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The prediction of properties of molecules from their structure (QSAR) is basically a nonlinear regression
problem. Neural networks are proven to be parsimonious universal approximators of nonlinear functions;
therefore, they are excellent candidates for performing the nonlinear regression tasks involved in QSAR.
However, their full potential can be exploited only in the framework of a rigorous approach. In the present
paper, we describe a principled methodology for designing neural networks for QSAR and estimating their
performances, and we apply this approach to the prediction of logP. We compare our results to those
obtained on the same molecules by other methods.

1. INTRODUCTION

Neural networks are more and more widely used in QSAR
as well as in various areas where data modeling is important.
Unfortunately, the “biological” inspiration of these statistical
tools too often obscures the basic issues involved in neural
network design and application, in particular for QSAR
applications (see ref 1 for a very valuable, lucid introductory
textbook on neural nets). Therefore, the first part of the
present paper is devoted to recalling briefly basic princi-
plesssome of which are not specific to neural networkssthat
are frequently overlooked. We insist on the fact that the
sole justification of using neural networks for nonlinear
regression is their parsimony. In the second part, we
summarize briefly the steps to be taken in the design, training,
and performance evaluation of a neural network for nonlinear
regression. In the third part, we introduce a simple construc-
tive method, based on first principles, for the selection of
the variables of a neural model. Finally, we illustrate these
principles by the prediction of logP; we compare the results
obtained by our approach to those obtained by conventional
regression techniques and demonstrate that, as expected from
theoretical results, the parsimony of neural networks allows
them to make a better use of the available data than
polynomial regression. We also apply our model selection
method and show that it allows us to effectively discriminate
relevant descriptors from irrelevant ones.

2. ELEMENTS OF A PRINCIPLED APPROACH TO
DATA MODELING WITH NEURAL NETWORKS

Because of their biological inspiration, neural networks
are usually defined as a set of connected nonlinear elements,
as shown on Figure 1. This view, however, is both useless
and misleading. Neural networks, as used in QSAR, and,
more generally, in data modeling applications, have nothing
to do whatsoever with the way the brain works; they should

be considered as just another family of parameterized
nonlinear functions which, like polynomials, wavelets,
Fourier series, radial basis functions, splines, etc., are
nonlinear approximators;2 some neural networks do have,
however, a specific advantage over other families of param-
eterized functions, as will be indicated below. In the
framework of statistical data modeling, which is precisely
that in which neural networks are used for QSAR, these
nonlinear functions are intended to approximate the regres-
sion function of the predicted property, i.e., the expectation
value of the latter (viewed as a random variable) conditional
to the set of variables of the model (the descriptors of the
molecules in QSAR). Since the models (polynomials, neural
networks, wavelets, radial functions, etc.) are parameterized
functions, the goal of modeling is the following: estimate
the values of the parameters of the model which best predicts
the data. The difficulty of the task lies in the fact that a
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Figure 1. A multilayer perceptron (a special class of feedforward
neural networks), with a layer of H “hidden” neurons and a single,
linear output neuron. The output of the hidden neuroni is given
by yi ) f[∑j)1

D θijdj], where {dj, j ) 1 to D} is the set of
descriptors,{θij, j ) 1 to D) is a set of parameters, and wheref(.)
) tanh(.). The output of the network is given byy ) ∑k)1

H θkyk,
where{θk, k ) 1 to H} is a set of parameters. The output neuron
performs a linear combination of the outputs of the hidden neurons,
which are nonlinear combinations of the input descriptors; adjustable
weights are present in both connection layers, so that the output is
nonlinear with respect to the weights of the first layer of connec-
tions. Each neuron has an additional, constant, input (usually termed
“bias”) which is not shown.
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finite data base is used for estimating the parameters, whereas
the number of predictions isinfinite. It is always possible
to find a model which fits the available data perfectly: it
suffices to take a model with a huge number of parameters.
Such overparameterized models, however, give very poor
results on fresh data (data which has not been used for
estimating the parameters), a phenomenon widely known in
regression asoVerfitting. On the other hand, a model with
too few parameters gives poor results both on the data used
for estimating the parameters and on fresh data. Therefore,
a good model is a tradeoff between performance on the
estimation data and performance on fresh data. The ap-
propriate approach to successful data modeling is the
following: find the smallest model (i.e., the model with the
smallest number of parameters), such that

‚the performance on estimation data (i.e., data used for
estimating the parameters) and on fresh data (i.e., data used
for estimating the prediction performance) are of the same
order of magnitude,

‚the performances on these sets are as good as possible
given the available data.

If the model is too large, the first condition is not met:
the performance on estimation data is much better than the
performance on fresh data; if the model is too small,
performances on both sets are poor. What is meant by a
“large” or a “small” number of parameters depends on the
amount of available estimation data; one principle that should
always be kept in mind when usingany statistical method
for estimating parameters from experimental data is the fol-
lowing: the number of adjustable parameters should be small
with respect to the number of data points used for estimating
them. If this simple principle is overlooked, the results,
however good, are not statistically reliable. We will see
below that this condition is necessary but not sufficient.

The above considerations are not specific to neural nets.
What is special about neural nets and justifies the surge of
interest for them in QSAR and many other areas is the fact,
based on solid mathematical results,3 that some neural
networks (to be specified below) areparsimonious approxi-
mators, i.e., they reach a level of performance equivalent to
that reached by other approximation methodswith a smaller
number of parametersor, equivalently, they give better
results with the same number of parameters. Since, as
mentioned above, the number of examples must be larger
than the number of parameters, a parsimonious method
allows the data modeler to get the same amount of informa-
tion out of a smaller amount of data or equivalently to get
more significant information out of a given amount of data.
This result has been proved mathematically, and it is
demonstrated on a QSAR example in section 5.2.2 of the
present paper.

Not all neural networks are parsimonious;neural networks
whose output is nonlinear with respect to the parameters
(in addition to being nonlinear with respect to theVariables)
are more parsimonious than approximation functions which
are linear with respect to the parameters, such as polynomials,
Fourier series, networks of wavelets with fixed centers and
dilations, networks of radial functions with fixed centers and
variances, etc. The popular multilayer Perceptron (Figure
1), having one layer of hidden neurons with sigmoid
activation functions and a linear output neuron, is a parsi-
monious neural network, since its output is nonlinear with

respect to the weights of the first layer of connections.
Qualitatively, the origin of parsimony is the following: when
the output is linear with respect to the parameters, it is a
linear combination of functionswhose shapes are fixed; in
contrast, the output of a multilayer Perceptron is a linear
combination of functionswhose shapes are adjustable
through the weights of the first layer; in addition, the
parameters of the linear combination (the weights of the
second layer of weights) are also adjustable. The additional
flexibility due to the fact that the shapes of the functions to
be combined are adjusted, together with the parameters of
the combination, is the key to the parsimony. Quantitatively,
the property of parsimony is expressed as follows: for a
given degree of accuracy, the number of weights in a
multilayer Perceptron growslinearly with the dimensionality
of the problem (i.e., with the number of descriptors in
QSAR), whereas it growsexponentiallywith the dimension-
ality of the problem when a nonparsimonious method, such
as polynomial regression, is used.

This property is not a guarantee of success with neural
nets in practical applications; additional conditions are the
following:

‚the set of examples used for estimating the parameters
(the so-calledtraining set) must not only be large enough
but also must be statistically representative of the data the
neural network will have to predict;

‚the variables input to the network must be relevant;
‚the algorithm used for training the network must be

efficient.
The first two conditions are definitely not specific to neural

nets; they are just consequences of the fact that the estimation
of parameters from experimental data is a statistical problem.
How to choose the estimation data (or training set) is a
problem-specific question to which no general answer can
be given.

The third condition is more technical but not less
important. The price to be paid for parsimony is the
following: standard parameter estimation techniques, such
as least squares algorithms, cannot be applied to the training
of parsimonious neural nets. The estimation of the param-
eters of neural networks, just as the estimation of the
parameters of any model, be it linear or not, neural or not,
is based on the minimization of a cost function which is the
sum of the squares of the differences between the measured
data and the estimated data

whereVn is the value of the measured quantity for thenth
element of the training set,yn is the estimation made by the
model for the same example, andNT is the total number of
examples used for training. Since the output of the network
is not linear with respect to the weights of the first layer,
the cost function is not quadratic with respect to these
weights; therefore, standard least squares methods cannot
be used. Instead, one has to resort to gradient methods,
which are iterative techniques whereby the weights are
updated as a function of the gradient of the cost function
with respect to the weights. The simplest way of doing this
consists in updating the weights proportionally to the gradient

J ) ∑
n)1

NT

(Vn - yn)2
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(this method is called simple gradient descent); this is a
hopelessly inefficient technique, resulting in thousands of
training iterations (see for instance refs 4 and 5) without any
guarantee that a minimum of the cost function (even a local
one) has been reached. Much more efficient techniques, such
as quasi-Newton, BFGS, or Levenberg-Marquardt algo-
rithms6 have been known for a long time; they cut down
computation times by orders of magnitude. To the best of
our knowledge, these algorithms have virtually never been
used in QSAR applications (with the notable exception of
ref 7). The use of an efficient training algorithm has another
benefit, in addition to saving computation time: because
simple gradient descent is so slow, the natural tendency is
to use oversize networks, so that the algorithm has a chance
to find a reasonable minimum of the cost function in a
reasonable time. This, of course, contradicts the parsimony
principle. By contrast, if training is performed with an
efficient gradient descent method, much smaller networks
may be used, so that one takes full advantage of their
parsimony. [Note that there is a frequent confusion, related
to training, in the literature: it is often mentioned that training
is performed bybackpropagation. Actually, backpropagation
is not a training algorithm. Training requires two steps: (i)
computation of the gradient of the cost function with respect
to the weights and (ii) computation of the weight updates as
a function of the gradient computed in the previous step.
Because of the specific mathematical form of neural nets,
the computation of the gradient may be performed, in an
economical way, if the gradient is computed from the output
back to the inputs (hence the term backpropagation) as a
simple consequence of the formula of chained derivatives.
Thus, the first of the above two stepsis backpropagation.
The second step uses the gradient, computed by backpropa-
gation, for estimating the weight updates. This can be
performed in a number of ways, the recommended way being
the use of second-order methods, as mentioned above.
Therefore, backpropagation is just one ingredient in a variety
of training algorithms. The confusion culminates with the
term “backpropagation neural network” which is frequently
found (for instance in ref 8) as a substitute for “feedforward
neural net” or “multilayer perceptron”; this is utterly confus-
ing, since backpropagation can be used for any kind of neural
net, including feedback (or recurrent) neural nets.]

3. DESIGNING A NEURAL NETWORK AND
ESTIMATING ITS PERFORMANCES

The design and performance estimation of a neural
network for QSAR requires the following ingredients:

-a set ofD descriptors of molecules, which are assumed
to be relevant for the prediction of the property under
consideration; these descriptors are either measured or
computed from molecular simulations;

-a network architecture; for application to nonlinear
regression, the recommended architecture consists of a single
layer ofH “hidden” neurons and a single linear output neuron
(Figure 1); the number of parameters of the networkP is
given byP ) (D+1)H + (H+1);

-a training algorithm, i.e., a method for estimating the
values of the parameters for which the cost function

is minimal; NT is the number of examples, i.e., of couples
{(di

n, i ) 1 toD), (Vn, n ) 1 toNT)} whereVn is the measured
value of the property to be predicted for the examplen;

-a data base of examples; in the present work, several
data bases were used, as explained below;

-a function for the evaluation of the performance of the
neural net on fresh data (calledtest set); here we use the
standard error of prediction (SEP):4,9

whereNF is the number of examples of the test set.
3.1. Descriptor Selection. The design of a set of

candidate descriptors is basically a matter of insight.
However, various methods have been proposed for selecting
relevant descriptors among a set of candidate descriptors;
most of these methods require multiple trainings of neural
networks. By contrast, in the present paper, we make use
of a fast method which does not rely on approximations and
does not require repeated neural net trainings; it will be
described in detail in section 4.

3.2. Determination of the Number of Hidden Neurons.
The determination of the number of hidden neurons, hence
of the number of parameters, requires a tradeoff between
accuracy and parsimony, as explained above. Overfitting
is the phenomenon whereby the variance of the approxima-
tion error on the training set is smaller than the noise present
in the measurements; in practice, since the variance of the
noise is usually unknown, overfitting is detected by the
observation that the mean square error on the training set is
significantly smaller than the mean square error on the test
set. Therefore, the number of hidden neurons is usually
found empirically, by adding neurons until overfitting is
detected. This procedure was used in the present study.
Recently, a rigorous statistical method for selecting the
number of hidden neurons has been proposed and applied
to various problems, academic and financial.10 It is closely
related to the descriptor selection method described in section
4.

3.3. Training. Since training algorithms are iterative,
oVertraining may occur: due either to an excessive number
of hidden neurons or to an inappropriate distribution of
examples in the training set, an overall degradation of the
performance of the network may occur while the performance
in the areas of input space which are well represented in the
training set is improved. This problem may be alleviated
by monitoring, during training, the performance of the
network on a validation set (independent of the training set),
which becomes minimum at some time during training, and
subsequently increases while the error on the training set
goes on decreasing. Thus, it is generally recommended to
use three different data sets for training and evaluating the
networks:

-a training set from which the gradient of the cost function
and the weight updates are computed;

J ) ∑
n)1

NT

(Vn - yn)2

SEP) x∑
n)1

NF

(Vn - yn)2

N
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-a validation set, independent of the previous set, for
which the cost function is computed: the network selected
at the end of training is the network which gives rise to the
smallest cost function on the validation set; this procedure
is helpful to circumvent the above-mentioned overtraining
phenomenon;7,11-13

-a test set, independent of the previous sets, which is used
for evaluating the performance of the selected network, as
described in the next section.
In the present work, the gradient of the cost function was
computed by backpropagation, and the weight updates by
the BFGS method. [This algorithm is implemented in the
software package NeuroOne by NETRAL S.A.]

3.4. Performance Evaluation. Performance evaluation
is a very important step, possibly the most costly in terms
of computation time, if one wants to get a statistically
meaningful estimation of the performances. It can be carried
out in two ways, both of which were used in the present
work:

‚Several random partitions of a data base into training set,
validation set, and test set may be used for training and
evaluation (cross-validation, CV). The performance of a
given architecture is estimated as the average of the computed
SEP over all partitions.

‚Alternatively, the prediction can be performed foreach
exampleof the data base using random partitions of the
training and validation sets (leave-one-out, LoO). The
overall SEP for a given network architecture is estimated
by averaging the prediction errors of all the examples.
The latter method is more accurate since more examples are
used for training. Conversely, the former method allows the
estimation of the SEP within a much shorter time.
In the present work, additional performance evaluations were
carried out on a fixed test set drawn from a different data
base.

4. DESCRIPTOR SELECTION

4.1. Descriptor Selection for Nonlinear Models. De-
scriptor selection is often a crucial step in any data modeling
problem, whether using neural nets or not. Many selection
techniques have been developed for models which are linear
with respect to the parameters; for models which are not
linear with respect to the parameters, the problem is much
more difficult.

For neural nets, several heuristics have been developed,
known under the general term of “pruning” techniques. They
are based on the following idea: the “saliency” of a weight
of the network, i.e., the influence of a weight on the value
of the cost function, can be proved to be roughly proportional
to the matrix of the second derivatives of the cost function
with respect to the weights, in the vicinity of a minimum of
the cost function. Thus, the “pruning” techniques consist
in starting with an oversize network, training it until a
minimum of the cost function is reached, computing a
numerical estimation of the saliency of each weight, deleting
the weights with low saliency, retraining the resulting
network, and carrying on the process until no improvement
in the prediction performance of the network is obtained.
These techniques have several drawbacks: they are com-
putationally demanding, since they require retraining the
network at each step of the procedure; in addition, they rely

on the fact that theglobal minimum is reached after each
training, so that, in practice, one has to train the network
several times at each step of the procedure in order to have
some chance of getting to the best possible minimum.

In other words, pruning methods provide an estimation
of the significance of a variable which depends on the
accuracy of the model; the accuracy of the model in turn
depends on the initial values of the weights. In ref 14, it is
proposed to circumvent the problem by (i) optimizing the
initial weights through simulated annealing, a procedure
which, in order to have a reasonable chance of getting to
the local minimum, must be extremely slow, and which has
a lot of parameters (initial configuration, annealing schedule,
stopping criterion) which must be adjusted empirically and
(ii) by optimizing the choice of descriptors by simulated
annealing too (any other stochastic optimization method such
as genetic algorithms, tabu search, probabilistic hill climbing,
etc., might be used as well). The combination of these
optimizations is extremely time-consuming, without any
guarantee of actually getting to the optimum solution.

Therefore, for descriptor selection, it is highly preferable
to use a procedure whose resulting model is guaranteed to
beunique. Such is the case of models which arelinear with
respect to the weights. Hence, the idea of the descriptor
selection method used in this work is the following:select
the descriptors on the basis of a model linear with respect
to the parameters (as described in section 4.2) and subse-
quently use them as inputs to a parsimonious neural net.

Thus, for variable selection, the proposed procedure
capitalizes on the fact that polynomial models can be trained
by least squares techniques which give auniquemodel within
a very short computation time; for prediction, it capitalizes
on the ability of neural nets to approximate any nonlinear
regression function with a smaller number of parameters than
polynomial approximation.

A somewhat similar idea was proposed in ref 7, where
descriptor selection was performed with alinear model; this
was essentially correct in the case investigated in the above
reference, since the linear model was quite satisfactory, so
that neural networks just provided a correction to the linear
model. In general, however, this is not the case.

4.2. Descriptor Selection for a Nonlinear Model Which
Is Linear with Respect to Its Parameters. A simple and
efficient method for selecting the inputs of a nonlinear model
which is linear with respect to its parameters was proposed
by Chen et al.15 in 1989. It is based on the Gram-Schmidt
orthogonalization method, that we recall briefly below.
Consider such a model, withD candidate descriptors. The
output of the model is of the form

whereæk is a nonlinear function of the descriptors,K is the
number of such functions, chosen by the designer of the
model, andwk is the weight of æk in the model. In
polynomial regression for instance, theæk’s are monomials.
The first step in the selection of theæk’s consists in ranking
them in descending order of contribution to the output.

This ranking is performed as follows: we denote byNT

the number of examples, and byæk
n the value of thekth

y ) ∑
k)1

K

wkæk(x1,x2,...,xD)
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function when the input is the vector of descriptors of
examplen; we denote byX the (NT, K) matrix whose column
k is the vectoræk of values taken on byæk and byYp the
vector, of dimensionNT, of the values of the outputyp for
the examples. The function which is the most significant,
i.e., which best “explains” the output, gives rise to the vector
Φk which has the smallest angle, inNT-dimensional space,
with the output vector. This can be evaluated simply through
the cosine of this angle: denoting by (ATB) the scalar product
of vectorsA andB, one has

Thus, in the first step of the procedure, allK such cosines
are computed, and the vectorΦk giving the largest cosine is
ranked first; we denote it byΦk

1.
Before proceeding to rank the second vector, one has to

eliminate the part of the output which is explained byΦk
1.

This is performed by projecting allΦk’s, and the output, onto
the subspace (of dimensionNT-1) which is orthogonal to
Φk

1. Then the second vector is found by the same procedure
in the subspace and so on until allΦk’s are ranked. This is
illustrated in Figure 2.

Once all vectors are ranked, a selection among them must
be made on the basis of the resulting ranked list. There exist
rigorous hypothesis testing procedures,16 whose application
to the prediction of logP are currently under investigation
in our group. In the present work, theΦk’s were monomials,
selected as follows: at each step of the Gram-Schmidt
orthogonalization, in addition to ranking a monomial, the
value of the parameter of the model involving the new ranked
monomial was computed (at a very small computational
cost); the performance of the model was estimated on a
separate data set, and ranking was stopped when overfitting
was detected.

The final step consisted in choosing the descriptors that
appeared most frequently in the selected monomials (e.g.,
in monomialx1x3

2 descriptorx1 is considered to appear once
and descriptorx3 is considered to appear twice).

5. PREDICTION OF LOGP

The prediction of logP from molecular properties with
neural networks is still a challenging problem. While several

studies based on classical regression techniques have already
been performed with encouraging results,17-20 using small
data bases, further work using a neural network approach
did not bring any substantial improvement upon the previous
results.21 However, neural nets should be the method of
choice to address this problem, since most of the selected
descriptors relevant to the prediction of logP are involved
as their second or fourth power,18,22which indicates that the
models are nonlinear. We show in the following that the
failures to improve the results with neural networks can be
traced to the fact that an appropriate methodology was not
used (sloppy training algorithms, overparameterized net-
works, no input selection, etc). We further show that, if
neural nets are used appropriately, the improvements pre-
dicted by theory can indeed be achieved.

The 323 molecule data base published by Bodor19 was
first chosen to apply our methodology, for the following
reasons:

‚it covers a reasonable range of organic functions,
‚a set of descriptors has already been selected for this

particular data base,
‚it has a significant size with respect to the number of

descriptors,
‚the experimental logP data could be checked from others

sources,
‚it provides a basis for comparison.
5.1. Data Base Generation. All the molecules were

sketched and optimized using the Biosym package23 on an
IBM RISC 6K workstation. For each molecule, the lowest
energy conformation obtained using the esff force field was
first selected. The Ampac AM1 method24 version 2.1 was
then used to compute the final geometry and the atomic/
molecular parameters. Special care was exercised for
drawing the “true” structures, in particular for molecules
having internal H-bonding. For complex cases, like tetra-
cycline which has several sites for internal H-bonding,
experimental coordinates were used as initial positions.25

The network computations as well as the descriptor
selections with the Gram-Schmidt orthogonalization tech-
nique were done with home made programs written in C.

5.2. Improvements Using Previous Descriptors. 5.2.1.
Results Obtained with Neural Networks. The set of
descriptors initially published by Bodor19 was first reduced
to its ten first degree descriptors (see Appendix). Neural
networks with one hidden layer, designed with the resultant
descriptor set as inputs and with a variable number of hidden
neurons, were tested for logP prediction using both the cross
validation and the leave-one-out techniques described above.
The corresponding results are reported in Table 1, lines 1
and 2, together with those obtained for two smaller descriptor
sets after withdrawal of some descriptors which, according
to other sources,4,26,27 were not essential. For comparison,
results from a linear regression (0n17d [Training a network
with zero hidden neurons and a linear output neuron is
identical to performing a linear regression.]) with all the 17
descriptors used by Bodor are included.21 The selected
networks performed quite well with 10 descriptors and gave
slightly better results than standard regression methods when
two and four descriptors were removed. A significant
decrease of the network performances was observed when
the final six descriptors were withdrawn in turn.

Figure 2. Illustration of the Gram-Schmidt procedure with two
vectorsΦ1 andΦ2: vectorΦ2, having the smallest angle with vector
Yp, is ranked first. ThenYp andΦ1 are projected onto the subspace
(which, here, is one-dimensional), perpendicular to the previously
selected vectorΦ2, resulting in vectorsΦ′1 andY′p. In this particular
case the procedure stops since there are only two vectors to rank.

cos2(Φk
TYP) )

(Φk
TYp)

2

(Φk
TΦk)(Yp

TYp)
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With all the neural architectures tested, the SEP varied
significantly (5%) for different partitions into training set
and evaluation set: therefore, outlier molecules that could
account for such a behavior, were investigated. A molecule
was considered to be an outlier when the deviation between
the predicted logP and the experimental value was larger
than 0.8. That threshold was reached,with all architectures
used, for seven molecules (caffeine, methadone, penicillin,
1,4-pentadiene, perylene, prostaglandin, tetracycline), which
were therefore temporarily discarded from the data base. The
case of these molecules is discussed in section 5.2.3.

For that reduced base, the SEP was improved as expected
(by 25%) with equivalent results for all networks; moreover
the results were less scattered (Table 1, lines 3 and 4). In
addition, the networks performed better than Bodor’s poly-
nomial regression (0n17d).

The network ability to generalize was then tested, with a
test base of 48 compounds, given in Appendix,22 by the same
methods as above. On this specific data set, all the
architectures (Table 1, lines 5 and 6) provided good
predictions, since a SEP value of 0.30 came quite close to
the experimental logP error (0.2-0.3).18 For comparison,
polynomial regression performed on the reduced data base
with Bodor’s 17 descriptors gave a SEP of 0.41 on the
separate test base, which is about 25% larger than the results
obtained by the neural networks.

This shows clearly that using the initial 17 descriptors was
unnecessary. A simple network built with only six inputs,
namely nC, S, MW, qO, qN, and qNO (see Appendix), and
seven hidden neurons, trained with about 250 molecules, was
actually quite appropriate for the logP prediction of the
studied compounds. Moreover, the above results would fit
well with the widely-held view that logP depends mostly
on solute size and hydrogen-bond basicity,26 since one half
of the descriptors are size-shape parameters and the other
half relates to the solute hydrogen-bond acceptor strength.
Thus, the electronic descriptors built from the calculated
atomic charges on oxygen and nitrogen atoms would play a
dominant role and could be parameters describing hydrogen
bonding. A special indicator introduced for alkane, whose
relevance seemed dubious to other QSAR researchers,27

actually appears to be irrelevant; so does the computed
dipole.26

For comparison with a regression approach proposed
previously, we report in Table 2 predictions of logP
performed with our best model and with Bodor’s 18-
parameter function;19 for this test, a set of 27 molecules, not

members of the main data set, were chosen among a set of
107 molecules whose logP were estimated by regression,19

because a reliable experimental logP was available.28 An
overall improvement of 30% is observed.

5.2.2. Numerical Demonstration of the Parsimony of
Neural Nets. As mentioned in section 2, the sole justifica-
tion of using neural nets in QSAR, in lieu of standard
nonlinear regression techniques such as polynomial regres-
sion, is theparsimonyof the former. This has been proven
mathematically;3 it is demonstrated numerically in this
section.

Polynomial regressions were performed with the 10
descriptors and the six descriptors mentioned in the previous
section, using the complete data base.

‚With 10 descriptors, a regression of degree 2 has 66
parameters (1 constant term, 10 linear terms, and 55 second
degree terms). This is roughly equivalent to the number of
parameters present in the smallest network (six descriptors
and seven hidden neurons, hence 57 parameters) which gives
rise to a SEP of 0.35 (Table 1) on the test set. With this
polynomial regression, the SEP (averaged over 100 partitions
into training set and validation set) on the training set was
0.24 and the average SEP on the validation set was 0.45,
thereby showing extensive overfitting, as expected.

It might be argued that the difference arises from the fact
that the polynomial regression has more parameters than the
neural regression; this is not the case: if one selects, with
the Gram-Schmidt procedure, the first 57 monomialssthus
providing a polynomial regression with exactly the same
number of parameters as the neural network with six inputs
and seven hidden neuronssthe training and validation SEP

Table 1. Standard Error of Predictionsa (SEP) for the Neural
ArchitectureHnDd, with H Hidden Neurons andD Descriptors

neural networkb

(removed descriptors) 6n10de
7n8d

(IA,DM) f
7n6d

(IA,DM,O,qT)g 0n17dh

CV total basec 0.37 0.35 0.35 0.37
LoO total basec 0.36 0.34 0.36 0.37
CV reduced based 0.28 0.26 0.27 0.34
LoO reduced based 0.27 0.27 0.27 0.34
CV separate test basec 0.28 0.30 0.30 irrelevant
LoO separate test based 0.32 0.31 0.31 irrelevant

a Average of three runs.b The number of hidden neuronsH was
optimized to give the best SEP for a given number of descriptorsD.
c (0.02.d (0.01.e No. of parameters (P): 73.f No. of parameters (P):
71. g No. of parameters (P): 57.h No. of parameters (P): 18.

Table 2. Comparison of the Prediction Performance of the
Network Approach with a Classical Regression with 18-Parameter
Function

compd
no. name

exptl
logP

this
worka

predicted
Bodor

1 methane 1.09 0.77 1.38
2 ethane 1.81 1.35 1.79
3 methylcyclopentane 3.37 3.19 2.64
4 methylcyclohexane 3.61 3.7 3.09
5 cycloheptane 4 3.65 3.09
6 trans-1,2-diphenylethylene 4.81 4.89 4.88
7 dichlorodifluoromethane 2.16 1.62 1.82
8 diiodomethane 2.3 2.96 3.26
9 bromomethane 1.19 1.08 1.42

10 2-bromopropane 2.14 2.32 2.21
11 1,3,5-tribromobenzene 4.51 4.75 4.89
12 1,3-dibromobenzene 3.75 3.97 4.05
13 1,2-difluorobenzene 2.37 2.50 2.62
14 1,4-diiodobenzene 4.11 4.53 4.78
15 3-PCB 4.58 4.63 4.66
16 2-pentanol 1.19 1.27 1.4
17 2-hexanol 1.76 1.86 1.94
18 3-hexanol 1.65 1.86 1.9
19 methyln-propyl ether 1.21 0.83 0.9
20 methyln-butyl ether 1.66 1.40 1.44
21 methyltert-butyl ether 0.94 1.34 1.36
22 3-methyl-2-butanone 0.84 1.11 1.08
23 4-methyl-2-pentanone 1.31 1.71 1.6
24 2,4-dimethyl-3-pentanone 1.86 2.29 2.1
25 methyl propionate 0.82 0.71 0.64
26 methyl butyrate 1.29 1.21 1.2
27 isobutyl acetate 1.78 1.72 1.74

SEP 0.30 0.40

a Average of cross-validation with 100 cycles (7n6d).
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are 0.24 and 0.44, respectively, which shows that overfitting
is still present.

It might be further argued that polynomials might provide
better results if a smaller number of monomials were used;
such is not the case. With polynomial regression, the best
result (SEP of 0.33 on the training set and 0.41 on the
validation set) was obtained with the first 16 monomials
ranked by the Gram-Schmidt procedure. This result is still
inferior by 15% to the result obtained by neural regression.

‚With six descriptors, polynomial regression of degree 2,
was similarly performed. It resulted in a 27-parameter model
with a training SEP and validation SEP of 0.32 and 0.45,
respectively. Monomial ranking and selection resulted in a
23-parameter model with a training SEP of 0.33 and a
validation SEP of 0.43. Again, the SEPs are significantly
larger than those obtained by neural networks.
Roughly similar results were obtained with the reduced data
base.

The results presented in this section demonstrate clearly
the advantage of neural networks over polynomials for
nonlinear regression: (i) for a given number of parameters,
neural networks, when trained with efficient algorithms and
provided with relevant descriptors, yield better predictions;
(ii) even when monomial selection is used for polynomial
approximation, neural networks outperform polynomials.
This is a mathematically proven property, so that the fact
that it applies to QSAR (as well as to any other field where
nonlinear regression is needed) is no surprise.

5.2.3. Discussion of the Seven Outliers.The seven
molecules previously set apart were examined to detect
possible errors. A careful checking of their experimental
logP values in other reliable data bases28-30 showed that 4
logP data (methadone, perylene, prostaglandin, 1,4-penta-
diene) used by Bodor were not correct. It turned out that
our 7n6d network predictions for these compounds were
actually correct as illustrated by the predicted and corrected
experimental logP for these compounds: methadone (pre-
dicted: 4.1, corrected: 3.93), perylene (5.7, 5.82), prostag-
landin (2.8, 2.0), and 1,4-pentadiene (2.4, 2.48). This is a
good illustration of the ability of a neural network to detect
errors or inconsistencies in the experimental data used to
feed the model.

As for tetracycline, which had the largest logP deviation,
it was incorrectly drawn since at neutral pH it exists as a
zwitterion.31,32 Its predicted logP did not take into account
that contribution and therefore was given with a large excess.
A similar inaccuracy in logP prediction was observed for
the amino acids also predominant in the zwitterionic form
at pH 7 (results not shown). All attempts to compute this
particular charge effect failed to improve the prediction,
presumably because some extra descriptor(s) might be
needed. However, throwing in new descriptors is pointless
as long as new molecules, exhibiting similar effects, are not
included in the data base.

Finally, we considered that the prediction of the two
remaining outliers, penicillin and caffeine, could probably
be improved with the introduction of new computed descrip-
tors, which was the next step of our investigation (described
in section 5.3.2 below). Therefore, these molecules were
kept in the data base for further investigations.

The above results, as mentioned before, stressed the
importance of the electronic descriptors, and it appeared

likely that new descriptors, containing atomic and group
charge information, would help in correlating the special
electronic effects of these specific compounds with their
partition coefficient. It turned out that this was indeed the
case, as shown in section 5.3.2 below.

In view of the above results, the experimental logP values
for the complete data base were checked.28 In addition to
the above-mentioned four molecules, large discrepancies
were found between experimental logP values of hexachlo-
rophene published in various sources; therefore, this molecule
was removed permanently from the data base. Tetracycline
was also discarded because of its zwitterionic character in
water.

To summarize: as a consequence of the discussion
reported in this paragraph, the results reported in the rest of
the paper were obtained with a set of 321 molecules, which
differs from the data base used to obtain the results shown
under the heading “reduced set” in Table 1 by the facts that
(i) four molecules (methadone, perylene, prostaglandin, 1,4-
pentadiene) were reintroduced after correction of the ex-
perimental values of their logP, (ii) penicillin and caffeine
were reintroduced for further investigation, (iii) tetracycline
was permanently discarded because of its zwitterionic
character, and (iv) hexachlorophene was permanently dis-
carded because of the uncertainty on its logP value.

5.3. Automatic Descriptor Selection. 5.3.1. Selection
from the Ten Previous Candidate Descriptors. The
descriptor selection method described in section 4 was first
checked on this new data set with the 10 descriptors used in
the previous section. The first seven ranked descriptors
(using the Gram-Schmidt method with monomials up to
degree 3) were the six finally selected above, plus qT. It
can be seen from Table 3 that a network built with those
seven inputs yielded the best performances, although some
compounds, like caffeine, were still predicted with a devia-
tion greater than or close to unity. This method gave a good
agreement with the “heuristic” selection described in section
5.2 and furthermore led to the design of a more efficient
network with six hidden neurons and seven descriptors.

5.3.2. Selection from an Extended Pool of Candidate
Descriptors. As discussed in section 5.2.3, it was deemed
necessary to introduce new candidate descriptors in order to
improve the accuracy of the prediction for some molecules.
Therefore, a new set of 74 descriptors, summarized in the
Appendix, was designed. Out of these, 18 relevant descrip-
tors were selected with the Gram-Schmidt orthogonalization
technique (with monomials up to degree 2). The results of
three leave-one-out cycles with a network built with those
descriptors are reported in Table 3. Although theoVerall
improvement is slight, it is due essentially, as expected, to
a large improvement in the prediction of (i) the previous
outliers (penicillin and caffeine) and (ii) the polyfunctional

Table 3. Standard Error of Prediction (SEP) and Maximum logP
Deviation for theHnDd Networks for the 321 Molecule Set

neural
network SEP

logP
deviatn

7n6d 0.30 1.6
6n7d 0.28 1.3
5n18da 0.261b 0.8

a Average of three runs.b (0.002.
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compounds (for which the SEP dropped from 0.40 to 0.33).
Thus, our selection method allows us to try whatever
descriptors one may think of and quickly assess their
relevance and ability to enlarge the range of compounds
whose logP can be accurately predicted.

Further studies, making use of our new selection proce-
dure, will be necessary to assess the relevance of the new
selected descriptors on larger data bases. Such investigations,
along with prediction of other physico-chemical properties
(boiling point and water solubility) using the presented
methodology are currently in progress in our group.

6. CONCLUSION

We have reported an investigation of the use of neural
networks for the statistical prediction of logP. In the first
part of the paper, we described elements of a principled
approach to the use of neural networks in data modeling;
we explained why neural networks may give superior results
as compared to those of other regression techniques and how
they should be used in order to actually get such results in
a statistically reliable way. In addition, we introduced an
original procedure for descriptor selection. The application
of these concepts and methods to the prediction of logP was
reported in the last part of the paper; first, the parsimony of
neural networks was demonstrated numerically; it was
subsequently shown that the automatic descriptor selection
technique gives results similar to those obtained by com-
bining chemical insight with a trial-and-error approach.
Improvements in the accuracy obtained by using a selection
among a larger pool of candidate descriptors was also
reported. Our future work is oriented toward (i) increasing
the size of the database and finding new relevant descriptors
and (ii) automating the choice of the number of hidden
neurons based on a rigorous statistical method.

APPENDIX

The 10 first order descriptors used by Bodor are reported
below:

MW molecular weight
S molecular surface
O ovality of the molecule
nC number of carbon atoms
IA Boolean indicator for alkanes
qO square root of the sum of the squared charges on

oxygen atoms
qN square root of the sum of the squared charges on

nitrogen atoms
qNO sum of the absolute values of atomic charges on

nitrogen and oxygen atoms
qT sum of the absolute values of atomic charges on each

atom
DM computed dipole moment

For the atom Z equal to C, N, O, F, Cl, Br, I, S, the
following 74 descriptors were computed:

nZ number of Z atoms
AqZ sum of the absolute values of atomic charges on Z

atoms
qZ sum of the atomic charges on Z atoms

q2Z sum of the squared atomic charges on Z atoms
AqmZ,

qmZ,
q2mZ

average of the corresponding descriptors, i.e., divided
by nZ

S, O,
DM,
MW,
qNO,
qT

same as above

qTm qT divided by the molecule atom number
qNOm sum of AqmO and AqmN
qH sum of the atomic charges on labile hydrogen atoms
nCar number of aromatic carbon atoms
nCak number of carbon atoms simply bonded either to

hydrogen or carbon atoms
qCal sum of the atomic charges on carbonR to oxygen

in alcohols and ethers
qOal sum of the atomic charges on ether and alcoholic

oxygen atoms
qCac sum of the atomic charges on carbon atoms in

carboxylic acid and ester groups
qCO2 sum of the atomic charges on the three atoms of the

carboxylic acid and ester groups
qCest sum of the atomic charges on theR oxygen bonded

carbon atom of carboxylic ester groups
qCph sum of the atomic charges on oxygen atoms in

phenols
qNam sum of the atomic charges on nitrogen atoms in

amines

nCar, nCak, nF, nCl, nBr, nO, nN, O, MW, D, qC, qmC,
qmN, aqmO, qNOm, qOAl, qCac, and qNam were used as
inputs in the 5n18d network.

The 48 molecule test set is as follows: methane, ethane,
cycloheptane, methylcyclopentane, methylcyclohexane, 2-pen-
tanol, 2-hexanol, 3-hexanol, 3-methyl-2-butanone, 4-methyl-
2-pentanone, pinacolone, diipropylketone, amylamine, eth-
ylamine, hexylamine, heptylamine, butyl methyl ether,
methyl propyl ether, methyltert-butyl ether, methylbutyrate,
propionic acid methyl ester, iso-butylacetate, 2-nitropropane,
methylbromide, 2-bromopropane, 2-iodopropane, dibro-
momethane, diiodomethane, 1,2-dibromoethane, 1,1,2-
trichloroethane, tribromomethane, 1,1,2,2-tetrachloroethane,
cis-1,2-dichloroethylene,trans-1,2 dichloroethylene, dichlo-
rodifluoromethane, pentachloroethane, hexachloroethane,
1,1,2 trichlorotrifluoroethane, freon114,trans-stilbene, bu-
tyronitrile, prednisolone, 3-chlorobiphenyl, 1,2-difluoroben-
zene, 1,3-dibromobenzene, 1,4-diiodobenzene, 1,3,5-tribro-
mobenzene, heptan-4-ol.
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