
1

Neural Computation, vol. 14, pp. 1481-1506

LOCAL OVERFITTING CONTROL VIA LEVERAGES

Gaétan MONARI*,**, Gérard DREYFUS*

*École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris

Laboratoire d'Électronique

10, rue Vauquelin - F 75005 PARIS - FRANCE

**USINOR

DSI/DISA SOLLAC FOS bat. LB1

F 13776 FOS-sur-Mer Cedex - FRANCE

ABSTRACT

We present a novel approach to dealing with overfitting in black-box models. It is

based on the leverages of the samples, i.e. on the influence that each observation

has on the parameters of the model. Since overfitting is the consequence of the

model specializing on specific data points during training, we present a selection

method for nonlinear models, which is based on the estimation of leverages and

confidence intervals. It allows both the selection among various models of

equivalent complexities corresponding to different minima of the cost function

(e.g. neural nets with the same number of hidden units), and the selection among

models having different complexities (e.g. neural nets with different numbers of

hidden units). A complete model selection methodology is derived.

1. INTRODUCTION

The traditional view of overfitting refers mostly to the bias / variance tradeoff, introduced in

(Geman & al., 1992): a family of parameterized functions with too few parameters, with

respect to the complexity of a problem, is said to have too large a bias, because it cannot fit

the deterministic model underlying the data. Conversely, when the model is over-

parameterized, the dependence of the resulting functions on the particular training set is too

large, and so is the variance of the corresponding family of parameterized functions.

Therefore, overfitting is usually detected by the fact that the modeling error on a test set is

much larger than the modeling error on the training data.

In practice, there are two major ways of preventing overfitting:

• a priori, by limiting the variance of the considered family of parameterized functions.

These regularization methods include weight decay (see (MacKay, 1992) for a bayesian

2

approach to weight decay), and similar cost function penalizations, as well as early

stopping (Sjöberg & al., 1992). None of them exempts the model designer from an

additional estimation of the generalization performance of the selected model;

• a posteriori, by estimating the generalization performance on data that have not been used

to fit the model. This approach relies on data re-sampling and has given rise to the cross-

validation methods (Stone, 1974), including leave-one-out. Statistical tests can be further

used, after selecting candidate models, to test whether differences in the estimated

performances are significant (see for instance (Anders & al., 1999)).

The limitations of the above methods are well known: weight decay and similar methods

require the estimation of meta-parameters, while resampling methods tend to be

computationally intensive.

In the present paper, we consider overfitting as a local phenomenon that occurs when the

influence of one (or more) particular example(s) on the model becomes too large, because of

the excessive flexibility of the model. Therefore, we suggest a new approach to model

selection that takes overfitting into account on the basis of the leverages of the available

samples, i.e. on the influence of each sample on the parameters of the model.

In the next section, we recall briefly the mathematical framework of this approach. In sections

3 and 4, we show that this perspective on overfitting suggests a model selection method,

which takes into account both an estimation of the generalization error and the distribution of

the influences of the training examples: section 3 is devoted to model selection within a given

family of parameterized functions, while section 4 focuses on the choice of the appropriate

family among several candidate families. Section 5 illustrates the method with several

examples.

2. MATHEMATICAL FRAMEWORK

The present paper discusses static single-output processes with a non-random n-input vector

x = [x1, ..., xn]
T and an output yp which is considered as a measurement of a random variable

Yp. We assume that an appropriate model can be written under the form:

Yp = r(x) + W (1)

where W is a zero-mean random variable and r(x) is the unknown regression function. A data

set of N input-output pairs {xk, yp
k}k=1, ..., N is assumed to be available for estimating the

parameters of the model f(x, θθθθ). In the following, all vectors are column vectors, denoted by

bold type letters, e.g. the n-vectors x and {xk}.

In (Monari & al. 2000), the effect of withdrawing an example from the training set was
investigated. Assume that a model with parameters θθθθ LS has been found, by minimizing the

least-squares cost function computed on the training set. Under the sole assumption that the

3

removal of an example from the training set has a small effect on θθθθ LS (in contrast to standard

leave-one-out, no stability assumption is required in the present approach, as discussed in

section 3.2 and in Appendix 2), a second-order Taylor development of the model output with

respect to the parameters was derived. It was shown that this generates an approximate model

that is locally linear with respect to the parameters, and whose variables are the components

of the gradient of the model output with respect to the parameters. Introducing the jacobian

matrix Z = [z1, ..., zN]T, where

zz i =
∂f xi,θθ

∂θθ
θθ = θθ

LS

, the solution subspace can be defined (in

analogy with linear models) as the subspace determined by the columns of matrix Z

(assuming that the latter has full rank). Then the quantity

hii = ziT (ZT Z)-1 zi (2)

is the ith component of the projection, on the solution subspace, of the unit vector along axis i.

The quantities {hii}i=1,…,N, termed leverages of the training examples, satisfy the following

relations:

 ∀i ∈ 1, ..., N 0≤ hii≤ 1 (3)

hiiΣ
i = 1

N

= q (4)

where q is the number of adjustable parameters of the model (e.g. the number of weights of a

neural network, the number of monomials of a polynomial approximation, etc.). Equations (3)

and (4) stem from the fact that the quantities {hii}i=1,…,N are the diagonal terms of the

orthogonal projection matrix Z (ZT Z)-1 ZT.

If axis i is orthogonal to the solution subspace, all columns have their ith component equal to

zero; hence zi = 0 and hii = 0. Since the output of the model is the orthogonal projection of the

process output onto the solution subspace, example i has essentially no influence on the

model (it has none in the case of a linear model). If axis i lies within the solution subspace,

then hii = 1 and example i is learnt almost perfectly (it is learnt perfectly in the case of a linear

model). Thus, hii is an indication of the influence of example i on the model: the closer hii to

1, the larger the influence of example i on the model. This will be further shown below.

In the case where all examples have the same influence on the model, all leverages {hii}i=1,…,N

equal
q
N

. In other words, each example uses up a fraction 1/N of the q available degrees of

freedom (adjustable parameters) of the model. If one considers that overfitting results from an

excessive influence of one (or more) examples on a model, then model selection aims at

obtaining the model that has the best performances and in which the influences of all

examples are roughly equal.

4

The influence of an example on the model should be reflected in the effect of its withdrawal

from the training set: if an example has a large influence on the model (hii ≈ 1), it should be

very accurately learnt when it is present in the training set, but it should be badly predicted

otherwise; conversely, if an example has no influence on the model (hii ≈ 0), it should be

predicted with equal accuracy irrespective of its presence or absence in the training set.

Indeed, if we denote by Ri the residual of example i (i.e. the modeling error on example i
when it is present in the training set: Ri = yp

i – f(x, θθθθ LS)), an approximate expression of the

prediction error Ri
(– i) that would occur if this example had been removed from the training

set, is given by:

Ri
(– i) ≅

Ri

1 – hii

(5)

Details of the derivation of this relation are given in (Monari & al. 2000). This approximation

is founded insofar as the 2nd order Taylor development of the output is valid, i.e. 3rd order

terms are negligible.

Hence, the difference between the predictions of example i, depending on whether it belongs

or not to the training set, is a function of its leverage hii
1. This property will be taken

advantage of in the selection method presented in the next sections.

If the jacobian matrix Z is not of rank q, i.e. if the manifold of ∑ N defined by the columns of
Z is - at θθθθ LS - not of full rank, the corresponding models must be discarded. For such models,

the number of available parameters is locally too large in view of the number of training

examples, which leads to an under-determination of these parameters. This is an extreme case

of overfitting that can be detected either by computing directly the rank of Z (a difficult

numerical task), or, indirectly, by checking the validity of relations (3) and (4). The latter

solution supposes that we are able to compute the {hii}i=1,…,N, irrespective of the fact that ZT Z

is invertible or not. To address this problem, a Singular Value Decomposition (SVD, see for

instance (Press & al., 1988)) of matrix Z can be performed, as shown in Appendix 1. SVD is

very accurate and can always be performed, even if Z is singular. In the latter case however,

the leverages are not computed accurately, hence should not be used (e.g. for computing the

1 Actually, when hii approaches one, the residual Ri vanishes less rapidly than (1 - hii). This

can be understood as follows: if an example has a strong influence on the model, its

withdrawal from the training set causes its residual to be significantly different. Therefore,

from relation (5), the quantity

Ri –
Ri

1 – hii
=

hii

1 – hii
Ri is not vanishingly small; hence, the

estimate of the prediction error for this example

Ri
(– i)

≅
Ri

1 – hii
 does not vanish either.

5

quantity Ep defined in the next section) because they do not comply with their basic properties

(3) and (4).

Moreover, some estimates of the confidence intervals on the model output (Seber & al., 1989)

rely on the assumption that Z has full rank. Under this assumption, a confidence interval on

the model output for input x can be easily computed as:

E Yp xx ∈ f xx, θθ

LS
± tα

N – qs zzT ZTZ
– 1

zz (6)

where

zz =
∂f xx,θθ

∂θθ
θθ = θθ

LS

, tα
N – q is the realization of a random variable with a Student's

t-distribution with N – q degrees of freedom and a level of significance 1 – α , and s is an

estimate of the residual standard deviation of the model: s = 1
N – q Ri

2Σ
i = 1

N

. This is an

additional motive for rejecting models with rank deficiency.

All theoretical material presented in sections 3 and 4 will be illustrated graphically on a small

problem with one input and one output. The training data were generated using the function
y = sin x

x and an additive gaussian noise of variance σ 2 = 10-2. Fifty examples were drawn,

with a uniform distribution of x within the interval [0; 15]. Throughout this paper, this data set
will be referred to as the sin x

x problem. The application of our method to the selection of

more complex, multivariable models will be demonstrated in section 5.

3. SELECTION OF A MODEL AMONG MODELS HAVING THE SAME ARCHITECTURE

For clarity, in the following, we consider that, once the number of inputs and outputs is

chosen, model selection is performed in two steps:

• an architecture is chosen, i.e. a family of functions having the same complexity, within

which the model is sought (e.g. the family NN3 of neural networks with five inputs, three

hidden neurons and a linear output neuron); if the model is nonlinear with respect to the

parameters, several trainings with different parameter initializations are performed,

thereby generating various models of the same architecture (e.g. for neural nets a set of K

models with 3 hidden neurons {NN3
k, k = 1 to K}). For this family of functions, the most

appropriate model (e.g. model NN3
opt

 in family NN3) is selected as described below in the

present section;

• the previous step is performed for different architectures, i.e. for different families of

parameterized functions, having different complexities (e.g. families NNi of neural

networks having the same number of inputs and outputs but different numbers i of hidden

6

neurons); this results in a set of models (e.g. models { NNi
opt

, i = 0 to I}). The most

appropriate model among these (e.g. model NNopt
) is selected as described in section 4.

In this section, we first propose a criterion for the selection of a model among models having

the same complexity, and we subsequently compare our approach with the traditional use of

the leave-one-out technique. The choice among models of different complexities is addressed

in section 4.

3.1. A selection criterion

A preliminary screening of the models corresponding to the different minima must be

performed by checking the rank of the corresponding jacobian matrices: as stated in the

previous section, models with rank deficiency are overfitted and should therefore be

discarded2. However, the fact that, for a given architecture, the global minimum has rank

deficiency does not mean that the considered architecture is too large: local minima may

provide very good models3, provided they are not rank deficient. Therefore, an additional

selection criterion must be found.

To this end, we use the results presented in the previous section. In the spirit of leave-one-out

cross-validation, we define the quantity Ep as:

Ep = 1
N

Ri

1 – hii

2

Σ
i = 1

N (7)

which is identical to the leave-one-out score except for the fact that the summation is

performed on the estimated modeling errors given by relation (5), instead of being performed

on the actual prediction error on each left-out example. This quantity can be compared to the

traditional Training Mean Squared Error:

TMSE = 1
N

Ri
2Σ

i = 1

N
(8)

Ep is larger than TMSE; it penalizes models that are strongly influenced by some examples.

Therefore, this quantity is an appropriate choice criterion between models having the same

2 Moreover, a rank deficiency of Z has an adverse effect on the efficiency of some second-

order training algorithm (for instance the Levenberg-Marquardt algorithm). To overcome this,

(Zhou & al., 1998) suggested a training algorithm that guarantees that the jacobian matrix is

of full rank throughout training.

3 It is well known that a suboptimal model, i.e. a model whose parameters do not minimize

the cost function, may have a smaller generalization error than the global minimum. This is

the basis of the "early stopping" regularization method, whereby training is stopped before a

minimum is reached.

7

architecture but corresponding to various local minima of the cost function. Note that if all

examples have the same leverage
q
N

, then

Ep =
N

N – q
TMSE , hence Ep and TMSE are equal in

the large-sample limit for a model without overfitting.

To illustrate this, consider the case of a neural network with 4 sigmoidal hidden neurons and a

linear output neuron, trained on the data set indicated in section 2. Starting from 500 different

weight initializations and using the Levenberg-Marquardt algorithm leads to various minima,

represented on Figure 1 as follows:

• the solutions without rank deficiency are plotted in the (TMSE, Ep) plane, using a

logarithmic scale for the ordinates,

• the solutions with rank deficiency (rank(Z) < q), for which Ep cannot be computed reliably

(see section 2), are plotted outside the frame of the graph.

(lo
ga

rit
hm

ic
 s

ca
le

)
E

p

Rank(Z) < q

10-1

1

10

102

103

104

105

0.075 0.080 0.085 0.09 0.095 0.100 0.105 0.110

Figure 1: Distribution of the solutions obtained with networks having 4 hidden neurons.

Models lying outside the frame of the graph are models with rank deficiency, for which only

TMSE can be computed. Note that such is the case for the model with the smallest value of the

training cost function.

The analysis of this plot leads to several comments:

• even for this simple architecture, a very large number of different minima of the cost

function are found,

• for this particular example, about 70 % of the solutions have rank deficiency, so that they

may be discarded without further consideration. This includes the deepest minimum found

- shown as a gray dot - which is likely to be a global minimum,

• for solutions without rank deficiency, the ratio of Ep to TMSE varies from almost 1 to very

high values, hence the choice of a logarithmic y-scale. This shows that some minima

correspond to solutions that are over-influenced by a few training examples. As expected,

8

this overfitting is not apparent on TMSE, but it is on Ep. The solution with the smallest Ep

is shown as a gray triangle.

The model outputs corresponding to the minima having respectively the smallest TMSE and

the smallest Ep are shown on Figure 2.

3

1 Model corresponding to the minimum of
the training cost function

Training set

-0.5

0

0.5

1.5

8 13

Model corresponding to the
minimum of Ep

Figure 2: Outputs of models having 4 hidden neurons, selected on the basis of TMSE and of

Ep.

Note that it is not claimed that the model with the smallest Ep is not overfitted. It is claimed

that, among the various minima found with the weight initializations used, it is the model that,

for the considered architecture, provides the best tradeoff between accuracy and uniform

influence of the training examples. This point will be further addressed in the next section.

Starting from a linear model and increasing gradually the number of hidden neurons, one

obtains the results shown on Figure 3. It appears that Ep is essentially constant between 2 and

4 neurons. Therefore, an additional step is required to perform the final model selection, i.e. to

choose the appropriate number of hidden neurons; this is addressed in Section 4. In this

particular case where the noise level is known, it may be inferred that models with more than

3 hidden neurons are probably overfitted since their TMSE is smaller than the standard

deviation of the noise.

Linear 1 HN 2 HN 3 HN 4 HN 5 HN
Architecture

0.1

0.3

0.05

0.15

0.2

0.25

M
S

E

TMSE

Ep

σ

Figure 3: Evolution of the optimal Ep and of the corresponding training mean square error as a

function of the number of hidden neurons. σ is the standard deviation of the noise.

9

The question that arises naturally is whether Ep (or the standard leave-one-out score Et as

defined below) is a good estimate of the true generalization error of the model. Under the

hypothesis of "error-stability" introduced in his paper, sanity-check bounds for the leave-one-

out error have been derived by (Kearns & al., 1997). Obtaining narrower bounds would

require some additional stability properties of the training algorithm and / or cost function.

3.2. Comparison with the standard leave-one-out procedure

Since our approach relies on the first principles of the leave-one-out procedure, a comparison

to the original procedure is of interest.

For models that are nonlinear with respect to their parameters, the most popular version of the

leave-one-out, called “generalized leave-one-out” (Moody, 1994), consists in first finding a

minimum of the cost function, with weights W, through training with the whole training set.

The N subsequent trainings with one left-out example start with the set of initial weights W.

Then, using the resulting N prediction errors on left-out examples, an estimation of the

generalization error of the model is computed as:

Et = 1
N

Ri
(– i) 2

Σ
i = 1

N
(9)

This method assumes that the withdrawal of one example from the training set does not result

in a jump from one minimum of the cost function to another one. We formalize this as follows

(see appendix 2 for more details): consider a training procedure using a deterministic

minimization algorithm of the cost function4; assume that a minimum of the cost function has
been found, with a vector of parameters θθθθ LS . Assume that example i is withdrawn from the

training set, and that a training is performed with θθθθ LS as initial values of the parameters,

leading to a new parameter vector θθθθ LS
(– i) ; further assume that example i is subsequently

reintroduced into the training set, and that a new training is performed with initial values of
the parameters θθθθ LS

(– i) : in the following, the minimum of the cost function corresponding to a

parameter vector θθθθ LS will be said to be stable for the usual leave-one-out procedure if and

only if, for each i ∈ [1, …, N], starting from θθθθ LS , the procedure described above retrieves θθθθ LS .

It has been known since (Breiman, 1996) that this is a major stability problem. In practice, it

turns out that, if an overparameterized model is used, most minima of the cost function are

unstable with respect to the leave-one-out procedure. Therefore, for all such minima, the

computation of the leave-one-out score Et and its comparison to Ep are meaningless.

4 This excludes such algorithms as simulated annealing, probabilistic hill climbing, etc.,

which may overcome local minima.

10

0.3

- 0.3 0 0.3

 Ri

1– hii

 Ri
(– i)

- 0.3

Figure 4: Application of relation (5) to a neural model of sin(x)/x with two hidden neurons,

whose output is shown on Figure 7.

For minima that are stable with respect to the leave-one-out procedure, the validity of

approximating Et by Ep depends on the validity of the Taylor expansions used to derive

relation (5). Checking this validity can be performed by estimating the curvature of the cost

function (see (Antoniadis, 1992)); alternatively, one can actually perform the leave-one-out

procedure for a model selected on the basis of Ep, and compare Et and Ep. This is illustrated on
Figure 4, for an approximation of sin x

x with two hidden neurons, for the minima that are

stable and with full rank.

The time required for the computation of the quantities {hii} from relation (2) and of the

leave-one-out score Ep at the end of each training is negligibly small as compared to the time

required for training; therefore, our procedure divides the computation time by N , as

compared to the standard leave-one-out, where N is the number of examples.

3.3. Conclusion

We have shown in this section that Ep is an efficient basis for selecting a model, within a

family of parameterized functions; furthermore, it eliminates automatically the solutions that

are rank-deficient. Once a model has been selected on this basis for several families of

parameterized functions, one has to select the appropriate architecture. This is addressed in

the next section.

4. SELECTION OF THE OPTIMAL ARCHITECTURE

Having selected, for each architecture, e.g. for each number of hidden neurons, the minimum

with the smallest value of Ep, we have to define a way of choosing the best architecture. It is

11

known that, among models with approximately the same performances, one should favor the

model with the smallest architecture. In practice, however, the tradeoff between parsimony

and performance may be difficult to perform; referring to Figure 3, the choice between 2, 3 or

4 hidden neurons is not easy in the absence of further information.

In this section, we show that the leverage may be used as an additional element in the process

of choosing a model among candidate models having different architectures.

4.1. Leverage distribution

In a purely black-box modeling context, all data points of the training set are equally

important; therefore, we suggest that, among models with approximately the same

generalization error estimates (Ep), one should select the model for which the influence of the

training examples is most evenly shared5, i.e. for which the distribution of the leverages hii is
narrowest around

q
N

. For example, the models with 2 and 4 hidden neurons of Figure 3 have

significantly different leverage distributions as shown on Figure 5. As expected from relation
(3), the leverages {hii}i=1,…,N are centered on the corresponding values of

q
N

. However, the

distribution is broader for the model with 4 hidden neurons. The width of the distribution is

due to the fact that, for x ∈ [8; 13], the number of examples is too small given the number of

parameters of the model; this results in confidence intervals on the model output that are

significantly larger in the corresponding region of input space than elsewhere.

5 unless it is explicitly desired, for some reason arising from prior knowledge on the modeled

process, that one or more example be of special importance.

12

0

0.5

1

3 8 13

Training set

95 % confidence interval

Model output (2 hidden
neurons)

Training set
95 % confidence interval

Model output (4 hidden
neurons)

35

25

15

0

5

10

20

30

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h ii

N
um

be
r

of
 e

xa
m

pl
es

2 hidden neurons

q

4 hidden neurons

N

-0,5

0

0.5

3 8 13

Figure 5: Model outputs (left) and leverage distributions for the models with 2 and 4 hidden

neurons selected on the basis of Ep.

In order to characterize the leverage distribution of a given model, it is appropriate to use the

mean value of the quantities hii i = 1, ..., N
, since the latter are involved in the computation of

the confidence intervals. Indeed, the application of relation (6) to example i of the training set

yields:

 E Yp xx ii
∈ f xx ii, θθ

LS
± tα

N – qs h ii
(10)

Therefore, we define the quantity:

µ = 1
N

N
q hiiΣ

i = 1

N
(11)

13

Using Cauchy's inequality and relations (3) and (4), one can derive the following properties

for µ, irrespective of N and q:

µ ≤ 1

µ = 1 ⇔ hii =
q
N

∀i∈ 1, ..., N .
 (12)

Therefore, µ is a normalized parameter that characterizes the distribution of the {hii}i=1,…,N

around their mean value. Irrespective of N and q, the closer µ to 1, the more evenly shared the

influences among the training examples. Hence, µ can be used as an additional indication of

the overfitting of a model.

To illustrate this, Figure 6 shows, in addition to the curves of Figure 3, the values of µ, and an

estimate of the generalization error, obtained on a separate representative test set (100

examples). To this end, we define the Generalization Mean Square Error (GMSE) as:

GMSE = 1
card(Test set)

yp x – f (x, θθθθ LS)
2Σ

x Test set
(13)

0.05

0.1

0.15

0.2

0.25

0.3

Architecture

M
S

E

0.91

0.93

0.95

0.97

0.99

µ

σ TMSE Ep GMSE µ

Linear 1 HN 2 HN 3 HN 4 HN 5 HN

Figure 6: Performance indices of the solutions selected on the basis of Ep, including µ (right

scale), and tested on a separate data set.

The analysis of Figure 6 leads to the following comments:

• the distinction between leverage distribution of the two models depicted on Figure 5 can

actually be performed by µ (0.98 vs 0.96),

• the model with the highest value of µ is actually the model with the smallest value of

GMSE. For larger architectures, both µ and GMSE get worse,

• indeed, models with more than 2 hidden neurons do not reach the performance of that

with 2 hidden neurons. However, the increase of the GMSE turns out to be limited, which

14

demonstrates that selecting the minima on the basis of Ep is an effective means of limiting

overfitting.

As a conclusion, considering several architectures with approximately the same values of Ep,

the most desirable solution is the solution with the highest value of µ in the context of black-

box modeling, i.e. if there is no reason, arising from prior knowledge, to devote a large

fraction of the available degrees of freedom to one or to a few specific training samples.

4.2. Model selection and extension of the training set

In the previous section, we considered the situation where one wishes to select a model built

from a data set that is available once and for all. It is often the case, however, that additional

samples may be gathered, in order to improve the model. Then the following question must be

addressed: in what region(s) of input space would it be useful to gather new data? We show in

the following that the approach to model selection described in the previous section can be

helpful in this respect.

To this end, one has to define a maximal acceptable value for the confidence interval. Using

the expression of that interval (relation (6)), one can choose, for instance, the following

threshold:

tα
N – q s zT Z T Z – 1z < tα

N – q s (14)

This guarantees that the confidence on the model output f x, θθθθ LS is not poorer than that on

the measured output Yp x .

0

0.5

1

3 8 13

Training examples
Confidence interval < threshold (14)
Confidence interval > threshold (14)
Model output

180

0.5

1

3 8 13

Training examples
Confidence interval < threshold (14)
Confidence interval > threshold (14)
Model output

18

Figure 7: Application of threshold (14) to the confidence interval on the model output (2

hidden neurons).

To start with, consider the model with 2 hidden neurons, which has been selected, using µ, as

the best possible model given the available training set (Figure 6): according to the threshold

(14) , th i s model should not be used outs ide the in te rva l

x ∈ [-0.3, 16.5] (see Figure 7). In order to use the model outside this input space area,

additional data should be gathered. This is not surprising since the interval

[-0.3, 16.5] is roughly the interval from which the training set was drawn.

15

However, if it is desirable to improve the model within this interval, the confidence interval

on the model with 2 hidden neurons does not provide any information for detecting where

additional examples would be required. To that effect, we have to choose slightly more

overfitted models, such as the model with 4 hidden neurons shown on Figure 5, and consider

their confidence intervals. Then, the application of threshold (14) shows areas of input space,

both within and outside the interval x ∈ [-0.3, 16.5], where additional examples would be

helpful (see Figure 8): the large confidence interval between 9 and 11 shows that the

corresponding hii are large, i.e. that a large fraction of the degrees of freedom of the 4-hidden-

neuron network was used to fit the training examples within this interval. Therefore, gathering

new data in this area would indicate whether the wiggle of the output in this area is

significant, or whether it is an artifact due to the small number of samples.

0

0.5

1

13 18

Training examples

Confidence interval < threshold (14)
Confidence interval > threshold (14)

Model output

Figure 8: Application of threshold (14) to the confidence interval on the model output (4

hidden neurons).

Hence, considering slightly oversize models for selection is a means for detecting areas of

input space where gathering additional data would be appropriate. Once additional examples

are gathered, the selection procedure is performed again.

4.3. Discussion

For didactical reasons, the selection method discussed in sections 3 and 4 was split into two

phases; for a given training set, architectures of increasing sizes were considered, as follows:

• For each architecture, perform several trainings, starting with various random weights,

• For each model, compute the leverages {hii}i=1,…,N of the training examples and check

the validity of relations (2) and (3):

- Discard the model in case of rank deficiency,

- Otherwise, compute Ep,

• Keep the model with the smallest value of Ep, and compute its parameter µ,

• Among the candidate models exhibiting a satisfactory Ep, select the model with the

highest value of µ.

16

Thus, the method relies essentially on two quantities that can be compared, for a given

problem, irrespective of the model size: Ep, which is an estimate of the generalization error,

and µ, an index of the degree of overfitting of the model.

Hence, one should consider, for various architectures, all candidate models as a pair (Ep, µ),

and perform model selection directly on the basis of the position of each model in the Ep - µ

plane.

For instance, on the sin x
x problem, the selection should be performed by considering Figure

9, which represents about 1,000 candidate models for 5 different architectures. According to

the required tradeoff between Ep and µ, the final model should be selected within the

indicated area: models outside this area should not be chosen, for one can always select a

better one (i.e. with a smaller Ep and a higher µ). Therefore, architectures with 1 and 5 hidden

neurons can definitely be discarded.

5 HN 4 HN 3 HN 2 HN 1 HN

0.97

0.96

0.95

0.94

0.93

0.92

0.98

0.99

0.10 0.12 0.14 0.16 0.18 0.20
Ep

µ

Figure 9: Performances of the candidate models with 1 to 5 hidden neurons.

As explained in section 4.2, the model designer should perform his final choice depending on

his objectives. If he wants the best possible model given this particular training set, he should

favor, within this dotted area, the solutions with the highest possible value of µ. Conversely, if

he has the opportunity of gathering additional training examples, and wants to select the most

relevant ones, he should favor slightly overfitted models: within this dotted area, he should

favor Ep. The confidence intervals for the prediction of such a model indicate the areas, in

input space, where gathering data would be desirable. With this new data, the selection

procedure may be performed again, which may lead to less complex models.

5. VALIDATION ON NUMERICAL EXAMPLES

In the present section, we illustrate the use of our method, on two academic examples:

• we demonstrate, on a teacher-student problem, that the method we propose gives very

good results, in contrast to the usual leave-one-out approach,

17

• for comparison purposes, we model a simulated process investigated previously in

(Anders & al., 1999),

and we outline briefly an industrial application.

5.1. Comparison to the standard leave-one-out approach on a teacher-student problem

We consider the following problem: a data base of 800 examples is generated by a neural

network with 5 inputs, one hidden layer of five neurons with sigmoidal (tanh) nonlinearity,

and a linear output neuron:

E Yp xx = α
0

+ α
i
tanh β

i

0 + β
i

j xj∑
j = 1

5

∑
i = 1

5

(15)

Thus, we guarantee that the family of parameterized functions, in which we search for the

model, actually contains the regression function. The weights and the inputs of this teacher

network are uniformly distributed in [-1, +1] and [-3, +3] respectively, in order to use the

sigmoids in their nonlinear zone. A Gaussian noise is added to the output, with a standard

deviation equal to 20 % of the unconditional standard deviation of the model output:

σ2 = 0.05. Student networks with five inputs are investigated. We show in the following how

all the above results can be successfully used to perform model selection. To this end, 300

examples are used to perform both training and model selection as described in the previous

sections, and 500 examples are devoted to the tests.

All results reported below were obtained by estimating the gradient of the cost functions by

backpropagation, and minimizing the cost functions by the BFGS algorithm (Press & al.,

1988). The values of {hii}i=1,…,N are computed by singular value decomposition of matrix Z, as

presented in Appendix 1.

For increasing architecture sizes (from 1 to 9 hidden neurons), the minimum of the cost

function with the smallest value of Ep was selected, and the following values were computed:

TMSE and µ on the training set, and GMSE on the separate test set. These results are

summarized on Figure 10.

0.42

0.37

0.32

0.27

0.22

0.17

µ

0.47

Architecture

σ Ep µGMSE TMSE

0.93

0.94

0.95

0.96

0.97

0.92
1 HN 2 HN 3 HN 4 HN 5 HN 6 HN 7 HN 8 HN 9 HN

M
S

E

18

Figure 10: Performances of the solutions selected on the basis of Ep, including µ (right scale),

and tested on a separate data set (teacher-student problem).

As on the sin x
x problem, Ep decreases monotonically and reaches approximately the value of

the standard deviation of the noise. Based on the values of µ, the optimal solution appears to

be the model having 5 hidden neurons. Indeed, this proves to be the model for which the

generalization error GMSE is smallest. Remarkably, the weights of this network are almost

identical to those of the teacher network (they should not be expected to be strictly identical,

since noise is added to the output of the teacher network during generation of the data);

actually, the weights of this network are identical to those obtained when training is

performed with initial weights equal to the teacher's weights: this demonstrates that the

selection method really finds the best possible model.

By contrast, the generalized leave-one-out approach appears to give very poor results:

• if leave-one-out is performed on the minima with the smallest value of TMSE, without

checking Z's rank nor that the stability of the minima for the usual leave-one-out, the error

Et decreases as hidden neurons are added, and becomes significantly smaller than the

standard deviation of the noise. Indeed, the global minima of the cost functions

corresponding to architectures having 5 (i.e. the teacher network architecture) to 9 hidden

neurons have a rank deficiency and are therefore overfitted solutions with poor GMSE,

• if leave-one-out is performed on the minima with the smallest value of TMSE among the

minima without rank deficiency, without checking that the minima are stable for the usual

leave-one-out, the error Et reaches a plateau close to the standard deviation of the noise.

However, both Ep and GMSE prove that the performances of these models are worse than

expected from Et. In fact, the corresponding minima appear to be unstable for the usual

leave-one-out, which makes Et invalid,

• if the procedure is restricted to the minima with the smallest value of TMSE among the

minima without rank deficiency and stable for the usual leave-one-out, almost all minima,

from 5 to 9 hidden neurons, are rejected. Furthermore, the procedure is extremely lengthy.

This exemplifies the limitations of the conventional generalized leave-one-out. When the

number of training examples is small given the complexity of the family of parameterized

functions, the withdrawal of some training examples makes the minima of the cost function

unstable for the usual leave-one-out. By contrast, performing leave-one-out on the basis of

relation (5) prevents from these stability problems. Furthermore, the computational overhead

of this selection method is negligible, since we only have to compute the {hii}i=1,…,N for each

minimum of the cost function.

19

5.2. Comparison to other selection methods on a benchmark problem

In (Anders & al., 1999), the authors introduce a two-input process, simulated with the

following regression function:

E Yp x = – 0.5 + 0.2 x1
2 – 0.1 exp (x2) (16)

The inputs x1 and x2 are drawn from a normal distribution. Gaussian noise is added to the

output, with a standard deviation equal to 20 % of the unconditional standard deviation of the

model output, i.e. σ2 = 5 10-3.

To perform statistically significant comparisons, 1000 training sets of 500 examples each

were generated with different realizations of the noise (the inputs remaining unchanged); a

separate set of 500 samples was used for computing the Generalization Mean Square Error

(GMSE). The following performance index was used:

ρ = GMSE 2 – σ 2

σ 2 . 100 % (17)

Using several model selection techniques (hypothesis testing, information criteria and 10-fold

cross-validation, each of them being followed - if necessary - by network pruning), the best

performance (averaged over the 1000 training sets) reported in (Anders & al. 1999) was

ΕΜΒΕ∆ρ = 28 % (standard deviation not indicated). The authors state that these (relatively)

poor performances arise from the complexity of the true regression function (16).

Under the same conditions, we performed model selection according to: (i) the present

method, i.e. on the basis of Ep and µ as described in sections 3 and 4; (ii) the bayesian

approach to weight decay6 described in (MacKay, 1992). In both cases, the performance

indices were very satisfactory. The results reported in this section are summarized on Table 1,

where the present method is referred to as LOCL (Local Overfitting Control via Leverages).

6 Due to the difficulties encountered while implementing this approach, we made the

assumption that the noise level (meta-parameter β in the cost function) was known and set it

to its true value. Without this strong assumption, the performances of the models selected on

the basis of the “evidence”, would certainly have been worse.

20

LOCL method(Anders & al.

1999)
Outliers not

removed
Outliers
removed

Weight decay

Avg. ρ 28 % 3 % 3 % * 2 %500 training

samples Std. dev. Not indicated 2 % 2 % 2 %

Avg. ρ 126 % 27 % ** 54 %100 training

samples Std. dev. 632 % 28 % 36 %

* No outlier detected ** 3 % outliers detected

Table 1: Summary of numerical results on a benchmark problem.

Hence, this academic problem can be accurately and consistently solved by our method as

well as by weight decay.

As proposed in (Rivals & al., 2000), a reduction of the size of the training set from 500 to 100

samples is of interest. Unlike (Rivals & al., 2000), we simulated the 1000 new training sets

with different values of the noise and of the inputs: because of the decrease of the training set

size, this was necessary to obtain statistically significant results7. Our method gave a value of

ρ = 126 %, whereas, using weight decay8, one obtains ρ = 54 %. This leads to the following

comments:

1. in a problem with such a small number of training examples, knowing the true noise level6

is a tremendous advantage which explains the superiority of our implementation of weight

decay,

2. the standard deviation associated to our ρ shows the large scattering of the results.

However, advantage can be taken from the fact that our method is local, whereas alternative

methods rely on global scores: we can show that the poor results reported above are due to

only a few points of the test set. Just as in section 4.2, one can define a threshold that the

confidence interval on the model output should not exceed. Choosing threshold (14), one

obtains the following results: an average 3 % (std. dev. 2 %) of the test examples were

discarded, resulting, on the remaining 97 % of the test samples, in an average model

performance ρ = 27 %. This is comparable to the performances obtained by (Anders & al.

1999) using a training set that was 5 times as large.

7 Otherwise, the results depend very strongly on the location of the training examples in input

space.

8 Keeping the inputs unchanged and using only Ep followed - if necessary - by network

pruning, [Rivals & al., 2000] obtained ρEMBED = 140 % (std. dev. not given).

21

5.3. An industrial application

This method was used in a large-scale, industrial application: the modeling of the spot

welding process. The quantity to be predicted was the diameter of the weld as a function of

physical parameters measured during the process. Because of the relatively small number of

examples at the beginning of the project, and of the economic and safety issues involved,

model selection was a critical point.

Spot welding is the most widely used welding process in the car industry: millions of such

welds are made every day. Two steel sheets are welded together by passing a very large

current (tens of kiloamperes) between two electrodes pressed against the metal surfaces,

typically for a hundred milliseconds (Figure 11). The heating thus produced melts a roughly

cylindrical region of the metal sheets. After cooling, the diameter of the melted zone -

typically 5 mm - characterizes the effectiveness of the process; a weld spot whose diameter is

smaller than 4 mm is considered mechanically unreliable; therefore, the spot diameter is a

crucial element in the safety of a vehicle. At present, no fast, non-destructive method exists

for measuring the spot diameter, so that there is no way of assessing the quality of the weld

immediately after welding. Therefore, a typical industrial strategy consists (i) in using an

intensity that is much larger than actually necessary, which results in excessive heating, which

in turn leads to the ejection of steel droplets from the welded zone (hence the “sparks” that

can be observed during each welding by robots on automobile assembly chains), and (ii) in

making a much larger number of welds than necessary, just to be sure that a sufficient number

of valid spots are produced. Both the excessive current and the excessive number of spots

result in a fast degradation of the electrodes, which must be changed or redressed frequently.

Transformer

Figure 11: The welding process: two electrodes are pressed against the metal sheets and a

strong electrical current is flown through the assembly.

For all the above reasons, the modeling of the process, leading to a reliable on-line prediction

of the weld diameter, is an important industrial challenge. Modeling the dynamics of the

welding process from first principles is a very difficult task, because (i) the computation time

necessary for the integration of the partial differential equations of the knowledge-based

model is many orders of magnitude larger than the duration of the process, which precludes

real-time prediction of the spot diameter, and because (ii) many physical parameters

22

appearing in the equations are not known reliably. These considerations led to considering

black-box modeling as an alternative. Since the process is non-linear and has several input

variables, neural networks were natural candidates. The main goal was to predict the spot

diameter from measurements performed during the process, immediately after weld

formation, for on-line quality control.

The main concerns for the modeling task were the choice of the model inputs, and the limited

amount of examples available initially in the database.

The quantities that are candidates for input selection are mechanical and electrical signals that

can be measured during the welding process. Input selection was performed by forward

stepwise selection of polynomial models, whereby the significance of adding a new input or

removing a previously selected input is tested by statistical tests. The variables thus selected

were subsequently used as inputs to neural networks. The experts involved in the knowledge-

based modeling of the process validated this set.

Because no simple nondestructive weld diameter measurement exists, the database is built by

performing a number of welds in well-defined condition, and subsequently tearing them off;

the melted zone, remaining on one of the two parts, is measured. This is a lengthy and costly

process, so that the initial training set was made of 250 examples. Using the confidence

interval estimates (6), and the training set extension strategy discussed in section 4.2, further

experiments were performed, so that, finally, a much larger database became available, half of

which was used for training and half for testing (since the present selection method does not

require any validation set). Model selection was performed using the full procedure discussed

in section 4.

A full presentation of the results is beyond the scope of the present paper. Typical results are

shown on Figure 12, which shows the scatter plots for spot diameter prediction on the training

set and on the completely independent test set (for a certain type of steel sheet), together with

the confidence intervals. The leave-one-out score Ep is equal to 0.27, while the EQMT is 0.23.

2

3

4

5

6

7

8

2 3 4 5 6 7 8
Measured diameter (mm)

P
re

di
ct

ed
 d

ia
m

et
er

 (
m

m
)

2

3

4

5

6

7

8

2 3 4 5 6 7 8
Measured diameter (mm)

P
re

di
ct

ed
 d

ia
m

et
er

 (
m

m
)

Figure 12: Scatter plots with confidence intervals for diameter prediction; left: training set;

right: test set

23

The full description of this application is beyond the scope of this paper; non-confidential data

can be found in (Monari, 1999).

6. CONCLUSION

A model selection method relying on local overfitting control via leverages (termed LOCL

method) has been presented; it is based on the computation of the leverage of each example

on the candidate models. The leverage of a given example can be regarded as an indication of

the percentage of the degrees of freedom of the model that is used to fit the example. This

allows a precise monitoring of overfitting, since the method relies on local indicators in

sample space (the leverages), instead of relying on global indicators such as a cross-validation

score or the value of a penalty function. Although it is similar in spirit to the generalized

leave-one-out procedure, it is very economical in computation time, and it avoids the stability

problems inherent to leave-one-out. Furthermore, the values of the leverages (or of the

confidence interval computed therefrom) give an indication of areas, in input space, where

new examples are needed. This method has been validated in a large-scale industrial

application.

24

APPENDIX 1

COMPUTATION OF THE LEVERAGES

The present appendix shows how the values of the all-important quantities {hii}i=1,…,N can be

computed without matrix inversion by making use of the Singular Value Decomposition (see

for instance (Press & al, 1988)) of matrix Z, which can always be performed, even if matrix Z

is singular. Z can be written as:

Z = U W VT,
(A.1)

where:

• U is a (N, q) column-orthogonal matrix (i.e. UT U = I),

• W is a (q, q) diagonal matrix with positive or zero elements (the singular values of Z),

• V is a (q, q) orthogonal matrix (i.e. VT V = V VT = I).

We thus obtain:

(ZT Z)-1 = (V W UT U W VT)-1 = (V W 2 VT)-1 = V W -2 VT. (A.2)

Therefore, the elements of this (q, q) matrix can easily be computed as:

Z T Z lj

– 1
=

Vlk Vjk

Wkk
2Σ

k = 1

q

(A.3)

From (A.3) and hii
 = ziT (ZT Z)-1 zi, one gets:

h ii = 1
Wkk

Zij VjkΣ
j = 1

q 2

Σ
k = 1

q

(A.4)

25

APPENDIX 2

STABILITY OF A MODEL FOR THE USUAL LEAVE-ONE-OUT PRCEDURE

Consider a training procedure using a deterministic minimization algorithm of the cost

function9; assume that a minimum of the cost function has been found, with a vector of
parameters θθθθ LS . Assume that example i is withdrawn from the training set, and that a training

is performed with θθθθ LS as initial values of the parameters, leading to a new parameter vector

θθθθ LS
(– i) ; further assume that example i is subsequently reintroduced into the training set, and that

a new training is performed with initial values of the parameters θθθθ LS
(– i) :

The minimum of the cost function corresponding to a parameter vector θθθθ LS is said to be

"stable for the usual leave-one-out procedure" if and only if, for each i ∈ [1, …, N],

starting from θθθθ LS , the procedure described above retrieves θθθθ LS .

This definition is illustrated graphically on Figure 13.

 θθ *
LS

(– j)

 θθ
LS

(– N)
 θθ

LS

(– N)

θθθθ
L S

Weight space

 θθ
LS

(– 1)

 θθ
LS θθ

LS

(– i)

 θθ
LS

(– j)

 θθ
LS

(– 1)

 θθ
LS

(– j)

 θθ *
LS

Figure 13: Minima that are stable (left) and unstable (right) for the usual leave-one-out

procedure.

On this Figure, in the unstable case, after the removal of example i (and convergence to
θθθθ LS

(– i)), the replacement of the same example into the training set makes the learning procedure

converge to another solution with parameters θθθθ LS
* . In such a case, Et is not an estimate of the

generalization performance of the model with parameters θθθθ LS , since the prediction error Ri
(– i)

actually corresponds to the model with parameters θθθθ LS
* .

This definition is different from the stability considerations that were introduced by other

authors in order to derive bounds on the estimate of the generalization performance (see

9 This excludes such algorithms as simulated annealing, probabilistic hill climbing, etc.,

which may overcome local minima.

26

(Vapnik, 1982)). For instance, bounding the difference between the true error and the leave-

one-out estimate thereof (with an arbitrary accuracy at a given level of significance) requires

some stability of the training algorithm irrespective of the available data set (Kearns & al.,

1997). Therefore, this stability does not depend on the considered minimum of the cost

function: our definition of stability is less stringent than the alternative one.

Anyway, it should be remembered that, in contrast to the usual leave-one-out, the validity of

our approach does not depend on any stability condition.

27

LITERATURE REFERENCES

Anders, U. & Korn, O. (1999). Model Selection in Neural Networks. Neural Networks 12,

309-323.

Antoniadis, A., Berruyer, J. & Carmona, R. (1992). Régression non linéaire et applications.

Paris: Economica.

Breiman, L. (1996). Heuristics of Instability and Stabilization in Model Selection. Annals of

Statistics 24, 2350-2383.

Geman, S., Bienenstock, E. & Doursat, R. (1992). Neural Networks and the Bias / Variance

Dilemma. Neural Computation 4, 1-58.

Kearns, M. & Ron D. (1997). Algorithmic Stability and Sanity-Check Bounds for Leave-One-

Out Cross Validation. Tenth Annual Conference on Computational Learning Theory, 152-162

(Association for Computing Machinery Press).

MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks.

Neural Computation 4, 448-472.

Monari, G. (1999). Sélection de modèles non linéaires par leave-one-out: étude théorique et

application des réseaux de neurones au procédé de soudage par points. Thèse de l'Université

Paris 6. Available from: http://www.neurones.espci.fr/Francais.Docs/publications.html.

Monari, G. & Dreyfus, G. (2000). Withdrawing an Example from the Training Set: an

Analytic Estimation of its Effect on a Nonlinear Parameterized Model. Neurocomputing

Letters 35, 195-201.

Moody, J. (1994). Prediction Risk and Neural Network Architecture Selection. From

Statistics to Neural Networks: Theory and Pattern Recognition Applications. Cherkassky, V.,

Friedman, J.H. & Wechsler, H. (eds). Springer Verlag.

Press, W. H., Teukolsky, S. A., Flannery, B. P. & Vetterling, W. T. (1988). Numerical recipes

in C: the art of scientific computing. Cambridge University Press.

Rivals, I. & Personnaz, L. (2000). A Statistical Procedure for Determining the Optimal

Number of Hidden Neurons of a Neural Model, ICSC Symposium on Neural Computation,

Berlin.

Seber, G.A.F., & Wild, C.J. (1989). Nonlinear regression. Wiley Series in Probability and

Mathematical Statistics. New York, New York: John Wiley & Sons.

Sjöberg, J. & Ljung, L. (1992). Overtraining, Regularization and Searching for Minimum in

Neural Networks. Technical Report LiTH-ISY-I-1297, Department of Electrical Engineering.

Linkoping University, S-591 93 Linkoping, http://www.control.isy.liu.se.

28

Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal

of the Royal Statistical Society B 36, 111-147.

Vapnik V.N. (1982). Estimation of Dependances Based on Empirical Data. Springer Verlag.

New-York.

Zhou, G., Si, J., (1998). A Systematic and Effective Supervised Learning Mechanism Based

on Jacobian Rank Deficiency. Neural Computation 10, 1031-1045.

