponding to any input vector, and

that it is much more informative than average values such as that the mean square

error on the data set, or the mean of the variance estimate over the data set4; as a

matter of fact, the latter invariably equals s2 n
N 

.

II.3.  Example of a simulated linear SISO process (process #1)

We consider a simulated single input - single output (SISO) linear process:

ypk = qp1 + qp2 xk + wk    k=1 to N (15)

We take θp1 = 1, θp2 = 1, σ2 = 0.5, N = 30. The inputs xk  of the data set are uniformly

distributed in [-3; 3], as shown in Figure 2a. The family of functions

q1 + q2 x , qqqq ∈ R2  is considered, that is the assumed model is true, and we choose

4 The mean of the variance estimate over the training data set is:

1
N

 s2 x k T xT x -1 xk∑
k=1

N
 = s

2

N
 px k k∑
k=1

N
 = s

2

N
 trace px . Since px  is the orthogonal projection matrix on a

n-dimensional subspace, trace (px) = n .

a confidence level of 99% (t 28 1%  = 2.76). The LS estimation leads to s2 = 0.29, i.e.

underestimates the noise variance. Figure 2b displays the estimate (9) of the

variance of xT QQQQLS , and the true variance (8). The estimator S 2 of the noise variance

being unbiased, the difference between the estimated variance (9) and the (usually

unknown) true variance (8) is only due to the particular values of the measurement

noise. Figure 2a shows the regression E Yp  x , the data set, the model output and

the 99% CI for the regression computed with (14).

III. APPROXIMATE CONFIDENCE INTERVALS FOR NONLINEAR MODELS

We consider a family of nonlinear functions f x, qqqq , x ∈ R n, qqqq ∈ Rq  which

contains the regression, that is the assumed model is true; (1) can thus be rewritten

as:

Yp  x = f x, qqqqp  + W  x (16)

where qqqqp is an unknown q-parameter vector. We denote by f x, qqqqp  the unknown

vector f x1, qqqqp … f xk, qqqqp … f xN, qqqqp
T  defined on the data set, thus:

Yp = f x, qqqqp  + W (17)

As in section II, x denotes the (N,n) input matrix5, and Yp and W are random N-

vectors with E W  = 0000. Geometrically, this means that E Yp  x  belongs to the

solution surface, the manifold m f x, qqqq  = f  x, qqqq  ,    qqqq    ∈R q  of R N .

III.1.  The linear Taylor expansion of the nonlinear least squares solution

A LS estimate qqqqLS of qqqqp minimizes the empirical cost function6:

5 In the case of a nonlinear model, x is merely a two-dimensional array.

6 In the case of a multilayer neural network, the minimum value of the cost function can be obtained

for several values of the parameter vector; but, since the only function-preserving transformations are



J qqqq  = 1
2

 ypk – f xk, qqqq 2∑
k=1

N
 = 1

2
 yp – f x, qqqq T yp – f x, qqqq (18)

The estimate qqqqLS is a realization of the LS estimator QQQQ LS. Efficient algorithms are at

our disposal for the minimization of the cost function (18): they can lead to an

absolute minimum, but they do not give an analytic expression of the estimator that

could be used to build CIs. In order to take advantage of the results concerning linear

models, it is worthwhile considering a linear approximation of QQQQ LS which is obtained

by writing the LTE of f x, qqqq  around f x, qqqqp :

f x, qqqq  ≈ f x, qqqqp  + 
∂f x, qqqq

∂θr

  
qqqq = qqqqp

 θr – θpr∑
r=1

q

 = f x, qqqqp  + xxxxT qqqq – qqqqp (19)

where xxxx = 
∂f x, qqqq
∂qqqq

 
qqqq = qqqqp

. Thus, with the matrix notation:

f x, qqqq  ≈ f x, qqqqp  + ξ  qqqq – qqqqp (20)

where ξ = xxxx1 xxxx2 … xxxxN T  and xxxxk = 
∂f xk, qqqq

∂qqqq
 
qqqq = qqqqp

. The (N,q) matrix ξ is the non

random and unknown (since qqqqp is unknown) Jacobian matrix of f. Using (20), one

obtains, similarly to the linear case, the following approximation of QQQQ LS (see Appendix

1.1 for a detailed derivation of (21) and (23)):

QQQQLS ≈ qqqqp + ξ
T
 ξ

-1
 ξ

T
 W (21)

The range m ξ  of ξ is tangent to the manifold m f x, qqqq  at qqqq = qqqqp; this manifold is

assumed to be of dimension q, hence rank ξ  = q . The matrix pξ = ξ ξ
T
 ξ

-1
 ξ

T 
 is the

orthogonal projection matrix on m ξ . From (20) and (21), the LS estimator of

E Yp  x  can be approximately expressed by:

f x, QQQQLS  ≈ f x, qqqqp  + pξ W (22)

i.e. it is approximately the sum of E Yp  x  and of the projection of W on m ξ , as

illustrated in Figure 3. If K W  = σ2 IN  (homoscedasticity), the variance of the model

output, that is the LS estimator of the regression, for an input x is approximately:

var f x, QQQQLS  ≈ σ2 xxxxT xT x -1 xxxx (23)

neuron exchanges, as well as sign flips for odd activation functions like the hyperbolic tangent

[Sussmann 92], we will legitimately consider the neighborhood of one of these values only.

In the following, approximation (23) will be termed “the LTE approximation” of the

model output variance. Let R denote the LS residual vector R = Yp – f x, QQQQLS , thus:

R ≈ IN – pξ  W  (24)

Under the assumption of appropriate regularity conditions on f, and for large N, the

curvature of the solution surface7 m f x, qqqq  is small; thus, using (24), one obtains

the asymptotically (i.e. when N →∞) unbiased estimator S 2 = R
T R

N – q
  of σ2. In (23),

the matrix ξ takes the place of the matrix x in the linear case. But, as opposed to x, ξ

is unknown since it is a function of the unknown parameter qqqqp. The (N,q) matrix x

may be approximated by z = z 1 z 2 … zN T   where z k = 
∂f xk, qqqq

∂qqqq
 
qqqq = qqqqLS

, that is:

zrk = 
∂f xk, qqqq

∂θr

 
qqqq    = qqqqL

(25)

In the following, we assume that rank z  = q . Like the matrix ξ, the vector xxxx is not

available, and its value may be approximated by:

z = 
∂f x, qqqq
∂qqqq

 
qqqq = qqqqLS

 (26)

From (23), (25) and (26), the LTE estimate of the variance of the LS estimator of the

regression for an input x  is thus:

var f x, QQQQLS LTE = s2 z T zT z -1 z (27)

III.2.  Approximate confidence intervals for a nonlinear regression

If W → NN 0000, σ2 IN , and for large N, it follows from the above relations and from

linear LS theory [Seber & Wild 1989] that:

ThNL1. QQQQLS    ~→ Nq qqqqp, σ2 ξ
T
 ξ

-1
(28)

ThNL2. RT R
σ2

  ~→ χN-q
2  (29)

ThNL3. QQQQLS  is approximately statistically independent from RT R .

7 The curvature is usually decomposed in two components: i) the intrinsic curvature, which measures

the degree of bending and twisting of the solution surface m f x, qqqq , and ii) the parameter-effects

curvature, which describes the degree of curvature induced by the choice of the parameters qqqq.



Using (23) and (28), let us again build a quasi normalized and centered

gaussian variable where both E Yp  x  and σ appear:
f x, QQQQLS  – E Yp  x

σ xxxxT ξ
T
 ξ

-1
 xxxx

 ~→ N 0, 1 (30)

Thus, the variable (29) being approximately independent from (30) according to

ThNL3, we have:
f x, QQQQLS  – E Yp  x

S xxxxT ξ
T
 ξ 

-1
 xxxx

 ~→ Student N – q (31)

A 100 1–α % approximate CI for E Yp  x  is thus:

f x, qqqqLS  ± tN-q α  s z T zT z -1 z (32)

Note that, when N is large, the Student distribution is close to the normal distribution,

and thus tN-q α  ≈ n α , where n is the inverse of the normal cumulative distribution.

Like in the linear case, (32) allows to compute a CI at any input x of interest,

which gives much more information than the value of the mean variance estimate

over the data set: as a matter of fact, the latter always approximately equals s2 
q
N

 .

From a practical point of view, the construction of a CI for a neural model output

at any input x of interest involves once and for all the computation of the matrix z,

that is the N x q  partial derivatives of the model output with respect to the parameters

evaluated at qqqqLS for the data inputs xk k=1 to N , and, for each x value, that of z, i.e.

the derivatives at x. In the case of a neural model, these derivatives are easily

obtained with the backpropagation algorithm.

All the previous results and the above considerations are valid provided an

absolute minimum of the cost function (18) is reached. In real-life, several estimations

of the parameters must thus be made starting from different initial values, the

estimate corresponding to the lowest minimum being kept in order to have a high

probability to obtain an absolute minimum. In the examples of this work, the algorithm

used for the minimization of the cost function is the Levenberg algorithm, as

described for example in [Bates & Watts 1988], and several trainings are performed.

The probability of getting trapped in a relative minimum increasing with the number of

parameters of the network and decreasing with the size of the data set, the number

of trainings is chosen accordingly.

III.3.  Quality of the approximate confidence intervals

III.3.1.  Theoretical analysis

The quality of the approximate CI depends essentially on the curvature of the

solution surface m f x, qqqq , which depends on the regularity of f and on the value of

N. In practice, f is often regular enough for a first-order approximation to be

satisfactory, provided that N is large enough. Thus, if N is large: (i) as in the linear

case, the estimator of the noise variance S2 is unbiased, and the difference between

s2 and σ2 is only due to the particular values of the noise; (ii) the variance of f x, QQQQLS

is small, and qqqqLS  is likely to be close to qqqqp : z and z are thus likely to be good

approximations of respectively x and xxxx. A reliable estimate of a CI may thus be

obtained from the LTE variance estimate (27). On the other hand, if N is too small:

(i) as opposed to the linear case, even if the assumed model is true, the estimator of

the noise variance S2 is biased; (ii) the variance of f x, QQQQLS  is large, and qqqqLS  is likely

to differ from qqqqp : z and z risk to be poor approximations of x and xxxx. Thus, if N is

diagnosed as too small, one cannot “have confidence” in the confidence intervals

(32), and additional data should be gathered.

III.3.2.  Quantitative analysis

As detailed for example in [Bates & Watts 1988] [Seber & Wild 1989]

[Antoniadis et al. 1992], different measures of the curvature can be computed, and

can be used in each particular case to evaluate the accuracy of the LTE. In section

IV.3 dealing with neural network modeling, we give indications on how to judge if N is

large enough for the approximate CI to be accurate.



In order to evaluate the accuracy of the LTE variance estimate (27) when

dealing with simulated processes, we introduce an estimate of the unknown true

variance of f x, QQQQLS  that is not biased by curvature effects, the reference variance

estimate sref
2  x . This estimate is computed on a large number M of other sets of N

outputs corresponding to the inputs of the training set, and whose values are

obtained with different realizations (simulated values) of the noise W . The i-th LS

estimate f x, qqqqLS
(i)  of E Yp  x  is computed with data set i (i=1 to M), and the reference

estimate of the variance at input x is computed as:

sref
2 x  = 1

M
 f x, qqqqLS

(i)  – f x
2∑

i=1

M
 , where  f x  = 1

M
 f x, qqqqLS

(i)∑
i=1

M
(33)

In the nonlinear case, we thus use three notions related to the (true) variance of

f x, QQQQLS : 1) the LTE variance approximation (23), which is a good approximation of

the true variance if the curvature is small, as we show in section III.4.3, and which

can be computed only when the process is simulated; 2) the LTE variance estimate

(27), which is the estimate that can be computed in real-life; 3) the reference variance

estimate (33), which tends to the true variance when M tends to infinity because it is

not biased by curvature effects, and which can be computed only when the process

is simulated.

III.4.  Illustrative examples

Since we are concerned with neural models, and since, in this section, the

assumed model is true, the following examples bring into play “neural” processes,

that is to say processes whose regression function is the output of a neural network;

the more realistic case of arbitrary processes for whom a family of nonlinear functions

(a neural network with a given architecture) containing the regression is unknown is

tackled in the next section.

III.4.1.  Example of a simulated “neural” SISO process (process #2)

We consider a SISO process simulated by a neural network with one hidden

layer of two hidden neurons with hyperbolic tangent activation function and a linear

output neuron:

ypk = θp1 + θp2 tanh θp3 + θp4 xk  + θp5 tanh θp6 + θp7 xk  + wk    k=1 to N (34)

We take qqqqp = 1; 2; 1; 2; -1; -1; 3 T , σ2 = 10-2, N = 50. The inputs xk  of the data set

are uniformly distributed in [-3; 3], as shown in Figure 4a. The family of functions

θ1 + θ2 tanh θ3 + θ4 x  + θ5 tanh θ6 + θ7 x , qqqq ∈ R 7  is considered, that is the

assumed model is true, and we choose a confidence level of 99% (t 43 1%  = 2.58).

The minimization of the cost function with the Levenberg algorithm leads to

s2 = 1.02 10-2. Figure 4b displays the LTE estimate of the variance of f x, QQQQLS  (27),

and the reference estimate (33) computed over M = 10 000 sets. Figure 4a shows

the regression, the data set used for the LS estimation, and the corresponding model

output and 99% CI (32). The model being true and the size N = 50 of the data set

being relatively large with respect to the number of parameters and to the noise

variance, we observe that: (i) s2 ≈ σ2; (ii) the model output is close to the regression,

leading to good approximations of x and of xxxx by z and z. Thus, (i) and (ii) lead to an

accurate LTE estimate of the variance, and hence of the CI.

III.4.2.  Example of a simulated “neural” MISO process (process #3)

We consider a MISO process simulated by a neural network with two inputs,

one hidden layer of two “tanh” hidden neurons and a linear output neuron:

ypk = θp1 + θp2 tanh θp3 + θp4 x1
k + θp5 x2

k

+ θp6 tanh θp7 + θp8 x1
k + θp9 x2

k  + wk    k=1 to N 
(35)

We take qqqqp = 1; 1; 0; 1; -1; -2; 0; 1; 1 T, σ2 = 10-1, N = 100. The inputs x1
k  and x2

k  of

the data set are uniformly distributed in [-3; 3]. As for process #2, the assumed model

is true, i.e. the neural network associated to (35) is used; the minimization of the cost

function with the Levenberg algorithm leads to s2 = 9.73 10-2. Figure 5a shows the

inputs of the data set and the regression; Figure 5b displays the LTE estimate of the



variance of f x, QQQQLS  (27); Figure 5c displays the difference between the reference

variance estimate (33) computed over M = 10 000 sets, and the LTE variance

estimate (27). Since s2 is slightly smaller than s2, the variance is globally slightly

underestimated. But except in the domain around the corner (3, 3) where the density

of the inputs is lower, and where the slope of the output surface is steep, the LTE

variance estimate is satisfactory. A reliable estimate of the CI may thus be obtained.

III.4.3  Accuracy of the LTE variance approximation (processes #2 and #3)

Let us now show on the example of processes #2 and #3 that the curvature of

the solution surface is small enough for the LTE approximation of the variance (23) to

be satisfactory. For both processes, we have computed approximation (23), using the

values of x and of xxxx (at qqqqp) and the values of s2 used for the noise simulation. As

shown in Figures 6a and 6b for process #2, the LTE approximation of the variance

(23) is very close to the reference variance estimate. As a matter of fact, the

difference between them (Figure 6b) is only due to the curvature, which is small since

N = 50 is large with respect to the complexity of the regression. Expression (23) also

leads to satisfactory results in the case of process #3 as shown in Figures 7a and 7b

(N = 100, two inputs). This tends to show that a first-order approximation of the

variance is often sufficient, and that is not worth to bother with a higher-order

approximation. In [Seber & Wild 89], a quadratic approximation of the LS estimator

using the curvature of the solution surface is introduced. This approximation uses

arrays of projected second derivatives, the intrinsic and parameter-effects curvatures

arrays; but their presentation is beyond the scope of this paper.

IV.  CONFIDENCE INTERVALS FOR NEURAL NETWORKS

In the previous sections, the model used for the construction of CIs is true. For

real-world black-box modeling problems however, a family of functions which

contains the regression is not known a priori. The first task is thus to select the less

complex family of functions which contains a function approximating the regression to

a certain degree of accuracy in the input domain defined by the data set. In practice,

several families of increasing complexity (for example neural networks with one layer

of an increasing number nh  of hidden units, and a linear output neuron) are

considered, and the data set is used both to estimate their parameters, and to

perform the selection between the candidates. In order to retain the less complex

family containing a good approximation of the regression, it is of interest to perform

the selection only between neural candidates which are not unnecessarily large, and

which are (that is their matrix z is) sufficiently well-conditioned to allow the

computation of the approximate CI (32). We propose to discard too large models by a

systematic detection of ill-conditioning, and to perform the selection among the

approved, i.e. well-conditionned models using an approximate value of their LOO

score whose computation does not require further trainings. Both the ill-conditioning

detection and the estimation of the LOO score of a neural candidate are based on the

LTE of its output.

IV.1.  Ill-conditioning detection for model approval

A too large neural model, trained up to convergence with a simple LS cost-

function, will generally overfit. Overfitting is often avoided by using early stopping of

the training algorithm or by adding regularization terms in the cost function, e.g.

“weight decay” [Bishop 1995]. Unfortunately, since only the estimator whose value

corresponds to an absolute minimum of the quadratic cost function (18) without

weight decay terms is unbiased, both early stopping and weight decay introduce a



bias in the estimation of the regression: the corresponding estimates thus lead to

questionable CIs for the regression.

To detect and discard too large networks, we propose, after the training of each

candidate up to a (hopefully) absolute minimum of the cost function (18), to check the

conditioning of their matrix z (see [Rivals & Personnaz 1998]). The fact that z be ill-

conditioned is the symptom that some parameters are useless, since the elements of

z represent the sensibility of the model output with respect to the parameters. A

typical situation is the saturation of a “tanh” hidden neuron, a situation which

generates in the matrix z a column of +1 or –1 that corresponds to the parameter

between the output of the saturated hidden neuron and the linear output neuron, and

columns of zeros that correspond to the parameters between the network inputs and

the saturated hidden neuron8. In practice, we propose to perform a singular value

factorization of z, and to compute its condition number, that is the ratio of its largest

to its smallest singular value, see for example [Golub & Van Loan 1983]. The matrix z

can be considered as very ill-conditioned when its condition number reaches the

inverse of the computer precision, which is of the order of 10-16.

Furthermore, in order to be able to compute the approximate CI (32) which

involve zT z -1, the cross-product Jacobian matrix zT z  must also be well-

conditioned. Since the condition number of zT z  is the square of the condition

number of z, the networks whose matrix z has a condition number much larger than

108 cannot be approved.

There are other studies of the ill-conditioning of neural networks, but they deal

with their training rather than with their approval, like in [Zhou and Si 1998] where an

algorithm avoiding the Jacobian rank deficiency is presented, or [Saarinen et al.

8 Such a situation might also correspond to a relative minimum; to check the conditioning of z helps

thus also to discard neural networks trapped in relative minima, and leads to retrain the neural

candidate starting from different initial weights.

1993] where the Hessian rank deficiency is studied during training. In our view, rank

deficiency is not very relevant during the training since, with a Levenberg algorithm,

the matrix to be “inverted” is made well-conditioned by the addition of a scalar matrix

λ  Iq, λ > 0, to the cross-product Jacobian.

IV.2.  Approximate leave-one-out scores for model selection

The selection among the networks which have been approved can be

performed with statistical tests for example [Urbani et al. 1994] [Rivals & Personnaz

1998]. Another approach, cross validation, consists in partitioning the data set in

training and test sets, and in selecting the smallest network leading to the smallest

mean square error on the test sets9. One of the drawbacks of cross validation is to

require a successful training of the candidate models on many test sets, that is N

successful trainings in the case of LOO cross validation. Let us denote by ek the

error obtained on the left out example k with the model trained on the N-1 remaining

examples (k-th test set). In this section, we derive an approximate expression of ek,

expression which allows an economic estimation of the LOO score without

performing these N time-consuming trainings of each candidate network, as

proposed in [Monari 1999] [Monari & Dreyfus].

In the case of a linear model, it is well-known [Efron & Tibshirani 1993] that the

k-th LOO error ek can be directly derived from the corresponding residual rk:

ek = rk

1 – px kk
   if px kk < 1

ek = rk = 0         if px kk = 1
  k=1 to N (36)

where, we recall, px denotes the orthogonal projection matrix on the range of x.

Expression (36) holds irrespective of whether or not the assumed model is true.

9 Note that statistical tests may advantageously be used complementarily to cross validation in order

to take a decision [Rivals & Personnaz 1999]; these tests can also be established by applying LS

theory to the LTE of nonlinear models [Bates & Watts 1988], but this exceeds the scope of this paper.



In the case of a nonlinear model, we show (see Appendix 2) that a useful

approximation of the k-th LOO error can be obtained using the LTE of the model

output at qqqqLS:

ek ≈ rk

1 – pz kk
  k=1 to N (37)

where pz denotes the orthogonal projection matrix on the range of z. The

approximation (37) is thus similar to (36)10. In the case where (numerically) pz kk = 1,

we choose to take ek  = rk (the residual is not necessarily zero). Like in the linear

case, expression (37) holds independently on the assumed model being true or not.

Hence the LOO score:

LOO score = 1
N

 ek 2∑
k=1

N
(38)

This LOO score can be used as an estimate of the mean square performance error,

and we thus denote it as MSPE, as opposed to 2
N

 J qqqqLS , the mean square training

error (MSTE). The interested reader will find in [Monari 1999] [Monari & Dreyfus] a

systematic model selection procedure based on both the approximate LOO score

and the distribution of the values of the pz kk . Nevertheless, another performance

measure could be chosen as well (a 10-fold cross validation score, a mean square

error on an independent set, etc.).

IV.3.  Accuracy of the approximate confidence intervals

The quality of the selected model  f x, qqqqLS , and thus of the associated

approximate CI, depends essentially on the size N of the available data set with

respect to the complexity of the unknown regression function and to the noise

variance s2:

1. N is large: it is likely that the selected family f x, qqqq , qqqq ∈ Rq  contains the

regression E Yp  x , i.e. that the LS estimator is asymptotically unbiased, that

10 An expression similar to (37) is proposed in [Hansen & Larsen 1996], but unfortunately, it is not

valid even in the linear case.

the model f x, qqqqLS  is a good approximation of E Yp  x  in the domain of interest,

and that the curvature is small. In this case, reliable CIs can be computed with

(32).

2. N is small: it is likely that the selected family f x, qqqq , qqqq ∈ Rq  is too small11 to

contain E Yp  x , i.e. that the LS estimator is biased, and that the model

f x, qqqqLS  thus underfits. The approximate CIs are thus questionable, and

additional data should be gathered.

A good indicator of whether the data set size N is large enough or not is the ratio

MSPE/MSTE of the selected candidate: if its value is close to 1, then N is probably

large enough, whereas a large value is the symptom of a too small data set size, as

shown in Figure 8 (and as illustrated numerically in the following examples).

IV.4.  Example of a simulated nonlinear SISO process (process #4)

This first example is based on a simulated process. Like in the previous

sections, a reference estimate of the variance of the output of a neural network is

made, using M = 1000 other sets; in order to ensure that an absolute minimum is

reached on each of the M sets, five to thirty trainings (depending on the network size)

with the Levenberg algorithm for different initializations of the weights are performed,

and the weights giving the smallest value of the cost function (18) are kept. We

consider the SISO process simulated with:

ypk = sinc 2 xk + 5  + wk    k=1 to N (39)

where sinc denotes the cardinal sine function; we take s2 = 10-2.

First, a data set of N = 200 input-output pairs is computed, with input values

uniformly distributed in [-5; 5]. Since a family of nonlinear functions (a neural network

11 It will generally not be too large since the approval procedure proposed in section IV.1 prevents

from selecting a neural network with useless parameters.



with a given architecture) containing the regression is not known a priori, neural

networks with a linear output neuron and a layer of nh  “tanh” hidden neurons are

trained. The numerical results are summarized  in Table 1. We list the number of

parameters q, the MSTE (i.e. the smallest MSTE obtained with the network for its

different random weight initializations),  the condition number of z, and, if the latter is

not too large, the MSPE (corresponding approximate LOO score computed with (37)

and (38)) and the ratio MSPE/MSTE. The candidates with more than 6 hidden

neurons cannot be approved, because cond(z) >> 108: for nh = 7, cond(z) = 1011.

The optimal number of neurons nh
opt 200  = 4 is selected on the basis of the MSPE.

The fact that the corresponding ratio MSPE/MSTE is close to 1 is the symptom that N

is large enough, so that the selected family of networks contains a good

approximation of the regression, and that the curvature is small (case 1 of section

IV.3). The results obtained for the selected neural network are shown in Figure 9.

The model output is close to the regression, the LTE variance estimate (27) is close

to the reference variance estimate (33), and the CI is thus accurate.

Second, a data set of N = 30 input-output pairs is computed, the numerical

results being summarized in Table 2. The data set being much smaller, the

candidates cannot be approved as soon as nh > 4: for nh = 5, cond(z) = 1015. The

optimal number of neurons nh
opt 30  = 2 is selected on the basis of the MSPE. The

ratio MSPE/MSTE of the selected network equals 2.1, symptom that N is relatively

small, and that the selected family of networks is likely not to contain the regression

(case 2 of section IV.3). The results obtained for the selected neural network are

shown in Figure 10. The family of functions implemented by a network with two

hidden units is obviously too small to contain a good approximation of the regression,

and though the estimate of the output variance is good (it is close to the reference

variance estimate), since the output of the neural network differs from the regression,

the CI is less accurate than in the case where N = 200. Note that in the input domain

[0, 5] where the model underfits, though there is a higher concentration of training

examples around 1 and 3, the variance remains constant and low. This is due to the

fact that, in this domain, the model output is insensitive to most parameters of the

network (this is usually the case when, like here, the output of a network does not

vary12): the elements of z’s in this domain are thus constant and small, hence a small

and constant variance at the corresponding x’s.

IV.5.  Industrial modeling problem

We apply here the presented methodology (LS parameter estimation, model

approval, model selection, CI construction) to an industrial example first tackled in

[Rivals & Personnaz 1998], that is the modeling of a mechanical property of a

complex material from three structural descriptors. We have been provided with a

data set of N = 69 examples; the inputs and outputs are normalized for the LS

estimations. Thanks to repetitions in the data, and assuming homoscedasticity, the

“pure error mean square” [Draper & Smith 1998] gives a good estimate of the noise

variance: σ2 = 3.38 10-2. Using this reliable estimate, statistical tests establish the

significance of two inputs. An affine model with these two inputs gives the estimate

s2 = 2.38 10-1 of the variance, hence the necessity of nonlinear modeling.

Neural networks with a linear output neuron and a layer of nh  “tanh” hidden

neurons are trained. The numerical results are summarized in table 3. It shows that

the candidates with more than 3 hidden neurons cannot be approved: for nh = 4,

cond(z) = 1012. The optimal number of neurons nh
opt 69  = 2 is selected on the basis

of the MSPE. The fact that the corresponding ratio MSPE/MSTE equals 1.3 indicates

that N is large enough, so that the selected family of networks contains probably a

12 The output of a neural network with one layer of tanh hidden units remains constant in a given

domain of its inputs when the “tanh” activation functions of all hidden units are saturated in this

domain: the output of the network is thus insensitive to all the parameters of the hidden units.



good approximation of the regression, and that the curvature is small (case 1 of

section IV.3). The function implemented by the selected network is shown in Figure

11.

The N = 69 outputs of the training set are presented in increasing order in

Figure 12a, and the corresponding residuals and approximate LOO errors in Figure

12b: both appear quite uncorrelated and homoscedastic. A CI with a level of

significance of 95% is then computed with (32); the half width of the 95% CI on the

N = 69 examples of the data set is shown in Figure 12c. In order to check the

confidence which can be attached to the model, the variance of its output must be

examined in the whole input domain of interest. Figure 13 shows the isocontours of

the LTE estimate of the standard deviation of the model output s z T zT z -1 z  in the

input domain defined by the training set. The computation of the LTE variance

estimate thus allows not only to construct a CI at any input of interest, but also to

diagnose that, at the top right corner of the input domain, the model standard

deviation is larger than that of the noise itself (the highest isocontour value equals

that of the estimate of the noise standard deviation s = 1.39 10-1). Little confidence

can thus be attached to the model output in this input domain, where more data

should be gathered. On the opposite, there is a large region on the left of the diagram

where there are very few training examples, but where the LTE estimate of the

standard deviation is surprisingly rather small: like for the modeling of process #4 in

section IV.4, this is due to the fact that the model output is little sensitive to most

parameters of the network in this region (the model output varies very little, see

Figure 11).

V.  COMPARISONS

In this section, we discuss the advantages of the LS LTE approach to the

construction of construction intervals for neural networks with respect to other

analytic approaches and to the bootstrap methods, and compare them on simulated

examples.

V.1.  Comparison to other analytic approaches

Maximum likelihood approach

In the case of gaussian homoscedastic data, likelihood theory leads to the same

approximate variance (23), but two different estimators of it are commonly

encountered (see Appendix 1.2):

var f x, QQQQLS LTE = s2 z T zT z -1 z 

i.e. the same estimate as (27), and also:

var f x, QQQQLS Hessian = s2 z T h qqqqLS
-1 z (40)

which necessitates the computation of the Hessian. Efficient methods for computing

the Hessian are presented in [Buntine & Weigend 1994].

Bayesian approach

The Bayesian approach is an alternative approach to sampling theory (or

frequentist approach) for modeling problems, and also leads to the design of CIs.

These two approaches are conceptually very different: the Bayesian approach treats

the unknown parameters as random variables, whereas they are considered as

certain in the frequentist approach. Nevertheless, as presented for example in

[MacKay 1992a] [MacKay 1992b] [Bishop 1995], the Bayesian approach leads to a

posterior distribution of the parameters with a covariance matrix whose expression is

very similar to that of the covariance matrix of the least-squares estimator of the



parameters, and thus to CIs which are similar to those presented in this paper. We

thus make a brief comparison between the CIs these two approaches lead to.

The most important difference is that the estimator which is considered here is

the one whose estimate minimizes the cost function (18), whereas in the Bayesian

approach, a cost-function with an additional weight-decay regularization term is

minimized; the presence of this weight-decay term stems from the assumption of a

gaussian prior for the parameters.

Nevertheless, the least squares cost function (18) can be seen as the limit

where the regularization term is zero, which corresponds to an uninformative prior for

the parameters. In this case (that is (18) is minimized as in this paper), there is

another small difference in the Bayesian approach as presented in [MacKay 1992a]

[MacKay 1992b] [Bishop 1995]. Under hypotheses which we cannot detail here, the

Bayesian approach leads to a posterior parameter distribution with approximate

covariance matrix s2 h qqqqLS
-1, h qqqqLS  being the Hessian of the cost function

evaluated at the most probable value of the parameter, that is here qqqqLS. A LTE of the

estimator output leads then to the following estimate of its variance at input x:

var f x, QQQQLS Hessian = s2 z T h qqqqLS
-1 z 

i.e. it also leads to estimate (40).

Sandwich estimator

The sandwich estimate of the variance of a nonlinear model output can be

derived in various frameworks (a possible derivation in the frequentist approach is

given in Appendix 1.3):

var f x, qqqqLS sandwich = s2 z T h qqqqLS
-1 zT z h qqqqLS

-1 z (41)

The sandwich estimator is known to be robust to model incorrectness, i.e. the

assumptions about the noise are incorrect or the considered family of functions is too

small, see for example [Efron & Tibshirani 1993] [Ripley 1995].

Numerical comparison (processes #5 and #6)

Here, we perform a numerical comparison of the three variance estimates

considered above on a very simple example. We consider a SISO process simulated

by a single “tanh” neuron:

ypk = tanh qp1 + qp2 xk  + wk    k=1 to N (42)

with σ2 = 0.01, N = 30. For this comparison, the noise variance s2 is estimated with

s2 in the three (LTE, Hessian, sandwich) output variance estimates.

We first simulate a process with: θp1 = 0, θp2 = 1 (process #5). The

corresponding results are shown in Figure 14. The variance reference estimate is

computed on M = 10 000 data sets. The LTE approximation (23) of the variance is

almost perfect. The LTE (27), Hessian (40), and sandwich (41) estimates are

comparable: the parameter estimates being accurate (θLS1 = 3.63 10-2, θLS2 = 0.996),

the fact that they are overestimated is almost only due to the noise variance estimate

s2 = 1.32 10-2. Nevertheless, the shape of the LTE estimate is closer to the reference

estimate than that of the two others.

We then simulate a process with: θp1 = 0, θp2 = 5 (process #6). The

corresponding results are shown in Figure 15. The function being steeper, the

curvature is larger, and the LTE approximation (23) of the variance is a little less

accurate. The three estimates are still very similar but, here, their overestimation is

due not only to the noise variance estimate s2 = 1.25 10-2, but also to the bias of the

parameter estimates (θLS1 = 3.79 10-2, θLS2 = 6.58).

The computational cost of the LTE estimate being lower (is does not necessitate

the computation of the Hessian matrix), there is no reason to prefer one of the two

other estimates. As a matter of fact, since the Hessian depends on the data set, it is

the realization of a random matrix. Thus, in the maximum likelihood as well as in the

Bayesian approach, it is often recommended to take the expectation of the Hessian,

and to evaluate it at the available qqqqLS, i.e. to replace it by the cross-product Jacobian

zT z [Seber & Wild 1989]: estimates (40) and (41) then reduce to estimate (27). As



mentioned above, the sandwich variance estimator is known to be robust to model

incorrectness, a property which is not tested with this simple setting, but this is

beyond the scope of this paper.

V.2.  Comparison to bootstrap approaches

The bootstrap works by creating many pseudo replicates of the data set, the

bootstrap sets, and reestimating the LS solution (retraining the neural network) on

each bootstrap set; the variance of the neural model output, and the associated CI,

are then computed over the trained networks, typically a hundred [Efron & Tibshirani

1993]. In the “bootstrap pairs approach” for example, a bootstrap set is created by

sampling with replacement from the data set [Efron & Tibshirani 1993]. The first

advantage of the LS LTE approach is to require only one successful training of the

network on the data set to compute the LTE estimate of the variance of its output,

whereas the bootstrap methods require a hundred  successful trainings of the

network on the different bootstrap sets.

Studies on bootstrap where only one training with a random initialization of the

weights was performed for each bootstrap set show a pathological overestimation of

the variance. This can be seen in [Tibshirani 1996], examples 2 and 3; but the

overestimation of the bootstrap is not detected in this work because the reference

estimate is also overestimated for the same reasons (one single training per set). As

pointed out in [Refenes et al. 1997], a way to reduce this overestimation is to start

each training on a bootstrap set with the weights giving the smallest value of the cost

function (18) (that is on the original data set); but even so, the bootstrap method

becomes untractable for large networks, and/or for multi input processes.

The claim that bootstrap methods are especially efficient for problems with small

data sets (see [Heskes 1997] for example) may be subject to criticism. As an

illustration, the variance was estimated for process #2 using the bootstrap pairs

approach on 300 bootstrap sets, the network weights being initialized twice for each

training, once with the true ones, and once with those obtained by training the

network on the whole data set. As shown in Figure 16, though the size of the data set

is not very small (N = 50), the bootstrap variance estimate is far away from the

reference estimate. Increasing the number of bootstrap sets up to 1000 did not

improve the variance estimate.

In fact, the bootstrap is especially suited to the estimation of the variance of

estimators defined by a formula, like for example an estimator of a correlation

coefficient [Efron & Tibshirani 1993]: for each bootstrap set, an estimate is computed

using the formula, and the estimate of the variance is easily obtained. But the

bootstrap is definitely not the best method if each estimation associated to a

bootstrap set involves an iterative algorithm like the training of a neural network,

which is the case for the construction of a CI with a neural model. However, if the

data set is large enough, and if the training time is considered unimportant, the

bootstrap pairs approach is a solution in the case of heteroscedasticity (that is K W

is not scalar anymore), whereas the LS LTE approach, as well as the “bootstrap

residuals” approach [Efron & Tibshirani 1993], are no longer valid.

VI.  CONCLUSION

We have given a thorough analysis of the LS LTE approach to the construction

of CIs for a nonlinear regression using neural network models, and put emphasis on

its enlightening geometric interpretation. We have stressed the underlying

assumptions, in particular the fact that the approval and selection procedures must

have led to a parsimonious, well-conditioned model containing a good approximation

of the regression. Our whole methodology (LS parameter estimation, model approval,

model selection, CI construction) has been illustrated on representative examples,

bringing into play simulated processes and an industrial one.



We have also shown that, as opposed to the computationally intensive

bootstrap methods, the LS LTE approach to the estimation of CIs is both accurate

and economical in terms of computer power, and that it leads to CIs which are

comparable to those obtained by other analytic approaches under similar

assumptions, at a lower computational cost.

A rigorous assessment of the accuracy of the results obtained with the LS LTE

approach, as well as with any statistical approach dealing with nonlinear models and

assuming the local planarity of the solution surface, remains an open problem: it

could be enlightened by a specific study of the curvature of the solution surface of

neural networks.
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APPENDIX 1. ESTIMATES OF A NONLINEAR MODEL OUTPUT VARIANCE

In order to make this paper self-contained, we provide derivations of the different

variance estimates.

A1.1. LTE variance estimate in sampling theory

The well-known approximation [Seber & Wild 1989] we use in this paper is based on

a single expansion, the LTE of the nonlinear model output for an input x at the true

parameter value qqqqp:

f x, qqqq  ≈ f x, qqqqp  + xxxxT qqqq – qqqqp (A1-1)

This expansion leads, for the data set, to:

f x, qqqq  ≈ f x, qqqqp  + ξ  qqqq – qqqqp (A1-2)

We now use (A1-2) in the expression of the cost-function:

J qqqq  = 1
2

 yp – f x, qqqq T yp – f x, qqqq (A1-3)

This leads to:

J qqqq  ≈ 1
2

 yp – f x, qqqqp  – ξ  qqqq – qqqqp
T
 yp – f x, qqqqp  – ξ  qqqq – qqqqp

≈ 1
2

 yp–f x, qqqqp +ξ    qqqqp
T

yp–f x, qqqqp +ξ    qqqqp  – qqqqT    ξ
T yp–f x, qqqqp +ξ    qqqqp  + 1

2
 qqqqT    ξ

T
ξ qqqq    

An approximate expression of the gradient of the cost-function follows:
∂J
∂qqqq

 ≈  – ξ T
 yp – f x, qqqqp  + ξ    qqqqp      + ξ T

 ξ qqqq (A1-4)

Hence an approximate expression of the least-squares estimate of the parameters:

qqqqLS ≈ qqqqp + ξ
T
 ξ

-1
 ξ

T
 yp – f x, qqqqp (A1-5)

And hence the corresponding approximation of the least-squares estimator (i.e. the

random vector QQQQ LS) of the parameters (expression (21) in the main text):

QQQQLS ≈ qqqqp + ξ
T
 ξ

-1
 ξ

T
 Yp – f x, qqqqp  ≈ qqqqp + ξ

T
 ξ

-1
 ξ

T
 W (A1-6)

Using the linear Taylor expansion (A1-1), we obtain an approximation of the variance

of the LS estimator of the regression for any input x (expression (23) in the main

text):

var f x, QQQQLS  ≈ σ2 xxxxT xT x -1 xxxx (A1-7)

Sampling theory LTE variance estimate

The derivatives involved in xxxx and x being performed at the unknown qqqq˚̊̊̊= qqqqp, they may

be estimated by the derivatives at qqqq˚̊̊̊= qqqqLS, that is by replacing xxxx by z and x by z.

Hence the LTE variance estimate presented in the paper:

var f x, QQQQLS LTE = s2 z T zT z -1 z  =  r T r
N – q

 z T zT z -1 z (A1-8)

A1.2. LTE variance estimates in maximum likelihood theory

For comparison, we sum up the results obtained with maximum likelihood theory (see

for example [Efron & Tibshirani 1993] [Tibshirani 1996]). We make the same



assumptions as for sampling theory, i.e. that the nonlinear assumed model is true

and that K(W ) = s2 IN (homoscedasticity), and we consider a gaussian distributed

noise. In this case, the log likelihood function is:

L qqqq  = – 1
2 s2

 yp – f x, qqqq T yp – f x, qqqq  + cte (A1-9)

The parameters that maximize (A1-9) are those that minimize (A1-3), i.e. qqqqML = qqqqLS.

It can be shown [Seber & Wild 1989] that the covariance matrix of QQQQ ML is given

asymptotically by the inverse of the Fisher information matrix evaluated at qqqqp. The

Fisher information matrix being the mathematical expectation of the random matrix

M(qqqq) of the second derivatives of the log likelihood function, we have:

M qqqq ij = – 
∂2L

∂θi ∂θj
 = 1
σ 2

 
∂f xk, qqqq

∂θi
 
∂f xk, qqqq

∂θj
 + Yp

k –  f xk, qqqq  
∂2f xk, qqqq
∂θi ∂θj

∑
k=1

N
 (A1-10)

The assumed model being true, i.e. E Yp
k –  f xk, qqqqp  = E Wk  = 0, the Fisher

information matrix evaluated at qqqqp is given by:

E M qqqqp ij = – 
∂2L

∂θi ∂θj
 
qqqq=qqqqp

 = 1
s2

 
∂f xk, qqqq

∂θi
 
qqqq=qqqqp

 
∂f xk, qqqq

∂θj
 
qqqq=qqqqp

∑
k=1

N

E M qqqqp  = 1
s2

 xT x 
(A1-11)

Thus, the covariance matrix of QQQQML = QQQQ LS is approximatively given by:

K(QQQQML) ≈ E M(qqqqp) -1 = s2 xT x -1 (A-1-12)

Using the linear Taylor expansion (A1-1), the maximum likelihood approximation of

the variance of the output in the gaussian case is obtained:

var f x, QQQQLS  ≈s2 xxxxT xT x -1 xxxx (A1-13)

Hence, the likelihood approximate variance (A1-13) is identical to the sampling theory

approximate variance (A1-7).

Remark. The Hessian matrix h is the value of the random matrix H with elements:

H qqqq ij = 
∂2J

∂θi ∂θj

 = 
∂f xk, qqqq

∂θi

 
∂f xk, qqqq

∂θj

 + Yp
k –  f xk, qqqq  

∂2f xk, qqqq

∂θi ∂θj
∑
k=1

N
(A1-14)

Thus:

E M qqqqp  = 1
s2

 E H qqqqp  = 1
s2

 xT x (A1-15)

Maximum likelihood theory LTE variance estimates

We can thus estimate the variance with:

var f x, QQQQLS LTE = s2 z T zT z -1 z (A1-16)

In likelihood theory, the variance of the noise is estimated with R
T R
N

  = 
N – q

N
 s2 ≈ s2,

but we will skip over this minor difference: (A1-16) is thus identical to (A1-8).

It is also proposed to estimate the Fisher information matrix E M qqqqp  with the

“observed information matrix” m qqqqLS ; this leads to estimate the variance with:

var f x, QQQQLS Hessian = s2 z T h qqqqLS
-1 z (A1-17)

As opposed to estimate (A1-16), estimate (A1-17) necessitates the computation of

the Hessian.

A1.3. Sandwich variance estimate

Let us propose a derivation of this estimate in the sampling approach. A second

expansion is needed, the LTE of the gradient at the true parameter value qqqqp:
∂J
∂qqqq

 
qqqq=qqqqLS

 ≈ 
∂J
∂qqqq

 
qqqq=qqqqp

 + ∂2J

∂qqqq    ∂qqqqT
 
qqqq=qqqqp

 qqqqLS – qqqqp

               = 
∂J
∂qqqq

 
qqqq=qqqqp

 + h qqqqp  qqqqLS – qqqqp

(A1-18)

where h qqqqp  is the value of the random Hessian matrix (see A1.2) evaluated at qqqqp.

Hence an approximate expression of the LS estimate of the parameters:

qqqqLS ≈ qqqqp – h qqqqp
-1 
∂J
∂qqqq

 
qqqq=qqqqp

(A1-19)

In (A1-19), we can replace the gradient by its expression:
∂J
∂qqqq

 
qqqq=qqqqp

 = – ξ
T
 yp – f x, qqqqp  = – ξ

T
 w (A1-20)

Hence the corresponding approximation of the least-squares estimator (random

vector QQQQLS ) of the parameters:

QQQQLS ≈ qqqqp + H qqqqp
-1 ξ

T
 W (A1-21)

Using the LTE of the model output (A1-1), we obtain:

f x, QQQQLS  ≈ f x, qqqqp  + xxxxT H qqqqp
-1 xT W (A1-22)



Neglecting the random character of H (H being replaced by h), the output variance

can be approximated by:

var f x, QQQQLS  ≈ σ 2 xxxxT h qqqqp
-1 xT x h qqqqp

-1 xxxx    (A1-23)

Sandwich variance estimate

This leads to propose the sandwich estimate:

var f x, QQQQLS sandwich = s2 z T h qqqqLS
-1 zT z h qqqqLS

-1 z (A1-24)

This estimate also necessitates the computation of the Hessian of the cost-function.

APPENDIX 2. DERIVATION OF AN APPROXIMATE LOO ERROR

The following derivation is inspired from [Antoniadis et al. 1992]; it is valid irrespective

of whether or not the assumed model is true. We denote by qqqqLS
(k) the LS estimate on

the k-th LOO set x i, ypi i=1 to N, i≠k . We have the k-th residual rk and the k-th LOO

error ek:
rk = ypk – f xk, qqqqLS

ek = ypk – f xk, qqqqLS
(k) (A2-1)

Let us denote by yp
(k) the (N-1)-vector obtained by deletion of the k-th component of

the measured output vector yp, by z(k) the (N-1,q) matrix obtained by deletion of the

k-th row of z, by x(k) the (N-1,q) matrix obtained by deletion of the k-th row of x. The

LOO estimate qqqqLS
(k) minimizes the cost-function:

J (k) qqqq  = 1
2

 yp
(k) – f x(k), qqqq T yp

(k) – f x(k), qqqq (A2-2)

We first approximate f x(k), qqqq  by its LTE at qqqqLS:

f x(k), qqqq  ≈ f x(k), qqqqLS  + z(k)  qqqq – qqqqLS (A2-3)

Hence the approximation of qqqqLS
(k):

qqqqLS
(k)    ≈    qqqqLS + z(k)T z(k) -1

 z(k)T yp
(k) – f x(k), qqqqLS (A2-4)

In the previous expression, we have:

z(k)T yp
(k) – f x(k), qqqqLS  = zT yp – f x, qqqqLS  – z k rk

= zT r – z k rk

= – z k rk
(A2-5)

since the columns of z are orthogonal to the residual vector r. Using the matrix

inversion lemma, we can express z(k)T z(k) -1
 in (A2.4) in terms of zT z -1:

z(k)T z(k) -1
 =  zT z -1 +  

zT z -1 z (k) z (k)T zT z -1

1 – z (k)T zT z -1 z (k)

= zT z -1 +  
zT z -1 z (k) z (k)T zT z -1

1 – pz kk

(A2-6)

where pz denotes the orthogonal projection matrix on the range of z.

Replacing (A2-5) and (A2-6) into (A2-4), we finally obtain:

qqqqLS
(k)    ≈    qqqqLS – zT z -1 z k rk

1 – pz kk
(A2-7)

Expanding ek at qqqqLS and replacing (A2-7) into this expansion, we obtain an

approximate expression of the LOO error which is similar to the expression of the

linear LOO error (36):

ek ≈ rk

1 – pz kk
  k=1 to N (A2-8)

assuming that pz kk < 1. In the case where pz kk = 1, we choose to take, similarly to

the linear case, ek = rk (the residual is not necessarily zero).

In practice, the diagonal terms of pz are computed using the singular value

factorization of z = u Σ v , where u is an orthogonal (N,N) matrix, Σ is a diagonal (N,q)

matrix, and v is an orthogonal (q,q) matrix, see [Golub & Van Loan 1983]. Then:

pz kk = u ki
2∑

i=1

q

  k=1 to N (A2-9)

The diagonal elements of pz that differ from 1 by a threshold consistent with the

computer precision are considered as equal to 1 (theoretically, the values of the pz kk

are comprised between 1/N and 1).
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TABLES

Table 1.

Results obtained on the modeling of the simulated SISO process #4 using neural

networks, in the case N = 200.

nh q MSTE cond(z) MSPE
MSPE
MSTE

1 4 1.4 10-2 10 1.4 10-2 1.0

2 7 1.2 10-2 103 1.3 10-2 1.1

3 10 9.7 10-3 106 1.1 10-2 1.1

4 13 8.5 10-3 102 9.8 10-3 1.1

5 16 8.4 10-3 106 9.9 10-3 1.2

6 19 8.2 10-3 107 1.0 10-2 1.2

7 22 7.9 10-3 1011 – –

Table 2.

Results obtained on the modeling of the simulated SISO process #4 using neural

networks, in the case N = 300.

nh q MSTE cond(z) MSPE
MSPE
MSTE

1 4 2.4 10-2 101 2.7 10-2 1.1

2 7 1.1 10-2 106 2.3 10-2 2.1

3 10 8.1 10-3 103 2.4 10-2 3.0

4 13 7.1 10-3 104 4.3 101 6.1 103

5 16 5.0 10-3 1015 – –



Table 3.

Results obtained on the modeling of the industrial process using neural networks.

nh q MSTE cond(z) MSPE
MSPE
MSTE

1 5 5.2 10-2 104 6.6 10-2 1.3

2 9 1.6 10-2 105 2.1 10-2 1.3

3 13 1.5 10-2 104 1.7 10-1 1.1 101

4 17 1.2 10-2 1012 – –
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Figure 1.

Geometric representation of the linear LS solution (true assumed model).
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Figure 2.

CI for process #1, a simulated linear SISO process (true assumed model with n = 2

parameters): a) regression (thin line), data set (crosses), model output and 99% CI

(thick lines); b) true variance (thin line) and LS estimate of the variance (thick line) of

xT QQQQLS    .
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Figure 3.

Geometric representation of the nonlinear LS solution and of its LTE approximation

(true assumed model).
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Figure 4.

CI for process #2, a simulated “neural” SISO process (the assumed model, a two

hidden neurons network with q = 7 parameters, is true): a) regression (thin line), the

N = 50 examples of the data set (crosses), model output and 99% approximate CI

(thick lines); b) reference (thin line) and LTE (thick line) estimates of the variance of

f x, QQQQLS .
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Figure 5.

CI for process #3, a simulated “neural” MISO process (the assumed model, a two

hidden neurons network with q = 9 parameters, is true): a) the N = 100 inputs of the

data set (circles) and regression; b) LTE estimate of the variance of f x, QQQQLS ;

c) difference between the reference and the LTE estimates of the variance of

f x, QQQQLS .
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Figure 6.

Accuracy of the LTE approximation of the variance for process #2: a) reference

estimate of the variance of f x, QQQQLS  (thin line), LTE approximation obtained with the

true values qqqqp and σ2 (thick line); b) difference between the reference estimate of the

variance of f x, QQQQLS  and the LTE approximation obtained with qqqqp and σ2.
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Figure 7.

Accuracy of the LTE approximation of the variance for process #3: a) reference

estimate of the variance of f x, QQQQLS ; b) difference between the reference estimate of

the variance of f x, QQQQLS  and the LTE approximation obtained with qqqqp and σ2.
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Figure 8.

Schematic evolution of the MSTE (crosses) and MSPE (circles) as a function of the

number of hidden neurons of the neural network candidates, the network with the

smallest MSPE being selected: a) large data set: the ratio MSPE/MSTE of the

selected network (six hidden neurons) is roughly equal to 1, hint that the data set size

N is large; b) small data set: the ratio MSPE/MSTE of the selected network (three

hidden neurons) is roughly equal to 2, hint that the data set size N is small.
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Figure 9.

CI for process #4, a simulated nonlinear SISO process, in the case of a data set of

size N = 200 (the selected model is a four hidden neurons network with q = 13

parameters): a) regression (thin line), data set (small points), model output and 99%

approximate CI (thick lines); b) reference (thin line) and LTE (thick line) estimates of

the variance of f x, QQQQLS .
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Figure 10.

CI for process #4, a simulated nonlinear SISO process, in the case of a data set of

size N = 30 (the selected model is a two hidden neurons network with q = 7

parameters): a) regression (thin line), data set (circles), model output and 99%

approximate CI (thick lines); b) reference (thin line) and LTE (thick line) estimates of

the variance of f x, QQQQLS .
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Figure 11.

Industrial modeling problem (the selected model is a two hidden neurons network

with q = 9 parameters): model output, and the N = 69 examples of the data set

(circles).
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Figure 12.

Industrial modeling problem: a) the N = 69 outputs of the data set presented in

increasing order of their values; b) the corresponding residuals (circles) and

approximate LOO errors (crosses); c) half width of the 95% approximate CI at the

N = 69 examples of the data set, and LS estimate s of the noise standard-deviation s

(dotted line).
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Figure 13.

Industrial modeling problem: isocontours of the LTE estimate of the standard

deviation of f x, QQQQLS , and the N = 69 inputs of the data set (circles).
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Figure 14.

Comparison of different estimates of the variance of a nonlinear model output for

process #5, a simulated “neural” SISO process (the assumed model, a single

nonlinear neuron with q = 2 parameters, is true): a) regression with a “gentle” slope

(thin line), the N = 30 examples of the data set (crosses), model output (thick line); b)

LTE approximation and estimates of the variance of f x, QQQQLS .
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Figure 15.

Comparison of different estimates of the variance of a nonlinear model output for

process #6, a simulated “neural” SISO process (the assumed model, a single

nonlinear neuron with q = 2 parameters, is true): a) regression with a “steep” slope

(thin line), the N = 30 examples of the data set (crosses), model output (thick line); b)

LTE approximation and estimates of the variance of f x, QQQQLS .
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Figure 16.

Comparison of the LS LTE and bootstrap pairs approach estimates of the variance

for process #2: reference (thin line), LTE (thick line), and bootstrap pairs (dotted line)

estimates of the variance of f x, QQQQLS .


