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ABSTRACT 

 
This paper presents theoretical results derived in the analysis of the model proposed 
in part I for the olfactory pathway. Some of these results are model-specific, others 
are of more generic interest. The latter include the description of the dynamics in the 
presence of noise as a two-step Markov process: this leads to the derivation of a 
Boltzmann-type distribution of the steady-state probabilities of attractors for a 
discrete-time dynamic systems with cycles of maximum length two. This leads to a 
clear understanding of the phenomena described from simulations in part I, 
including the emergence of three different noise regimes. More specific of the model 
is the description of the deterministic dynamics and the mathematical justification of 
the coding properties emerging from the prevalent lateral inhibition in the model. 
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1. INTRODUCTION 

 
In this article, we report a generic result, which was established in the course of the 
theoretical analysis of the network described in part I of the paper: for a discrete-time 
network of binary neurons with fixed points or limit cycles of length 2, the steady-
state probabilities of the attractors of the dynamics are governed by a Boltzmann-
type distribution, where the traditional energy function is replaced by a two-step 
Lyapunov function. This approach allows us to analyze fully the limit behavior of the 
model in the presence of noise, and to understand the emergence of the noise 
regimes described in part I.  
In addition, this article provides a comprehensive analysis of the dynamics of the 
model in the absence of noise. 
For the convenience of the reader who is interested in the model itself, the 
organization of this article follows that of part I: in section 2, we first analyze the 
behavior of the model in the noise-free case, with emphasis on the determination of 
the stable glomerular images, i.e. the attractor of the dynamics; the basic tool that is 
used throughout the paper, the Lyapunov function of the model, is defined. The 
behavior in the presence of noise is subsequently analyzed in terms of Markov chains 
(section 3); the stationary probability distribution of pairs of consecutive states is 
derived, and the Boltzmann-type distribution of the attractors is established. The 
behavior of the model is also investigated as a function of the noise level, and the 
proof of the emergence of three different noise regimes is presented. The reader who 
is only interested in the derivation and application of the Boltzmann-type 
distribution of attractors may skip sections 2.2 to 2.5, which are essentially model-
specific, and focus on section 3 and on the appendix. 
 

2. DYNAMICS OF THE MODEL IN THE ABSENCE OF SYNAPTIC NOISE 
 

2.1 Update rule and the Lyapunov function 

 
As described in the previous paper, the model under investigation is a recurrent fully 
connected network of binary units, with unit delays and parallel (synchronous) 
discrete-time update scheme (Little dynamics). Each unit receives excitatory, time-
varying inputs. In the absence of synaptic noise, the update rule is given by 
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gi t + 1 = H hi(t) = H Ri(t) + wij gj t!
j=1

N

–
1

2
      (1) 

where wij are the synaptic weights, Ri(t) are the inputs, and H is the Heaviside step. 
In the present model, all weights are equal to -1, and all inputs Ri(t) are positive. 
Thus, the quantity Ri(t)-1/2 can be regarded as the (time-varying) threshold of unit i; 
the term 1/2 guarantees that the argument of the Heaviside distribution is always 
non-zero. Since the network is fully recurrent, the state vector of the model at time t 
is the vector [g1(t), g2(t), ... gN(t)]T. hi(t) is termed the "local field" at neuron i. 
 
In order to get a better insight into the dynamics of the network, it is useful to 
introduce a Lyapunov function. A straightforward generalization of the Lyapunov 
function as introduced by Goles (Goles et al., 1985) is  

   
L t + 1, t = – wij gi t + 1 gj t!

i,j

– Ri(t) –
1

2
gi t + 1 – Ri(t) –

1

2
gi t!

i

!
i

 

where the states at times t + 1 and t are connected by the update rule (1).  
We prove in the following that, if the matrix of synaptic weights is symmetric, then 
the Lyapunov function is a non-increasing function of time if the inputs {Ri} are 
constant: L(t+2, t+1) ≤ L(t+1, t). 
The increment of the Lyapunov function with constant inputs can be put in the 
following form: 

   
!L = L t + 2, t + 1 – L t + 1, t = – gi t + 2 – gi t hi t + 2"

i

 

   
where hi(t) = Ri t–1 –

1

2
+ wij gj t–1!

j=1

N
 

If gi(t + 2) is equal to 1 then hi(t + 2) is positive because of update rule (1) and, 
irrespective of the value of gi(t), the contribution of unit i to ΔL cannot be positive. 
Conversely, if gi(t + 2) is equal to 0, then hi(t + 2) is negative, and again the 
contribution of unit i to ΔL is nonpositive irrespective of the value of gi(t). 
 
As a consequence, the only stable points of the deterministic dynamics of the model 
are either fixed points or two-step cycles: since the lower bound of the increment of 
the Lyapunov function is zero, the dynamics is bound to reach, after a finite number 
of steps, a situation where ΔL=0, which is possible if and only if a fixed point 
(gi(t+1) = gi(t)) or a two-step cycle (gi(t+2) = gi(t)) is reached (hi(t + 2) is never equal to 
zero because of the constant term 1/2 in its definition). 
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2.2 Interpretation of the stable glomerular image in terms of dynamic 
thresholding of the stimulus 

 
In the companion paper, we have taken advantage of the fact that the stable states of 
the model can be fixed points or cycles, by defining a ternary glomerular image 
whose elements are Gi(t) = gi(t-1) + gi(t); Gi(t) can take on the values 0, 1 or 2, and 
Gi(t) is independent of time when a fixed point or a stable two-step cycle is reached. 
In the steady state, from the update rule (1), with wij = -1 , Gi can be written as: 

   

Gi = H Ri –
1

2
– gj

1

!
j = 1

N

+ H Ri –
1

2
– gj

2

!
j = 1

N

      (2) 

where {gj
1} and {gj

2} are the activities of glomerulus j during the two steps of the limit 
cycle. Since gj

1 and gj
2 are equal to 1 or zero, the sums on the right-hand side of 

relation 2 are simply the numbers of active glomeruli S1 and S2 at  each step of the 
two-step cycle:  

  
Gi = H Ri – S1 –

1

2
+ H Ri – S2 –

1

2
.  

Thus, the stable glomerular image can be derived from the input activity pattern {Ri} by 
simply thresholding the latter with two thresholds θ1=S1+1/2 and θ2=S2+1/2, which are 
independent of i. 
We now derive the following useful result: all glomeruli that oscillate during a limit 
cycle do so in phase, i.e. they all undergo the same transition at the same time: it is 
impossible that, at a given instant, some glomeruli become inactive whilst others 
become active. This can be proved as follows: consider step 1 of the cycle, with, for 
instance, S1 < S2; the only possibility for a glomerulus i to have an oscillatory activity 
is to have Ri - S1 - 1/2 > 0 and to be inactive (gi

1=0) , since 
(i) if Ri - S1 - 1/2 > 0 and gi

1=1 then glomerulus i remains active, 
(ii) if Ri - S1 - 1/2 < 0 and gi

1=0 then glomerulus i remains inactive.  
(iii) if Ri - S1 - 1/2 < 0 and gi

1=1, then glomerulus i becomes inactive; since the limit 
cycle is of length 2, glomerulus i must become active at the next update, therefore 
one must have: Ri - S2 - 1/2 > 0; thus, Ri - S2 - 1/2 > Ri - S1 - 1/2 which is inconsistent 
with the hypothesis that S1 < S2. 
 

2.3 Derivation of the possible stable glomerular images in response to a given 
input signal 
 
We have just shown that a stable state (fixed point or cycle) is related to the input 
signal {Ri} by a simple thresholding operation. Therefore, given an input signal, each 
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possible stable state is uniquely determined by a pair of thresholds or, equivalently, 
by a pair of numbers of active glomeruli S1 and S2. In the present section, we address 
the problem of finding the possible stable states in response to a given input. The 
brute-force solution, which consists, for a given input, in testing exhaustively all 
possible initial states and observing all the resulting stable states, is uninteresting 
and not practical. We present a simple graphical derivation of all possible stable 
states in response to a given input, which, in addition, allows us to estimate the size 
of the basins of attraction of the resulting stable glomerular images. 
 
We first note that the model is symmetric under permutations : if {Ri}2 is  a 
permutation of {Ri}1, then the various possible glomerular images {Gi}2 are the result 
of the same permutation applied to {Gi}1. Among a class of inputs which are 
equivalent under any permutation, we denote by [Rk] the vector whose components 
are ranked in order of increasing value: Rk+1≥Rk. We denote by [Gk] a corresponding 
stable glomerular image, with Gk+1≥Gk . 
We have shown that the instantaneous glomerular activities can oscillate during the 
cycle, and that the glomeruli which oscillate do so in phase. Without loss of 
generality we assume that a pair (S1, S2), corresponding to a ternary glomerular 
image [Gk], has S1≤S2; then S1 is the number of glomeruli which are active at both 
steps of the limit cycle , and S2 is the number of glomeruli which are active at one of 
the two steps of the limit cycles; therefore, S2-S1 is the number of glomeruli that 
oscillate, and N-S2 glomeruli are inactive during the whole limit cycle. In other 
words, the first N-S2 components of [Gk] are equal to zero, the following 
S2-S1 components are equal to 1, and the last S1 components are equal to 2. Thus, the 
pair (S1, S2) and the vector [Gk] are biunivocally related. 
If [Gk] is a possible glomerular image of [Rk], resulting from the thresholding of [Rk] 
with the thresholds (S1+1/2, S2+1/2), then the same pair (S1,S2) is one of the possible 
pairs determining stable images of all permutations of [Rk]. Figure 1 shows how it is 
possible to find graphically all the possible pairs (S1, S2), that lead to different stable 
glomerular images, for a given input [Rk]. Since Rk+1≥Rk, the input [Rk] is represented 
as a stairlike line, shown as a thick black line on the above diagram. The second 
diagonal is also shown on the diagram (white line). We denote by S the number of 
active glomeruli at time t: any glomerulus i with input Ri ≥ S+1/2 will thus be active 
at time t+1; therefore, by construction of the diagram, the number of active glomeruli 
at time t+1 is equal to the number of rectangles to the right of the vertical thick black 
line on row S. The evolution at the next time step is obtained by finding the 
intersection of the vertical thick black line at row S with the second diagonal, and so 
on. The stable output cycles are found by recognizing that, for both rows of the cycle, 
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the numbers of rectangles between the black line and the diagonal are equal. In the 
example, there are four possible stable cycles defined by the pairs (0,17), (5,13), (8,11) 
and (10,10), the latter being a fixed point. The four corresponding images [Gk] are 
readily derived: [Gk]1= [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1], [Gk]2=  [0 0 0 0 1 1 1 1 1 1 1 1 2 2 
2 2 2 ], [Gk]3=  [0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 2], and [Gk]4= [0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 
2]. 
In addition, this construction allows us to compute the probability of occurrence  of  
each of these states, if the initial state is a random variable whose probability 
distribution is known. The probability of each cycle is the sum of the probabilities of 
the initial number of active glomeruli that lead to this cycle. If this probability 
distribution is uniform, the probability for the model to have an initial total activity 

of S is 
  

P(S) =
1

2
N N !

S ! N–S !

. In the example, initial values of S that lead the 

deterministic system to [Gk]1 are (0, 1, 2, 3, 15, 16, 17); those that lead to [Gk]2 are (4, 5, 
6, 13, 14); those which lead to [Gk]3 are (7, 8, 11, 12) and those which lead to [Gk]4 are 
(9, 10). The probabilities are thus respectively: 0.8%, 18.2%, 47.6% et 33.4%. 
 
Thus, the dynamics of the model from a given initial state under a given input, in the 
absence of synaptic noise, can be fully predicted in a very simple graphical way, 
without resorting to heavy simulations. We now turn to the dual problem, namely, 
that of finding the stimuli which generate a given glomerular image. 

2.4 Condition for a stimulus to generate a given glomerular image 
 
Let us now examine the condition for an input {Ri} to generate a given output {Gi}, 
which is a particular combination of n0 0's, n1 1's and n2 2's,  with n0 + n1 + n2 = N. We 
have to calculate first the pair (S1, S2) such that: 

  S
1

= n
2

S
2

= n
1

+ n
2

= N – n
0

 

Then the condition for each value of the receptor activity can be expressed as follows 
as a function of the desired glomerular activity : 
(i) if Gi = 0, Ri < S1+1/2, 
(ii) if Gi =1, S1+1/2 <Ri < S2+1/2, 
(iii) if Gi = 2, Ri > S2+1/2. 
This is summarized by the following condition : 

   
S1 ! Gi, 1 + S2 ! Gi, 2 – ! Gi, 0 +

1

2
< Ri < S1 ! Gi, 0 + S2 ! Gi, 1 + N+1 ! Gi, 2 +

1

2
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where δ is the Kronecker symbol. 
It is easy to see that the number of inputs that satisfy this condition, i.e. the size of the 
basin of attraction of the limit cycle defined by (S1, S2) is given by: 

  
S1 + 1

N – S
2

S2 – S1

S
2

– S
1

N + 1 – S2

S
1 .  

This number is maximal for S1 = 0 and S2 = N, which corresponds to the 'garbage 
image' defined in the companion paper, i.e. the limit cycle in which all glomeruli 
oscillate. Thus, essentially 50 % of the possible input states may generate the garbage 
image, but will not always generate it since the final limit cycle depends on the initial 
state. 
 

2.5 Conclusion 
We have proved that, in the absence of noise other than input noise, the stable 
ternary glomerular image generated in response to a constant stimulus can be 
described as resulting from the application of two thresholds to the input image: this 
kind of "contrast enhancement" is typical of systems with lateral inhibition. We have 
also derived a geometrical construction of all possible glomerular images resulting 
from the application of a given stimulus, and we have derived the size of the basin of 
attraction of any given input. 
 
Thus, in the absence of noise, the model is fully tractable analytically. The next 
section is devoted to an analysis of the behavior of the system when a model of 
"synaptic" noise is introduced. 

3. LITTLE DYNAMICS WITH NOISE 
 

3.1 Probabilistic transition rule  
 
Instead of a deterministic dynamics as given by the transition rule (1) we consider 
now a probabilistic transition rule. The new state gi(t+1) of neuron i is no longer 
uniquely determined by the value of the local field hi(t). Instead, the local field will 
just determine the probabilities for the neuron to become active or inactive at time 
t+1. These probabilities are given by: 

   P gi t + 1 = 1 = ! hi t + 1

P gi t + 1 = 0 = 1 – ! hi t + 1
 

where we introduce the sigmoid function  
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! x =

1

1 + exp – x / "
 

The parameter ε controls the steepness of the sigmoid function near x = 0, thus 
effectively controls the level of 'noise'.  corresponds to the deterministic 
dynamics considered in the previous section. 
The transition probabilities can be written in an equivalent, useful but less 
transparent way, as:  

   P gi t + 1 = 1 – gi(t+1) + 2 gi(t+1) – 1 ! hi(t+1)  

The transition rules are again applied in parallel to all neurons. Therefore, as in the 
deterministic case, it is natural to describe the dynamics in terms of the states of the 
whole network. Given a network state I = {gi

I} at time t, the probability for the 
network to be in state J = {gi

J} at time t+1 is given by the product of  the probabilities 
for each individual neuron i to be in state gj

J(t + 1) at time t+1: 
   

P I ! J = P gj
J

t + 1"
j  

 

3.2  Description of the transitions as a Markov process 
 
The Little dynamics with noise is therefore a Markov process (see for instance Seneta 
1981) described by the transition matrix 

   
T J, I = P I ! J

= P gj
J t +1"

j

= 1 – gj
J t +1 + 2gj

J t +1 – 1 # hj t +1"
j

 

The Markov processes are usually studied in terms of probability distributions for 
the ensemble of equivalent Markov processes. Let P(I) describe the ensemble 
probability that the network is in state I at a certain instant of time. Then the 
ensemble probability for the network to be in state J at the following time step is 
given by:  

   
P1 J = T J, I P I!

I

 

and the ensemble probability after n time steps is: 
   

Pn J = T
n

J, I P I!
I
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where Tn(J, I) are the matrix elements of the n-th power of the transition matrix, 
defined by the recursion: 

   
T

n
J, I = T J, K T

n–1
K, I!

K

T
1

J, I = T J, I
 

Our aim is to investigate the limit behavior of the network as . The problem 
has been studied for a slightly less general model by Peretto (Peretto, 1992). Here we 
suggest an alternative approach which leads to simpler and intuitively more 
transparent results. The idea is to study the probability distribution for the pairs of 
consecutive states instead of probability distributions for single states. This approach 
is suggested by the deterministic dynamics, where limit cycles of length 2 play an 
important role. Since we are going to deal with pairs of states, it is clear that we 
should look for a suitable two-state function which could describe the limit 
probability distribution. An obvious candidate is the Lyapunov function.  In the 
following, we prove that it indeed controls the limit behavior of the network 
dynamics. 
First we generalize the Lyapunov function (for constant input Ri) to be defined for 
any pair of states, not just for the states connected by the deterministic dynamic 
transition. So instead of a two-time function we introduce a two-state function 
defined as 

   
L J, I = – wij gi

I
gj

J
!
i,j

– Ri –
1

2
gi

I
– Ri –

1

2
gi

J
!

i

!
i

 

If the weight matrix wij is symmetric then the Lyapunov function is a symmetric 
function of its arguments I, J. As shown in the Appendix, the transition probability 
matrix can be described  in terms of this two-state Lyapunov function as 

   
T J, I =

exp – L J, I / !

Z I

Z I = exp – L J, I / !"
J

        (2) 

This is a familiar Boltzmann-type law, except for the fact that the usual energy 
function is replaced by a Lyapunov function. 

3.3 Introduction of a two-state Markov process 
 
Now we have an appropriate tool for describing the dynamics in terms of the pairs of 
consecutive states. The basic idea is the following: consider some particular 
realization of the Markov process where the set of consecutive states is { ... I, J, K, L, 
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M, ...}; this sequence can be regarded as a sequence of pairs of consecutive states {... 
(J, I), (K, J), (L, K), (M, L) ...}. Our notation  for the pair is the (out, in) type of notation, 
since we want to have the right multiplication of vectors by matrices. Note also, that 
for the consecutive pairs the 'out' state of the previous pair is equal to the 'in' state of 
the following pair. We denote by Π(I, J) the ensemble probability that at some 
particular time instant the last observed pair of consecutive states is (J, I): 
equivalently, it means that the last observed transition is from I to J. 
In this way we define a new Markov process, related to the original one, namely, the 
'pair to pair' process with the transition matrix U(L ,K ; J, I) given as 

   

U L, K ; J, I =
T L, K , K = J

0, K ! J
where the notation U(L, K ; J, I) means that the pair 

of states (J, I) is to be followed by the pair of states (L, K). It is possible only if K = J 
therefore U(L, K ; J, I) = 0 if state K is different from state J. 
Using the Kronecker symbol one can write the above expression as 

   U L, K ; J, I = T L, K ! K, J .  
The ensemble pair-distribution probabilities for consecutive time instants are then 
related by 

   
! L, K = U L, K ; J, I ! J, I"

J, I

 

The matrix U(L, K ; I, J) is stochastic since it satisfies the conditions 
   

U L, K ; J, I ! 0 , U L, K ; J, I = 1"
L, K

 

Using the terminology of Otten and van Ginneken (Otten and van Ginneken, 1989) 
the 'pair to pair' Markov process is a chain, since one can get from a given pair to any 
pair with a nonzero probability within a finite number of steps, in particular within 
two steps. This can be seen by inspecting the square of the transition matrix U(L, K ; 
J, I). 

   

U
2

L, K ; J, I = U L, K ; N, M U N, M ; J, I!
N, M

= T L, K " K, N T N, M " M, J!
N, M

= T L, K T K, J

=
exp – L L, K / #

Z K

exp – L K, J / #

Z J

 

All matrix elements U2(L, K ; J, I) are positive, therefore the process is a chain.  
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It is also clear that it is theoretically easier to study still another Markov process with 
transition matrix 

  V L, K ; J, I = U
2

L, K ; J, I  
It is a 'pair to nonoverlapping pair' Markov process : from the original sequence of 
states { ... I, J, K, L, M, N ...} we construct the sequence of nonoverlapping pairs as {... 
(J, I), (L, K), (N, M) ...}. The 'pair to nonoverlapping pair' Markov process is a reflexive 
chain : all the elements of its transition matrix V(L, K ; J, I) are positive, therefore all 
its diagonal elements are also positive. According to the chain limit theorem, the 
transition matrix of a reflexive chain has exactly one eigenvalue λ1 = 1, and the 
absolute values of all the other eigenvalues are strictly smaller than one: 

   !i < 1 for i " 1 . 
 
It means that the ensemble probability distributions corresponding to the 'pair to 
nonoverlapping pair' Markov process converges to a stationary distribution 
corresponding to the eigenvalue 1. 
Denoting the 'pair to  nonoverlapping pair' ensemble probability distributions as 

  P J, I , the limiting distribution    P! J, I  satisfies the relation 
   

V L, K ; J, I P! J,I = P! L, K"
J,I

.  

However it also means that the 'pair to pair' transition matrix U(L, K ; J, I) also has 
just one eigenvalue whose magnitude is equal to 1. If there were more of them, their 
squares would be the eigenvalues of the matrix V(L, K ; J, I). This in turn means that 
the 'pair to pair' process probability distributions also converge to  a limiting 
distribution, which is the same as for the 'pair to nonoverlapping pair' limiting 
distribution : the eigenvectors corresponding to the eigenvalue 1 for the matrices 
U(L, K ; J, I) and V(L, K ; J, I) are the same. 
So the last task is to find this limit distribution. An obvious Ansatz for a stationary 
distribution is : 

   

P! J,I =
exp – L J, I / "

Z
with Z = exp – L J, I / "#

I, J

.

 
A simple calculation proves that the Ansatz is correct: 
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U L, K ; J, I P

!
J, I = T L, K " K, J P

!
J, I#

J, I

#
J,I

= T L, K P
!

K, I#
I

=
exp –L L, K / $

Z K

exp –L K, I / $

Z
#

I

=
exp –L L,K $–L L,K $

Z Z K
exp –L I,K $–L I,K $#

I

=
exp –L L,K $–L L,K $

Z
= P

!
L,K

 

where we used the symmetry of the Lyapunov function. 
 

3.4 Comments and conclusions about the stationary probability distribution 

 
We have proved that the 'pair to pair' Markov process converges and that the 
stationary probability distribution is given by  

   

P! J,I =
exp – L J, I / "

Z
with Z = exp – L J, I / "#

I, J

    (3) 

It is a Boltzmann type of distribution where, instead of one-state energy function,  
one has the two-state Lyapunov function. The low noise limit of the Markov process 
corresponds to the deterministic Little dynamics of the network, with the limit 
behavior of steady states which are either fixed points or two-step cycles. 
There is a clear analogy with the simulated annealing (Cerny, 1985; Kirkpatrick et al., 
1983) optimization algorithm. The deterministic case corresponds to the zero 
temperature regime where the system gets frozen into any of the local minima of the 
Lyapunov function, the latter being determined by the initial state of the network. 
In the noisy system the boundaries between the basins of  attraction of the different 
local minima can be overcome. If the system is annealed to the zero noise limit it 
ends in the absolute minimum of the Lyapunov function, which can be either a fixed 
point or a two-step cycle. In principle, the  absolute minimum can be degenerate. 
It is perhaps useful to stress that the 'pair to pair' Markov process does not satisfy the 
'detailed balance' condition and so the process is not reversible. Of course, it satisfies 
the balance condition, which reads  

   
U L, K ; J, I P! J, I"

J, I

– U J, I ; L, K P! L, K = 0  

The proof is by simple algebra 
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U L, K ; J, I P
!

J, I"
J, I

– U J, I ; L, K P
!

L, K

= T L ,K # K, J P! J, I"
J, I

– T J, I # I, L P! L, K

= T L, K P! K,I"
I

– P! L, K T J, L"
J

=
exp – L L, K / $

Z K

exp – L K, I / $

Z
"

I

–
exp – L L, K / $

Z

= 0
 

 

3.5 Analysis of the evolution of the glomerular image as a function of the noise 
level 
 
We have seen that he dynamics of the model with noise can be described by the 
transition matrix of the Markov process T(J, I). The limit probability    P

!
J, I  of the 

pair of consecutive states (I, J) is given by equation (3). Each pair of consecutive 
states, or transitions, (I, J) is characterized by a vector {Gi

(I, J)} of the glomerular 
activities (0, 1 or 2).  
Thus, the limit probability for the glomerulus i to be active can be written as : 

   
P! gi = 1 =

1

2
P! J, I Gi

I, J
"
I, J

 

where the summation is over all possible transitions (I, J). 
We denote by   gi !  the mean activity of glomerulus i measured during time τ, and 

   gi = lim! "#gi ! , thus 
   

gi = P! gi = 1 =
1

2
P! J, I Gi

I, J
"
I, J

 

We denote by   gi
0 the mean activity of glomerulus i when the Lyapunov function is 

minimum, i.e. in the limit of zero noise and infinite time:    gi
0

= lim! " 0gi ; one has: 
   

gi
0

=
1

2

1

1!
(I, J)0

Gi
I, J 0

!
(I, J)0

 

where the summation is over the possible transitions (I, J) for which the Lyapunov 
function is minimum (the minimum can be degenerated). 
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In order to understand quantitatively the response of the system as a function of 
noise, we define a euclidean distance   D

0
= d gi, gi

0  between vectors   gi, and gi
0: 

   

D
0

= gi – gi
0 2

!
i=1

N

. 

Similarly, one can define two distances of interest: (i) the distance D1 between the 
mean glomerular activity and the receptor activity (normalized):   D

1
= d gi, gi

1

 with 
  

gi
1

=

Ri

N + 1
, and (ii) the distance D2 between the mean activity of the glomeruli  and 

the 'garbage state' where all glomeruli oscillate in phase:   D
2

= d gi, gi
2  where 

   gi
2

= 1/2 !i . D0, D1 and D2 depend on the input {Ri} and on the noise level ε.  In 
order to understand the dynamics of the model as a function of the level of noise ε, 
we investigate these three distances as three functions of ε. These functions depend 
on the inputs, but it is possible for small systems to compute their values averaged 
over all possible inputs {Ri} (for a model with N glomeruli, we consider (N+2)N 
different inputs): 

   

<Dk ! > =
1

N+2
N

gi !, Ri – gi
k
!, Ri

2

"
i=1

N

"
R

i

, 

 where k=0, 1 or 2. 
This has been computed for a system with N = 5 glomeruli, and . The 
results is shown on figure 2. 

 
Interestingly, three noise regimes emerge. In a first regime, for small values of ε, the 
mean glomerular activity  gi expresses essentially the image that codes for the input, 
since it is close to   gi

0. At higher noise levels, in a second regime, the mean glomerular 
activity tends to "copy" the receptor activities {Ri}; there is a value of the noise level 
ε for which the "copy" is optimal. Thus, the input-output mapping performed by the 
system is almost linear, although all the elements are non-linear. At the intersection 
between the curves <D1(ε)> and <D2(ε)> a third regime begins, where the noise blurs 
the input features: the mean glomerular activity becomes more and more 
independent of the inputs and closer to the 'garbage image'. 
 

3.6 Analysis of the low-noise regime 
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The unexpected emergence of a 'quasi-linear' regime of noise, is worth investigating. 
The update rule in the noisy case is given by the following equations:  

   
P gi t = 1 =

1

1+exp – hi t /!  
   

and hi(t)=Ri –
1

2
– S t–1 with S t – 1 = gj t – 1!

j = 1

N

.

 
The first two equations can be summarized as: 

   
P gi t = 1 =

1

1 + exp – Ri –
1

2
– S t–1 /!

 

When noise is present, gi can be considered as a random variable; therefore the 
number of active glomeruli S is a random variable too. We denote by P∞(S) the limit 
probability that the number of active glomeruli is equal to S; it can be written as: 

   

P! S =
1

2
" gi

I#
i= 1

N

,S + " gi
J#

i= 1

N

,S P! I, J#
(I, J)

 

We have seen in the previous section that:  
   gi = P! gi = 1 .  

Therefore we can write : 
   

gi =
1

1 + exp S +
1

2
– Ri / !

P
"

S#
S=0

N

 

If N is large, the summation can be approximated by an integral. Let us now assume 
that for a value (or range of values) of the noise parameter, P∞(S) becomes close to the 

uniform distribution , then the mean activity  of glomerulus i 

becomes: 
   

gi =
1

N+1

0

N

1

1 + exp S +
1

2
– Ri / !

dS  

which integrates to : 
   

gi =
1

N + 1
N + ! ln

1 + exp 1 – 2 Ri / 2!

1 + exp 1 + 2N – 2 Ri / 2!
.  



 16 

When , if Ri > 0, then ; conversely, if Ri ≤ N, the 

exponential term of the denominator is larger than 1. Taking these approximations 
into account, the mean glomerular activity can be written as : 

   
gi !

1

N + 1
N + " ln exp – 1 + 2N – 2Ri / 2" !

1

N + 1
Ri –

1

2
.  

Thus, the mean activity of each glomerulus is linear with respect to the 
corresponding stimulus, under the assumptions that (i) the probability distribution 
of the number of active glomeruli is uniform, that (ii) the noise level is small with 
respect to the input signal level, and that (iii) 0 < Ri ≤ N.  
If Ri = 0, the limit of  is 0. If Ri = N+1, the limit of  is 1 if N is large. 
 
To summarize: if the stationary probability distribution of the number of active 
glomeruli is close to uniform, the mean activity  of glomerulus i is roughly affine 
with respect to the normalized input signal, in the low noise limit and if the number 
of glomeruli is large: the glomerular image "copies" (within a scaling factor) the 
stimulus. This is clearly apparent on Figure 15 of the companion paper, and is 
illustrated quantitatively on Figure 3. 
 
The validity of this analysis relies on the assumption that there exists a range of noise 
levels for which the distribution of the total glomerular activity S, viewed as a 
random variable, becomes uniform. First consider two limit cases: (i) at high noise 
level, the probability for each glomerulus to be active approaches 1/2; therefore, the 
distribution of S is close to gaussian (it is the limit of a binomial distribution when N 
is large) with a maximum at N/2; (ii) conversely, at very small noise levels the 
probability distribution of S depends on the most probable glomerular images, 
which in turn depends (in a non-linear fashion) on the receptor activities. Does there 
exist an intermediate regime where the distribution of S is close to uniform? 
 
Some insight into this question can be gained in the following way: for small values 
of N, the euclidean distance Δ(ε)  between the probability distribution of S and the 
uniform distribution can be computed numerically, as a function of ε, and averaged 
over all possible inputs: 

   

<!(")> =
1

N+2
N

P
#
(S) –

1

N+1

2

$
S=0

N

$
R

i

 

where    P
!

(S)
 
is a function of the inputs and of ε  
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P! S =
1

2
" gi

I#
i= 1

N

,S + " gi
J#

i= 1

N

,S P! I, J#
(I, J)  

since    P
!

I, J  is a function of the inputs and of the noise level. 

For a system of five glomeruli, the evolution of <Δ(ε)> with ε is shown on Figure 4. 
This distance reaches a plateau for ε ≅ 1, which indeed corresponds to the noise level 
for which the distance between the mean glomerular activity and the mean receptor 
activity is minimum: it is the smallest noise level for which the probability 
distribution of S is closest to the uniform distribution. 
 

4. CONCLUSION 
 
In the present article, we have developed a full analysis of a model proposed in the 
companion paper, using the tools of dynamic systems theory. We have shown that 
the model is fully tractable analytically, so that its coding properties can be 
understood and predicted in detail without having to resort to extensive simulations 
in order to explore the space of parameters of the model. The influence of intrinsic 
noise has been investigated by introducing a novel description of the dynamics of the 
model in terms of Markov processes. This has allowed us to show that the attractors 
of the dynamics of such a system obey a Boltzmann-type law, where the usual 
energy function is replaced by a two-step Lyapunov function. 
 
The above theoretical results give an insight into the properties of a plausible, albeit 
very simple, dynamic model of the first two stages of the olfactory pathway, as 
proposed in the companion paper. The latter has presented the biological 
background and ingredients of the model, together with results of simulations. It was 
shown that the model has the ability of producing a stable glomerular image which 
codes for the key features of the input signal despite its fluctuations; this property is 
in agreement with behavioral data, and with the widely admitted idea that an 
"olfactory image" is generated and processed in the olfactory system. In the absence 
of synaptic noise, the fact that the dynamics of the model is fully understood allows 
us to analyze in depth the production of the glomerular image. The extraction of key 
features and image stabilization are robust not only to input noise, but also to 
synaptic noise in a range of low synaptic noise; for a higher level of noise, the model 
tends to "copy" the input stimulus at the glomerular level, without encoding it; at still 
higher noise levels, the behavior of the model becomes essentially independent of the 
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inputs. The biological interpretation of the first two noise regimes is not yet clear; 
they may be conjectured as being two different attentional regimes. 
Thus, these results provide a firm theoretical foundation for further work in various 
directions in order to embody more biological ingredients in the model without 
sacrificing its legibility. The extensions of the model which are currently under 
investigation are (i) the introduction of a topology of glomerular organization, 
through the use of different synaptic delays corresponding to different distances 
between glomeruli, and (ii) the introduction of synaptic plasticity in the model. 
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APPENDIX 

 
This appendix presents the algebra needed to derive the expression for the transition 
matrix elements T(J, I). To simplify the notation we shall take here ε = 1. The 
generalization to arbitrary value is trivial. 
Let us first consider the updating of a single neuron k. We denote by ck the 
probability that this particular neuron will change its state during the update. Since  

   p gk t = 1 = ! hk t

p gk t = 0 = 1 – ! hk t = ! –hk t
 

one gets  
   ck = ! hk t for gk t – 1 = 0

ck = ! – hk t for gk t – 1 = 1
 

These two relations can be equivalently written as  
   ck = ! gk t – gk t–1 hk t  

Now we denote by M the state of the network at time t and by Mk the state which 
differs from M just by flipping the changing of neuron k. Then it is easy to check that 
the following relation holds 

  gk t – gk t–1 hk t = – L Mk, M – L M, M  

Indeed, 
   

L Mk, M – L M, M

= – wij gi
Mk gj

M
!
i,j

– Ri –
1

2
gi

Mk!
i

– Ri –
1

2
gi

M
!

i

+ wij gi
M gj

M
!
i,j

+ Ri –
1

2
gi

M
!

i

+ Ri –
1

2
gi

M
!

i

= – wij gi
Mk gj

M
!
i,j

+ wij gi
M gj

M
!
i,j

– Ri –
1

2
gi

Mk!
i

+ Ri –
1

2
gi

M
!

i

= – wkj gk
Mk gj

M
!

j

+ wkj gk
M gj

M
!

j

– Rk –
1

2
gk

Mk + Rk –
1

2
gk

M

= gk
Mk – gk

M
– wkj gj

M
!

j

– Rk –
1

2

= – gk t – gk t – 1 hk t
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If we denote the variation of the Lyapunov function value due to changing one 
neuron state as  

   !Lk = L Mk, M – L M, M  

we can express the probability of the single neuron flip as  
   c

k
= ! – "L

k

ck =
exp – "Lk

1 + exp –"L
k

          (4) 

The probability sk for neuron k to stay unchanged is then  
   

sk =
1

1 + exp – !Lk

          (5) 

Now we express the transition probability from state M to an arbitrary state N. 
Comparing the two states M and N we  can find all the neurons which change their 
states during the transition M N and so we can write  

   
T N, M = ck!

k, flips

sk'!
k', non flips

 

where the first product is over the neurons which change their state in the transition 
M N and the  second products is over the neurons which do not change their state 
during that transition. Using (4) and (5)  we get 

   

T N, M =
exp – !L

k

1 + exp – !Lk

"
k, flips

1

1 + exp – !Lk'
"

k', non flips

= exp – !L
k"

k, flips

1

1 + exp – !L
k'

"
k'

 

where the second product is over all the neurons. It means, however, that the second 
product does not depend on state N. It is just the normalization factor and we skip it 
for the moment. 

   
T N, M ~ exp – !Lk"

k, flips

 

The next step is to simplify the expression 
   

exp – !Lk"
k, flips

= exp – !Lk#
k, flips

 

Let us consider a state Mm,n which differs from the state M by flipping the states of 
two neurons m and n. Then 

   
!Lk"

k, flips

= !Lm + !Ln = L Mm, M + L Mn, M – 2 L M, M  
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and we shall show that  
  L M

m
, M + L M

n
, M – 2 L M, M = L M

m,n
, M – L M, M    (6) 

We prove it by the following algebraic manipulations. 
   

L Mm,n, M = – wij gi
M

m,n gj
M

!
i,j

– Ri –
1

2
gi

M
m,n – Ri –

1

2
gi

M
!

i

!
i

= – wij gi
M

gj
M

!
i,j

+ wmj gm
M

gj
M

!
j

+ wnj gn
M

gj
M

!
j

– wmj gm
M

m,n gj
M

!
j

–

wnj gn
M

m,n gj
M

!
j

– Ri –
1

2
gi

M
!

i

+ Rm –
1

2
gm

M
+ Rn –

1

2
gn

M
– Rm –

1

2
gm

M
m,n –

Rn –
1

2
gn

M
m,n – Ri –

1

2
gi

M
!

i

 

   
L Mm, n, M = – wij gi

M
gj

M
!
i,j

+ wij gi
M

gj
M

!
i,j

– wij gi
M

gj
M

!
i,j

+ wmj gm
M

gj
M

!
j

+

wnj gn
M

gj
M

!
j

– wmj gm
M

m,n gj
M

!
j

– wnj gn
M

m,n gj
M

!
j

– Ri –
1

2
gi

M
!

i

–

Ri –
1

2
gi

M
!

i

+ Ri –
1

2
gi

M
!

i

+ Rm –
1

2
gm

M
+ Rn –

1

2
gn

M
– Rm –

1

2
gm

M
m,n –

Rn –
1

2
gn

M
m,n – Ri –

1

2
gi

M
– Ri –

1

2
gi

M
!

i

!
i

+ Ri –
1

2
gi

M
!

i

 

   

= – wij gi
M

gj
M

!
i,j

+ wmj gm
M

gj
M

!
j

– wmj gm
M

m,n gj
M

!
j

– Ri –
1

2
gi

M
!

i

+ Rm –
1

2
gm

M
– Rm –

1

2
gm

M
m,n – Ri –

1

2
gi

M
!

i

– wij gi
M

gj
M

!
i,j

+ wnj gn
M

gj
M

!
j

– wnj gn
M

m,n gj
M

!
j

– Ri –
1

2
gi

M
!

i

+ Rn –
1

2
gn

M
– Rn –

1

2
gn

M
m,n – Ri –

1

2
gi

M
!

i

+ wij gi
M

gj
M

!
i,j

+ Ri –
1

2
gi

M
!

i

+ Ri –
1

2
gi

M
!

i

 

This proves relation (6). 
It is straightforward to generalize relation (6) to an arbitrary number of flipped 
neurons. Therefore the following relation holds, if state N differs from state M by all 
the neurons k which flip. 



 22 

   
!Lk"

k, flips

= L Mk, M – L M, M"
k, flips

= L N, M – L M, M  

and therefore  
  T N, M ~ exp L N, M – L M, M  

Here again the factor exp(L(M, N)) does not depend on N; therefore it belongs to the 
normalization factor. Therefore  one can write  

  T N, M ~ exp – L N, M  
or after normalization  

   
T N, M ~

exp – L N, M

Z M

Z M = exp – L N, M!
N

 

which is relation (2). 
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Figure 2 
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Figure 3 
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FIGURE CAPTIONS 
 
Figure 1: 
The graphical method for finding stable output states by finding the possible pairs 
(S1, S2). For a system of N glomeruli, we construct a diagram with N x N+1 rectangles. 
The glomeruli are numbered from 1 to N (horizontal axis), and the input activity is 
represented on the vertical axis (from 0 to N+1). As an example, we consider a 
system of N = 17 glomeruli. The specific input considered in this example is [Rk] = [ 3 
3 4 4 7 7 9 11 11 13 13 13 15 15 15 16 17]. Four possible stable cycles are found, defined 
by the pairs (0,17), (5,13), (8,11) and (10,10), where the last one  is a fixed point. The 
four corresponding images [Gk] are readily derived: [Gk]1= [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1], [Gk]2=  [0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 ], [Gk]3=  [0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 2], and 
[Gk]4= [0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2]. 
 
Figure 2: 
The values (averaged over all possible inputs) of the three euclidean distances 
between the mean glomerular activities and (i) the image for which the Lyapunov 
function is minimum (i.e. the image that codes for the input), (ii) the receptor 
activities, (iii) the garbage image, are shown here as functions of the noise parameter 
ε, for a 5 glomeruli model. Different noise regimes emerge from this graph. 
Excluding the deterministic system, there is a first regime of noise, from 0 to 0.5, 
where the mean glomerular  activity is closer to the coding image; in a second 
regime, from 0.5 to 2.5, the mean glomerular  activity is closer to the input; the 
distance between the mean glomerular activity and the input is minimum for a value 
of ε close to 1. In the third regime, from ε = 2.5 upwards, the glomerular image 
becomes closer to the garbage image. This is to be compared to Figure 13 of part I of 
this paper, which results from simulations performed with a single input, whereas 
the results of the present graph are averaged over all possible inputs.  
 
Figure 3:  

Plots of the mean glomerular activity 
   

gi =
1

1 + exp S +
1

2
– Ri / !

P
"

S#
S = 0

N

 vs. 

receptor activity, for models with 5 and 20 glomeruli and for four values of ε: (0.1, 
1.1, 2.1 and 3.1), under the assumption that the probability distribution of the total 
glomerular activity is uniform. As ε increases, the slope decreases, but the relation is 
linear on a wide range of the receptor  activities. In the low noise limit, the slope is 
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1/N+1 as expected, and it is almost independent of noise up to relatively high noise 
if N is large. 
 
Figure 4: 
Evolution of the euclidean distance <Δ(ε)>  between the probability distribution of S 
and the uniform distribution. A plateau is reached for . This corresponds 
roughly to the value of noise 
 


