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Abstract

For a non-linear parameterised model, the effects of withdrawing an example from the

training set can be predicted. We focus on the prediction of the error on the left-out example,

and of the confidence interval for the prediction of this example. We derive a rigorous

expression of the first-order expansion, in parameter space, of the gradient of a quadratic cost

function, and specify its validity conditions. As a consequence, we derive approximate

expressions of the prediction error on a given example, and of the confidence interval thereof,

had this example been withdrawn from the training set. We show that the influence of an

example on the model can be summarised by a single parameter. These results are applicable

to leave-one-out cross-validation, with a considerable decrease in computation time with

respect to conventional leave-one-out. The paper focuses on the theoretical aspects of the

question; both academic illustrations and large-scale industrial examples are described in [9].

1 Introduction

When performing non-linear regression with a family of parameterised functions that are non-

linear with respect to their parameters, such as neural networks, an approximate expression of

the least-squares solution may be derived by using a Taylor expansion, in parameter space, of

the model in the vicinity of the minimum of the cost function. Unlike previous derivations of

this expansion, the derivation presented here is exact, so that the assumptions under which

this expansion is valid can be clearly stated. Then, we show that this result can be used for
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predicting the effect of withdrawing an example from the training set on its prediction and on

the corresponding confidence interval.

The present paper discusses static single-output processes with a non-random input vector x

and an output yp, which is considered as a measurement of a random variable Yp. We assume

that an appropriate model can be written under the form yp = r(x) + w, where w is a zero-mean

random variable and r(x) is the unknown regression function. A family of parameterised

functions f(x, θ) is used to approximate r and a data set of N input-output pairs {x
k
, yp

k
}k=1,...,N

is assumed to be available for estimating the parameters of the model. In the following, all

vectors are column vectors, denoted by boldface letters, e.g. the vectors x and {x
k
}.

2 Local approximation of the least-squares solution

We denote by θLS the least-squares solution: a q-vector of parameters that minimises the

quadratic cost function J(θ) = t[yp - f(X, θ)] [yp - f(X, θ)], i.e. that cancels its derivative1.

If the model is not linear with respect to its parameters, an approximate solution can be

obtained by using a Taylor expansion of the model in the vicinity of a parameter vector θ* in

parameter space. In order to obtain a valid first-order development of ∂ J
∂ θ  in (θ - θ*), one has

to resort to a second-order development of f(X, θ) in the vicinity of θ*:

f(X, θ) ≅  f(X, θ*) + Z (θ - θ*) + t(θ - θ*) S (θ - θ*) (1)

In the previous relation:

•  Z= t[z1, ..., zN] stands for the jacobian matrix of the model, where z i =
∂ f (x i, θ)

∂θ θ = θ*

.

•  S = S(x i) eiΣ
i = 1

N

 is a third-order tensor in which S(xi) is a (q, q) matrix defined as

S(x i) =
∂2

f (x i, θ)
∂θ j ∂θk θ = θ * j = 1, ..., q

k = 1, ..., q

 and ei is the ith vector of the orthonormal basis of ℜ N.

Using (1) in the cost function, one obtains, after differentiation, and neglecting the terms

whose order in (θ - θ*) exceeds 1:

                                                
1 We denote f(X, θ) = t[f(x1, θ), ..., f(xN, θ)], where X is the (N, n) matrix t[x1, ..., xN].
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∂ J
∂ θ = ∂ J

∂ (θ–θ*)
≅ – 2 Zt yp – f (x, θ*) + 2 ZZt – 2 yp

i – f (x i, θ*) S(x i)Σ
i = 1

N

(θ–θ*) (2)

The (q, q) matrix between the curled brackets is the Hessian of the cost function, that is

H =
∂2

J(θ)
∂θ j ∂θk j = 1, ..., q

k = 1, ..., q

. If the second term of the Hessian can be neglected, one can

approximate H by 2 tZ Z (Levenberg-Marquardt approximation). In all the following, we

assume that Z has full rank2.

Finally, after cancelling the gradient of J, one obtains an approximate expression of θLS:

θLS ≅  θ* + (tZ Z)-1 tZ [yp - f(X, θ*)] (3)

Relation (3) is valid under two assumptions:

•  the second-order terms of the Taylor expansion of ∂ J
∂ θ  are negligible with respect to first-

order terms, i.e. the cost function can locally be approximated by a quadratic surface;

estimations of the curvature of the cost function have been investigated by several authors

(see for instance [11], [1]),

•  the Hessian of the cost function can be approximated by 2 tZ Z; the latter approximation is

discussed, in a different context, in [2] and [7].

In the case of a model that is linear with respect to the parameters, relation (3) is an equality.

This result was obtained previously by other authors, starting from a first-order development

of f: in so doing, they actually overlooked the second term of H instead of neglecting it

knowingly (see for instance [11], where the result is used for estimating confidence intervals

for the model parameters and for the model output).

3 The effect of withdrawing an example from the training set

It this section, the above approximation of the least-squares solution is used to predict the

effects of withdrawing an example from the training set.

In all the following, the quantities pertaining to the models that have been trained on all

examples except example i are denoted with a superscript (-i): f (-i)(X, θ) and yp
(-i) are (N - 1)

                                                

2 Indeed, a rank deficiency of Z indicates an under-determination of some coefficients, which means that the

corresponding model is overfitted (cf. [9]): such models should be discarded.
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vectors, and Z(-i) is a (N - 1, q) matrix. Conversely, quantities that have no superscript pertain

to models trained with all examples.

3.1 The effect of withdrawing an example on its prediction

Assuming that the withdrawal of example i from the training set generates but a small

variation of the least-squares solution, one can obtain an approximate expression of θLS
(–i)  in the

vicinity of θ*, as for relation (3):

θLS
(–i) ≅ θ* + Z (–i)t Z (–i) – 1

Z (–i)t [yp
(–i) – f (–i)(X , θ*)] (4)

Combining (3) and (4), one obtains, by using an appropriate matrix inversion lemma (see for

instance [1]):

θLS
(–i) ≅ θLS – Zt Z

– 1
z i Ri

1 – hii

(5)

where zi is the vector whose components are the ith column of matrix Z, Ri is the residual for

example i: Ri = ypi - f(x
i, θLS) = ypi - f(x

i, θ*) - tzi θLS and

hii = tzi (tZ Z)-1 zi (6)

is the leverage of example i, i.e. the ith component of the projection, on the solution subspace,

of the unit vector along axis i. By definition, all {hii}i=1,…,N lie between 0 and 1, and satisfy the

following relation:

hiiΣ
i = 1

N

= q (7)

We denote by Ri
(-i) the error on the prediction of example i when it is withdrawn from the

training set: Ri
(–i) = yp i – f (x i, θ*) – z it θLS

(–i) . The expression of Ri
(-i) as a function of Ri is

obtained immediately: Ri
(–i) ≅ Ri + z it θLS – θLS

(–i) . Using relation (5), the same expression as in

the linear case (see [5]) is readily derived:

Ri
(–i) ≅ Ri

1 – hii

(8)

Similarly, an approximation of the quadratic cost function is obtained:

J(θLS
(–i)) ≅ J(θLS) –

Ri
2

1 – hii

(9)
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A similar idea was proposed in [6] and [12]. However, the derivation of their relations is not

correct, as evidenced by the fact that their results are not exact in the linear case, as opposed

to relations (5), (8) and (9).

An illustration of the accuracy of the previous approximations, on problems of various sizes,

can be found in [9].

3.2 The effect of withdrawing an observation on the confidence interval of its prediction

In [11], an approximate expression for a confidence interval on the output Yp of a non-linear

model is derived, under suitable assumptions, with a confidence level 1 - α.

For observation i of the training set, it can be written as:

E Yp x i ∈ f x i, θLS ± tα
N – q s z it Zt Z

– 1
z i = f x i, θLS ± tα

N – q s hii , (10)

where tα
N – q  is the value of a Student variable with N - q degrees of freedom and a level of

significance 1 - α and s is an estimation of the residual standard deviation of the model.

Relation (10) shows that the analytic approach of confidence intervals involves the same

quantity (hii) as the prediction of the effect of withdrawing an example from the training set;

this is not surprising since both groups of relations stem from the Taylor expansion of the

model in parameter space. This is why we have chosen to focus on these confidence intervals,

among the many confidence intervals that have been proposed for non-linear models ([13]).

As in the previous section, it is possible to estimate the confidence interval associated with the

prediction of a withdrawn example: given an input vector xi, the approximate confidence

interval, with confidence level 1 - α, for the model obtained after withdrawing example i from

the training set, is given by:

E (–i) Yp x i ∈ f x i, θLS
(–i) ± tα

N – q – 1 s(–i) z it Z (–i)t Z (–i) – 1
z i (11)

Using the same matrix inversion lemma as for relation (5), and combining relations (8) and

(11), it can easily be shown that:

E (–i) Yp x i ∈ f x i, θLS –
hii

1 – hii

Ri ± tα
N – q – 1 s(–i)

hii

1 – hii

.
(12)

In general, s(-i) can be approximated by s.

3.3 Interpretation of the leverages

All previous relations show that the leverages {hii}i=1,…,N play a crucial role.
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Two limit cases are of interest:

•  if axis i is orthogonal to the solution subspace, defined by the columns of matrix Z, all

columns have their ith component equal to zero; hence zi = 0 and hii = 0. Example i has

essentially no influence on the model (it has none in the case of a linear model), as

evidenced by relations (5), (8) and (9); such a situation cannot arise if the model has a

constant input;

•  if axis i lies within the solution subspace, then hii = 1 and Ri ≅  0. In other terms, example i

is learnt almost perfectly (it is learnt perfectly in the case of a linear model).

Thus, the leverage hii is a way of estimating the influence of example i on the model. The

closer hii to 1, the larger the influence of example i: as expected, the confidence interval on its

prediction, if it is withdrawn from the training set, becomes infinite if hii approaches 1

(relation (12)). This means that the model has made use specifically of some of its parameters

in order to fit this example almost perfectly (Ri becomes very small).

Note that relation (7) can be interpreted as follows: since the {hii}i=1,…,N sum to q, i.e. to the

number of degrees of freedom of the model, 
hii

q
 can be regarded as the fraction of the

available parameters that are used to fit example i: a leverage close to 1 means that almost one

degree of freedom has been used to fit example i; conversely, a leverage close to zero means

that almost no parameter has been made use of in order to fit this example, i.e. that example i

has no influence on the model. If all {hii}i=1,…,N are equal to 
q

N
, a fraction 

1

N
 of the degrees

of freedom of the model is devoted to fitting each example.

In the present paper, we have made use of the diagonal elements hii of the leverage matrix

H = tZ (tZ Z)-1 Z. The off-diagonal terms of this matrix can be used for estimating the effect of

the deletion of pairs of examples from the training set, as investigated, in the linear case, in

[8], using Cook's distance [4]. The extension to the nonlinear case, along the same lines as

discussed above, is still an open problem.

4. Conclusion

We have given a rigorous derivation of the first-order expansion, in parameter space, of the

gradient of the cost function for a model that is not linear with respect to its parameters, and

we have stressed the assumptions under which these approximations are valid. From this

result, we have derived the effect of withdrawing an example from the training set on the

prediction of the model and on its confidence interval.
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These results can be applied to leave-one-out or jackknife procedures, thereby exempting the

designer altogether from training as many models as examples. In [9] and [10], the application

of these techniques to model selection, and their limitations, are investigated in detail. Model

selection is performed in two steps: (i) for each candidate architecture, selection of a

minimum of the cost function (after training on the whole set of available data), on the basis

of a predicted leave-one-out score, obtained by replacing, in the traditional leave-one-out

score, the actual error on the left out example by the predicted error given by relation (8); (ii)

among the resulting models, select the model for which the distribution of the leverages is

most peaked around 
q

N
. Thus, starting from the leave-one-out principle and making use of the

confidence intervals, the proposed method is a new, simple and computationally inexpensive

(as opposed to Bayesian methods), way of dealing with overfitting by monitoring the

influence of each example on the model; in addition, the stability problems of the leave-one-

out technique (see [3]) are overcome. The technique has been successfully applied to an

industrial problem: the on-line prediction of the quality of spot welds from measurements

performed during welding.
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