
1

SPECIFICATION AND IMPLEMENTATION OF A DIGITAL
HOPFIELD-TYPE ASSOCIATIVE MEMORY

WITH ON-CHIP TRAINING

A. JOHANNET, L. PERSONNAZ, G. DREYFUS

Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris

Laboratoire d'Electronique

10, rue Vauquelin

75005 PARIS - FRANCE

J.-D. GASCUEL, M. WEINFELD

Ecole Polytechnique

Laboratoire d'Informatique

91128 PALAISEAU Cedex- FRANCE

ABSTRACT

This paper addresses the definition of the requirements for the design of a neural network

associative memory, with on-chip training, in standard digital CMOS technology. We

investigate various learning rules which are integrable in silicon, and we study the

associative memory properties of the resulting networks. We also investigate the

relationships between the architecture of the circuit and the learning rule, in order to

minimize the extra circuitry required for the implementation of training. We describe a 64-

neuron associative memory with on-chip training, which has been manufactured, and we

outline its future extensions. Beyond the application to the specific circuit described in the

paper, the general methodology for determining the accuracy requirements can be applied to

other circuits and to other auto-associative memory architectures.

1. INTRODUCTION

The present paper describes the specification and the silicon integration of a Hopfield neural

network designed (i) to operate as an associative memory, and (ii) to be trainable on-line,

i.e. without a host computer; the latter point is especially important, since adaptive neural

networks, i.e. neural networks which undergo continual training, are gaining popularity;

although the network which is presented here is not intended for adaptive operation, its

design is an interesting starting point in that direction. In addition, integrating training on

2

the chip gives much more autonomy, and opens a way towards the design and operation of

associations of networks.

When designing a neural network in digital technology, the choice of the number of bits for

encoding the synaptic weights is of central importance, since it involves a tradeoff between

the efficiency of the network after training, and the circuit area. When training is performed

on the chip itself, an additional problem arises, namely, the accuracy of the arithmetics used

for computing the coefficients. The present paper reports a detailed investigation of this

problem, and describes the specifications which resulted from this study.

The first part of the paper is devoted to a short presentation of the Hopfield net and of its

operation as an associative memory. Next, we investigate specific iterative learning rules

(Widrow-Hoff rule, Perceptron rule, Minover rule) whose silicon implementations do not

require much overhead in terms of additional connections and/or additional arithmetic

operators; this is a crucial point for the implementation of on-chip training. The accuracy of

the synaptic weights and of the arithmetics used for training is discussed in detail. The last

section describes the circuit which has been designed and manufactured.

2. HOPFIELD-TYPE NETWORK AND ASSOCIATIVE MEMORY

2.1 - Neural network model:

We consider a Hopfield-type network (without external inputs) consisting of an assembly

of n fully connected neurons ; at time t, each neuron computes a weighted sum of its inputs

and adjusts its output at time t+τ according to:

si(t+τ) = f(Σj Cij sj(t)) = f(vi(t)) (1)

where si(t) is the state of the neuron i at time t,

vi(t) is the potential of the neuron i at time t,

Cij is the synaptic weight of neuron i receiving information from neuron j,

f is the activation function of the neuron.
The dynamics of the network is fully defined by the values of the synaptic weights Cij and

by function f.

In the following, we consider the case of binary neurons (whose activation function is the
signum function), whose state is denoted by σi(t).

If the neurons are updated in a parallel, synchronous way, the decision-making rule of the

network can be formulated in matrix form :
σ(t+τ) = sign (C σ(t)) = sign (v(t)) = [sign(v1(t)),, sign(vn(t))]T (2)

where σ(t) is the n-vector state {-1, +1}n of the network at time t, and C is the (n,n)

synaptic matrix.

2.2 - Auto-associative memory:

3

An associative memory is a device which is trained to perform associations between source

and target items; once training is completed, the memory is able to retrieve the target

information when presented with an incomplete or distorted version of the source

information. When the source and target items are identical, the memory is termed auto-

associative. In general, training is performed non-adaptively, i.e. the learning phase is

completely separated from the retrieval phase.

The associative memory properties of Hopfield networks, based on the existence of

attractor fixed points in state space, have been extensively studied [1-3]. The problem of

designing an auto-associative memory can be summarized as follows.

Consider a given set of p binary prototype vectors {σk, k=1 to p), coding for a set of items,

and a network as defined above ; the problem consists in finding a matrix C so that (i) the

patterns {σk} are attractor fixed points ; (ii) no cycle attractors exist. The stability of the

prototypes is expressed by the n.p inequalities :

vi
k σi

k > 0, for 1 = 1 to n, and k = 1 to p. (3)

A solution is obtained by solving the n.p equations :
vi

k σi
k = ai

k, with aik>0, for i = 1 to n, and k = 1 to p. (4)

The parameters ai
k determine the stability margin of the prototypes.

If we impose all parameters ai
k to be equal to 1, the orthogonal projection matrix of the state

space into the subspace spanned by the prototype vectors is a solution of the np equations

(4). It has been shown [4] that this matrix gives satisfactory auto-asociative properties to

the neural network. In this case, the network complies with the previous requirements even

when correlated patterns are learnt, within the limit p<n. Additional (sometimes termed

"spurious") attractors appear, whose basins of attraction are related to ambiguous patterns.

Various methods are available for computing the projection matrix: it can be computed

either directly, or iteratively. The direct matrix computation requires a finite number of

operations, which is O(p3); iterative procedures involve several presentations of the

prototypes, and the total number of operations is infinite, in principle. Therefore, direct

computation might seem preferable; however, the total number of operations is not the only

criterion, since ease of silicon implementation, in terms of circuit regularity and transistor

count, is of central importance. We show in this paper that iterative methods are preferable

in the present case.

The projection matrix is not the only synaptic matrix which complies with the above

requirements for auto-associative operation of Hopfield nets; in the present paper, we use it

as a reference, because the properties of the networks whose synaptic matrix is the

projection matrix are well known and are satisfactory.

3. IMPLEMENTATION OF THE LEARNING RULES

4

The integration of three iterative learning rules, whereby the synaptic weights are modified

at each presentation of the prototpyes, has been investigated: the Widrow-Hoff rule [5], the

Perceptron rule [6], and the Minover rule [7]. These rules are local because the computation

of the variation of the synaptic weights of a neuron requires arithmetic operations whose

operands are the potential of that neuron and the state of the network; in the case of the

architecture of the circuit described in Section 4, the components of the state vector are

made available to the neuron in sequence, so that no extra data flow is required.

As mentioned above, the main issue in the integration of the training algorithm is the word

size of the synaptic coefficients, and the accuracy required for the computation of the

coefficients. The first issue is related to the fault tolerance of the network: Hopfield-type

networks exhibit some degree of fault tolerance, in the sense that the retrieval properties of

the network degrade gracefully if the synaptic coefficients are encoded with a small number

of bits. The present paper shows how one can capitalize on this property to use integer

arithmetics with limited accuracy. The accuracy required to implement the Widrow-Hoff

learning rule so as to give satisfactory retrieval properties to the network after training is

determined in two steps : (i) formulation of the rules with integer arithmetics; (ii)

investigation of the network behaviour during the learning and retrieval phases as a function

of the number of bits used for encoding the weights, and as a function of the accuracy of

the computations. The same analysis has been carried out for the Perceptron and the

Minover rule; it is briefly summarized here.

3.1 - Widrow-Hoff rule:

The Widrow-Hoff rule is a gradient-type learning rule [5] which allows the iterative

computation of the projection matrix [8]; the procedure is as follows :

- matrix C is initialized to 0,

- when the prototype sk is presented to the network at iteration k, matrix Ck-1 (computed

at iteration k-1) is available, so that each neuron-processor i computes :

∆Cij
k = (1/n)(σi

k-vi
k)σj

k for j=1 to n, (5)

with vi
k = Σj Cij

k-1σj
k ,

- all prototypes are presented several times in sequence until convergence, i.e. until:

σ i
k-vi

k <ε , ε being an arbitrarily small quantity, for all i and all k (ai
k=1 for all i and

all k).

In this section, we first investigate the speed of convergence of the Widrow-Hoff rule as a

function of the number of neurons and of the mean correlation between prototypes, and we

determine the dynamic range of the coefficients and potentials during training; as a

subsequent step towards a silicon implementation, we reformulate the learning rule with

integer arithmetics, and show that this formulation introduces an integer multiplicative

parameter m; we determine, as a function of m, the number of bits which are necessary for

5

encoding the coefficients and the potentials in order to preserve the convergence of the

training procedure. Finally, we investigate the auto-associative properties of the resulting

networks; this leads to the final determination of the parameter m, hence the determination

of the number of bits necessary for encoding the coeficients and potentials.

3.1.1 - Speed of convergence:

The Widrow-Hoff procedure produces a sequence of synaptic matrices which converges to

the projection matrix, when the prototypes are presented in sequence to the network, even if

they are correlated [8]. The speed of convergence can be estimated by observing the

evolution of the difference between the synaptic matrix and the projection matrix, or, more

interestingly, the evolution of the potentials. When the prototypes are mutually orthogonal

(zero correlation between prototypes), the Widrow-Hoff rule yields the projection matrix

after a single presentation of the set of prototypes. Thus, it may be conjectured that the

required number of presentations of the training set will increase with increasing

correlations between prototypes, and with an increasing number of neurons: this fact is

exemplified by Figure 1, which shows the number of presentations Π of the training set

that is required in order that:

|vi
k-σi

k| ≤ (1/n) i=1 to n, k=1 to p (8)

as a function of the number n of neurons, for random patterns and two different values of

the correlations. The components of the prototype vectors are generated with the following

law: Probability(σi
k=+1)=x, Probability(σi

k=-1)=1-x, with 0<x<1; in the following, the

correlations between the resulting patterns is expressed by the mean value of the cosine of

the angles between prototypes (also termed "mean overlap"), denoted by <cos>;

uncorrelated patterns, i.e. patterns whose mean overlap is equal to zero (<cos>=0), are

obtained for x=1/2.

For uncorrelated patterns, the number of presentations is roughly independent of the

number of neurons. For correlated patterns, the number of presentations of the training set

increases quasi-quadratically in the range of n investigated (8≤n≤512). The graphs shown

on Figure 1 were obtained for a ratio α=p/n equal to 0.25, and for mean overlaps of 0

(uncorrelated patterns) and 0.16 (correlated patterns).

3.1.2 - Magnitude of the coefficients and of the potentials during training:

We first consider the projection matrix. One can easily prove that:

|Cij| ≤ 1 for i=1 to n, j=1 to n,

and |vi
k| = 1 for i=1 to n, k=1 to p.

These conditions, however, are not necessarily valid during training by the Widrow-Hoff

rule; therefore, we have observed the evolution of the potentials and of the coefficients

during training. Simulations have shown that the values of the coefficients never exceed 1.

6

Figure 2 shows the evolution of the average value of the diagonal coefficients (which are
dominant) during training (Np is the number of prototype vectors which have been

presented), for n = 64, and 16 prototypes. It converges to the value corresponding to the

projection matrix (p/n). The behaviour is similar for correlated and for uncorrelated

prototypes. The curves shown on Figure 2 are averaged over 100 different sets of

prototypes.

The evolution of the magnitudes of the potentials during learning is shown on Figure 3 with

the same parameters as in Figure 2. The potentials converge to the desired values (±1)

corresponding to the projection matrix. During learning, the potentials may exceed their

final value ; the magnitude of the overshoot depends on the correlation between the

prototypes. The curves shown on Figure 3 are averaged over 100 different sets of

prototypes and over the potentials of all neurons. In the range of parameters investigated,

the overshoot of the potentials may reach 150%: therefore, provision must be made, in the

encoding of the potentials, for variations of the latter in the range -1.5 to +1.5 at least.

3.1.3 - Widrow-Hoff rule with integer arithmetics:

The Widrow-Hoff procedure can be expressed with integer quantities by multiplying the

synaptic increment (hence the synaptic matrix) by a integer parameter m, multiple of n. We

denote by J the Widrow-Hoff integer matrix and by u the integer potential; if m>>n, we
have: Jij ≈ m Cij (for all i and j), ∆Jij ≈ m ∆Cij, and ui ≈ (m/n) vi .

Denoting the saturation function resulting from the computation with integers by S,

denoting the truncation function by T, and denoting the integer potential by u, the Widrow-

Hoff rule can be rewritten as :

 ∆Jij
k = S[(m/n) σi

k-ui
k] σj

k,

 with ui
k = T{(1/n) S[Σj Jij

k-1 σj
k]}.

Note that the result of the summation S[Σj Jij
k-1 σj

k] depends on the implementation, in

particular on the order in which the saturations occur.

The sum itself is an integer, but the division by n introduces a roundoff error.

After convergence of the algorithm, all ∆Jij are equal to zero, and all potentials are equal to

±m/n. Given the discretization and saturation errors introduced by the use of integer

arithmetics, the Widrow-Hoff matrix computed with integer arithmetics (hereinafter referred

to as the Integer Widrow-Hoff matrix or IWH matrix) will not converge exactly to the

projection matrix, in general; specifically, the IWH matrix will not be strictly symmetrical,

whereas the projection matrix is symmetrical. Therefore, we are faced with the following

problem: how to get a synaptic matrix which conveys satisfactory associative memory

properties to the network, while using a limited number of bits, compatible with the goal of

minimal silicon area.

7

3.1.4 - Encoding of the synaptic coefficients and of the potentials:

The IWH training rule has been investigated for n=32, 64, 128. Two cases must be

considered:

- if m>>n, the IWH network has the same behaviour as the Projection network. Thus,

since the coefficients do not exceed the value of 1 for the projection matrix, and since

they can take on m times this value with integer coding, we encode them on β =
log2m+1 bits (including the sign bit) to prevent saturation. In this case, the synaptic

matrix J converges to m.C.

- if m≈n, saturations and truncations occur frequently during training, thus introducing

strong non-linearities which may prevent the algorithm from converging. Two types of

undesirable behaviours may occur : cycles or divergence of the values of the coefficients.

Extensive simulations have shown that, for random correlated or uncorrelated patterns,

and for ratios p/n lower than 0.3, the learning procedure converges provided that :

- the coefficients are encoded on βJ = log2m +1 bits,

- the potentials are encoded on βu = βJ + 2 bits,

with m > n.

The second case (m>≈n) must be considered in order to implement minimum-size

coefficients on the circuit.

This implementation of the IWH rule and potentials shows two interesting properties: (i) for

a network with a given number of neurons n, the number of bits necessary to encode the

potentials and the synaptic weights is determined by a single parameter, m; (ii) the training

procedure converges even with a reduced arithmetic accuracy (m≈n), but it does not

converge exactly to the projection matrix: the next section is devoted to the investigation of

the retrieval properties of IWH networks, which allows the final determination of the

parameter m, hence the determination of the number of bits necessary for encoding the

coefficients and potentials.

3.1.5 - Network behaviour during the retrieval phase:

In the present section, the auto-associative properties of the IWH network are compared

with the well-known properties of the network whose matrix is computed with the

Projection rule in standard floating-point arithmetics (hereinafter referred to as the

Projection net). The IWH matrix is computed for various values of m/n and, as mentioned

above:

- the coefficients Jij are encoded on βJ = log2m + 1 bits,

- the potentials are encoded on βu = βJ + 2 bits.

The coefficients of both networks are computed with the same set of prototypes, for

0.25<p/n<0.33, and n=32, 64, 128.

8

The performance of the associative memory may be assessed in various ways. The first

performance criterion stems from the following considerations : during the retrieval phase,

the network is initialized into a state which codes for an unknown pattern, and is left to

evolve until it reaches a stable state or a cycle. The performances of the networks can be

compared by observing their evolutions when initialized in the same state. Figure 4 shows

the proportion of initial states yielding different evolutions with the Projection network and

with the IWH network, for various values of βJ, with n=64, and p=16 uncorrelated

patterns. Each point is an average over 10,000 random states and 20 sets of prototypes.

The diagram shows that the difference between the networks is smaller than 10 % provided

the coefficients are encoded on 13 bits or more.

It can be argued that the really important issue is not the behaviour of the network when

initialized in any random state, since the relevant parts of state space are the basins of

attraction of the prototypes. Thus, one can also assess the performance of a network, for

the task of auto-association, by estimating the size of the basins of attraction of the stored

prototypes. The following procedure is used : after completion of the learning phase, the

state of the network is initialized at a Hamming distance Hi of one of the prototypes, and

the network is left to evolve until it reaches a stable state which is at a Hamming distance Hf

of that prototype. A distance Hf equal to zero corresponds to perfect retrieval. Figure 5

shows the results obtained with a Projection network of 64 neurons with 16 uncorrelated

prototypes; the histograms show the distribution of the final normalized distances hf = Hf/n,

for two values of the normalized initial Hamming distance hi=Hi/n, equal to 0.125 and

0.25. These results will be used below for comparisons with the properties of other

networks.

As a first comparison, Figure 6 shows the results obtained for the IWH network with βJ =

7 bits (m/n = 1) and βJ = 9 bits (m/n = 4) respectively, with the same prototypes as before.

When training is performed with 7-bit arithmetics, the behaviour of the IWH network is

similar to that of the Projection network, illustrated on Figure 5. This result can also be

compared with the result shown on Figure 4: clearly, the required accuracy is lower when

we consider the neighborhood of the prototypes than when we take into account the whole

state space.

The behaviour of the network has also been investigated with correlated prototypes; Figure

7 shows the histograms obtained with correlated prototypes, whose mean overlap lies in the

range 0 to 0.64. The behaviours of the IWH net and of the Projection net are similar

provided that one has <cos> < 0.3; otherwise, the behaviours differ by more than 10%.

These results are obtained with networks of 64 neurons, α=0.3, βJ = 9 (m/n=4), and

averaged over five sets of prototypes.

Clearly, for 64 neurons, the auto-associative properties of the IWH network whose

synaptic matrix is encoded on 9 bits are quite similar to those of the Projection network

9

computed with standard floating-point arithmetics. Although the synaptic matrix is not

exactly symmetrical, no cycle has been observed with this choice of parameters.

The required number of bits for the coefficients has also been investigated as a function of

the number of neurons. The same comparisons as above show that the required coefficient

size increases with the number of neurons as follows :

βJ = log2n + 3,

with m/n = 4.

To summarize, the behaviour of the IWH network approaches the behaviour of the

Projection network when the accuracy increases: first, the prototype vectors are stabilized;

then they become attractors; finally, the behaviours of both networks become identical.

These results are valid for random correlated prototypes. They make the digital

implementation of a Hopfield network and its learning rule on a single chip possible: for a

64-neuron network with on-chip training - whose implementation will be described below

- satisfactory auto-associative properties are obtained if the coefficients are encoded on βJ =

9 bits and the potentials on βu=11 bits.

3.2 - Perceptron rule and Minover rule:
The Widrow-Hoff rule requires the computation of the quantity σik-vik for the evaluation

of the coefficient increments ; in contrast, the Perceptron rule and the Minover rule involve

increments which have fixed values. In the present section, we present the main results of

an investigation of these rules, in the same spirit as the above investigation of the Widrow-

Hoff rule: we first reformulated the rules with integers, and subsequently investigated the

storage and retrieval properties as functions of the encoding of the coefficients and

potentials is investigated.

We have investigated the behaviour of networks trained by the improved version of the

Perceptron rule introduced by Diederich and Opper [8]. The rule can easily be reformulated

for application to integer quantities. If we denote by J the integer synaptic matrix, and by a

the threshold, the rule becomes :

- matrix J is initialized to 0,

- at the presentation of prototype σk, for each neuron i :

if vi
k σi

k ≤ a : ∆Jij = σi
k σj

k, for j=1 to n.

if vi
k σi

k > a : ∆Jij = 0, for j=1 to n,

where a is a positive threshold. The procedure stops when the condition vi
k σi

k > a is true

for all prototypes and all neurons. Since the modifications of the coefficients are integer

quantities, the matrix is automatically encoded with integers. Therefore, no roundoff error

is introduced during learning.

10

The Minover rule can also be reformulated for application to integer quantities. If we denote

by J the integer synaptic matrix, and by a a positive threshold value, the rule becomes:

- matrix J is initialized to zero

- for each neuron i:

find the prototype σµ which satisfies :

(Ji σµ) σi
µ = min {(Ji σk) σi

k}, k = 1 to p, Ji being row i of the synaptic matrix,

modify the synaptic coefficients of neuron i :

if σi
µ vi

µ ≤a : ∆Jij = (σi
µ σj

µ), j = 1 to n,

if σi
µ vi

µ >a : ∆Jij = 0.

The matrix is automatically encoded with integers ; the algorithm terminates when all σi
µ

vi
µ are above the threshold.

The properties of networks of 64 neurons, trained with either rule with a=256. It was

found that, in both cases, the coefficients have to be encoded with 9 bits and the potentials

with 11 bits (both including sign) in order to avoid saturation. Interestingly, the values are

the same as the values determined for the Widrow- Hoff and Perceptron rules. The

attractivity of correlated prototypes stored by the Minover rule is slightly higher than the

attractivity of the same prototypes stored in an IWH network, whereas the attractivity of

correlated prototypes stored with the Perceptron rule is not significantly different from that

of the same prototypes stored in an IWH network

11

3.4 - Conclusion:

The present study is the first systematic investigation of the accuracy required to compute

and to express the synaptic coefficients, for a given network architecture and a given task.

Three training procedures have been investigated : the Widrow-Hoff rule, the Perceptron

rule with a threshold a, and the Minover rule. All three rules were shown to require the

same accuracy for the coefficients and the potentials, namely, 9 and 11 bits respectively for

a network of 64 neurons, and to give approximately the same attractivity to correlated

prototypes. The Minover rule requires a special procedure for choosing the prototype with

minimal overlap, which makes its implementation more complex. The Perceptron rule is the

simplest rule for implementation, but the properties of the resulting synaptic matrix are not

as well known as those of the projection matrix, which is obtained by application of the

Widrow-Hoff rule. Since the implementation complexity of the latter is not much higher

than the implementation complexity of the Perceptron rule, the Widrow-Hoff rule was

deemed to be the best choice.

4. IMPLEMENTATION AND FUTURE EXTENSIONS

4.1 - Basic choices:

Most published designs [9] describe analog implementations of fully connected networks.

However, these circuits exhibit the problems inherent to analog circuitry, especially in

feedback systems, such as instability and noise sensitivity. Still more important, the above

designs do not allow easy adjustments of the synaptic weights : they have limited learning

ability. In addition, it might seem desirable to implement neural networks in standard

proven technologies; these facts led us to the design of a fully digital custom circuit with

on-chip learning.

Various digital architectures have been discussed previously in the literature [9]; the main

differences between these designs stem from various tradeoffs between silicon area and

computation time. Since full parallelism would require n2 operators, it cannot be achieved

efficiently in digital technology with a significant amount of neurons, given the current area

limitations; the preferred organization is that of a systolic ring architecture, requiring only n

neuron-processors operating in parallel [10]. Thus, the speedup which can be achieved is

only O(n), whereas it would be O(n2) with a fully parallel architecture.

In that architecture, one neuron-processor i has a memory of n synaptic coefficients (Cij,

j=1,n). It computes its potential in n successive multiplications and additions. Figure 9

shows the general organization of the network in a ring architecture: to initiate the

computation, each neuron-processor receives one component of the state vector. During

retrieval, the components of the state vector are shifted in the ring, so that each neuron-

12

processor receives the corresponding component to compute the product Cij σi, and to

update the partial sum. All information transfers are performed in n steps with n links

between n neuron processors.

This architecture is particularly interesting if binary neurons are implemented: in such a

case, the synapse operation is reduced to an elementary boolean operation, and one single

bit is transferred between processors. Therefore, the circuit area depends basically on the

memory requirements for the synaptic matrix, which grows as n2: a special effort has to be

devoted to reducing the corresponding silicon area, by reducing the number of bits of the

synaptic weights.

In addition to on-chip training, two special features have been implemented; they will be

briefly described in the following sections.

4.2 - Automatic detection of spurious states:

In addition to its auto-associative memory properties, the network has the ability of

signalling whether it has succeeded or not in recognizing a pattern (since a network always

gives an output for any input stimulus): a binary signal is produced, indicating whether the

final state is a stored pattern or a spurious state. The vectors presented to the network for

training are divided into two fields: the longer contains the pattern itself, and the smaller,

six-bit wide, field (called the label), contains the result of the coding of the first field

through a cyclic error correcting code. The whole vector (pattern concatenated to its label) is

stored. In the retrieval phase, the attractor to which the network has converged is submitted

to the same coding: if the information-carrying field is consistent with the label-carrying

field, this is a strong indication (≈98% confidence with a 6-bit label) that this attractor is a

stored pattern, and vice-versa.

4.3 - A coarse "annealing" mechanism for improving the success of retrieval:

To improve the quality of the retrieval, provision has been made for adding a limited

amount of noise to the input pattern if the network fails to converge to a prototype. This

operation can be repeated several times, either until success, or until non-recognition is

assessed. The circuitry uses two coupled 6- and 11-bit linear feedback shift registers for

generating a 64-bit string with a fixed number of bits (1 or 2) set to 1 in random positions.

This perturbation vector is xored with the input pattern if necessary, while the linear

systolic register is loaded prior to the retrieval phase. This feature can be triggered

automatically by the output of the spurious state detection described in the previous section,

and has been shown to allow up to 25 to 30% improvement to the overall recognition

capabilities of the network. Both this mechanism and the spurious state detection are to be

described in more detail in a further paper.

13

4.4 - VLSI implementation:

4.4.1 General architecture choices:

As described below, the synaptic memory has a particular mode of operation, and has been

custom-designed to save space. The rest of the neuron (control, arithmetic and logic unit)

has been designed with standard cells. Figure 10 shows the block diagram of the circuit.

Since the neuron states are coded on one bit only, the operating part is very simple: it uses

fixed-point signed arithmetics. The only operations implemented are addition,

complementation and arithmetic shift. Provision is made to take into account addition over

or underflow, which is transformed into saturations, in order to avoid errors.

For convergence detection, each neuron stores its previous state in a one-bit local register,

which is xored with the new state bit at the end of an updating cycle, in the retrieval phase.

The local results in each neuron are just combinatorially ored, giving a low true signal when

the whole network is stable. Thus, an extra cycle is required for asserting the convergence,

where no updating actually takes place, but during which the serial state vector is converted

into a parallel output. In the training phase, since each neuron computes a synaptic

coefficient increment, the six most significant bits are ored to give a local convergence

signal (null increment), which is in turn ored through all neurons, the same way as in the

retrieval phase (it is not necessary to use the other less significant bits since a subsequent

division trims them anyway).

Input/output operations are performed in parallel, the serialization of the data taking place

inside the chip. For use with external 16 bits buses, the 64 bits can be multiplexed into four

16-bit blocks: this is the reason why the WRen (write enable) and the READen (read

enable) are four-bit wide, each bit enabling the corresponding block while the other three

signals are kept in a high-impedance state. In addition to these I/O control signals, there are

several main external control signals, plus some internal state signals, mainly for debugging

purposes.

4.4.2 - The commands:

Eight commands are implemented; when properly chained, they drive all the operations, in

the retrieval phase as well as in the learning phase. They are summarized in Table 1.

Some signals are provided to the output, for interfacing or debugging purposes :
ϕ1, ϕ2 : non overlapping internal clocks,

C0 and C63 : markers of the first and last cycle in a macro-cycle,

busy_ : the state of the command FIFO; the circuit can accept a new command

when it is set,

outputValid : indicates that the validity of the results at the end of a macro-cycle,

14

Cvg : bit indicating the convergence. In the retrieval phase, this means that an

attractor has been reached. In the learning phase, it indicates that the synaptic

matrix is stable after presentation of a prototype,

codeValid : indicates the result of the spurious state detection.

A Rotate or Reset command can occur alone, and at any time", but the other commands are

part of standard sequences, corresponding to the various modes of operation. During their

execution, the command FIFO guarantees a 100% duty cycle to the circuit. In the case of

excessive delay in loading this FIFO, the necessary amount of Rotate commands are

automatically inserted so as to refresh the memory.

The retrieval sequence is made of a Shift to load the state register, followed by as many

Evol as necessary for the Cvg to be asserted.

When learning, the sequence Shift, Learn1, Learn2 is used with each presentation of one

prototype. When all p prototypes have been presented, if Cvg has been asserted for each of

them, the learning phase is terminated.

4.4.3 - The elementary computation cycle:

The external clock frequency being 25 MHz, the duration of an internal cycle is 80 ns. The
memory is fully synchronous, using a biphase clock ϕ1 and ϕ2. On the rising edge of ϕ1,

the data is valid at the memory output. In the case of a write operation, the data must be
ready on the falling edge of ϕ2. For a read-calculate-write cycle, the available time is the

interval between these two edges (approximately 75 ns).

The commands broadcast to all neurons are thus distributed so as to be valid at least during
this interval. Three signals C0, C63 and C58to63 allow to specify the commands on a

macro-cycle (64 basic cycles). They all change state on the rising edge of ϕ1. C0 marks the

first cycle of a macro-cycle, C63 marks the last, C58to63 marks the last six cycles,

corresponding to the part of the state vector which contains the cyclic redundancy code bits

required for spurious state detection.

The state vector circulates through the whole circuit : parallel-serial input register, cyclic

code insertion, the 64 neurons, random generator, serial-parallel output register. It is
implemented by a shift register synchronized on the falling edge of ϕ2.

4.4.4 - The representation of numbers:

The internal representation in the ALU of each neuron uses 12-bit fixed point, signed,

two’s complement arithmetics. The MSB carries the sign, the two following bits code for

the integer part, the 9 remaining bits code for the fractional part. Thus, the numbers are in

the range -4.000 to +3.998. In case of over- or underflow resulting from an addition, a

saturation mechanism replaces the erroneous result by the appropriate boundary value. In

the memory, we only implement the requested minimal precision of 9 bits, thus using

15

boundary values of -0.500 and +0.498. The same saturation mechanism is used in the

learning phase to avoid storing wrong coefficients.

4.4.5 - The neuron memory:

The 9-bit wide memory of the network is distributed in n lines of the synaptic matrix, each

one being local to one neuron. There are two kinds of memory access : read-only during the

retrieval or the first learning phase, read-write during the second learning phase. During

each of these operations, a neuron k accesses its data following always the same cyclic

order :

k, k+1, k+2, ..., n, 1,... k-1 .

Thus, in the design of the memory, it seemed appropriate take advantage of this property to

avoid unnecessary addressing overhead. We have compared several solutions, including a

classical RAM structure: a simple shift register turned out to be the most compact and the

less demanding in terms of power consumption. Of course, these conclusions might not be

valid in the case of significantly larger memories. The memory is thus implemented in the

form of nine identical one-bit shift registers using dynamic tristate circuitry. Since the

synaptic coefficients are computed locally, they are automatically stored at the right place,

where they can be retrieved without addressing: this is an additional advantage of in-circuit

learning.

4.4.6 - The neuron ALU:

As mentioned above, the ALU has to perform the computation of the following quantities :

In the retrieval phase :

ui := Jij∑
j=1

n

σj .

In learning phase 1 :

A := σ - u .
In learning phase 2 :
Jij := Jij + 1n Ai σj .

Figure 11 shows the simplified schematics of one neuron. The ALU consists of a 12-bit

parallel adder associated with a 12-bit accumulator, and of a divider by n. Since n is an

integer power of two, this divider is just an arithmetic right shifter.

The ALU can perform the following operations :

Acc ← 0 - Mem

Acc ← 0 + Mem

Acc ← Acc + Mem

Acc ← Acc -Mem

Acc ← 1-Mem

16

Acc ← -1 + Mem

Mem ← Mem + 1/n Acc

Mem ← Mem - 1/n Acc

where Acc and Mem are the contents of the accumulator and of the current memory cell

respectively.

4.5 - Fabrication data:

The circuit has been manufactured using an industrial 1.2 µm CMOS double metal

technology (European Silicon Structures ECDP12 process). The design of the circuit has

been performed on a workstation, using the Cadence software. The final circuit totals

420,000 transistors; memory blocks are custom designed, and operating parts use standard

cells provided by the founder. Figure 12 shows a micrograph of the die, which has an

overall area of 1 cm2. The area of each neuron is approximately equally divided between

the memory of the synaptic coefficients and the local ALU and controls, although the

memory uses about three times as many transistors as the ALU. The die is encapsulated in a

PGA 176 chip carrier.

4.6 - Performances:

The overall duration of one updating cycle (macro-cycle), in the training as in the retrieval

phase, is the product of the time required to accumulate an increment of the neuron potential

(internal neuron computation delay) plus the time needed to shift the state vector by one bit,

multiplied by the total number of neurons. With the basic cycle of 80 ns, this leads to a

complete macro-cycle in 5.4 µs. In the retrieval phase, let us suppose that three cycles are

needed (this number depends on the initial Hamming distance of the stimulus to the

corresponding stored pattern, and is generally smaller than three). Counting the extra

macro-cycle during which convergence is assessed, and the initial loading macro-cycle, one

pattern recognition is performed in less than 30 µs. In the training phase, the speed is

limited by two factors: (i) the computation of the coefficient increments requires two cycles,

as explained above; (ii) one has to reach the convergence of the coefficients to stable values

corresponding to the exact learning rule: the number of presentations required increases

with the number of stored patterns. Thus, in the same conditions as above, learning 15

moderately correlated patterns (p/n≈0.25) takes approximately 3 ms (the exact time

depending on the correlation between prototypes). This is approximately 1500 times faster

than an MC68030 workstation, and 6 times faster than a CM2 Connection Machine™, with

equivalent operating parameters.

These speeds (tens of microseconds in retrieval, some milliseconds in training) are

obviously high enough for many real-time operations.

17

4.7 - A flexible simulator:

The circuits are wired on Apple Macintosh™ MCP NuBus™ interface cards, to be

configured into various multi-network structures by software. Several such cards can be

used, possibly in different microcomputers, as long as they are linked by the standard

LocalTalk™ network. This very convenient way of using many circuits for

experimentation, under control of a simple man-machine interface, helps assess various

higher level architectures, which would otherwise be impossible to simulate just by

software, except on costly and bulky superparallel mainframes.

4.8 - Future extensions:

The scaling rules for this kind of architecture are straightforward. The size of the die grows
roughly as n2log2n, and the speed decreases as 1/n. Therefore, if a network of 256

neurons (which is an interesting size e.g. for image processing) is required, an area of

about 20 cm2 (using the same technology) would be required. Since this is out of reach,

there are two solutions. The first is to use a technology which would be four times as

small, which has the additional advantage of compensating for the decrease in speed, but

0.3 mm is still far from reach nowadays. The second solution consists in the so-called

silicon hybridation technology (or multi-chip module), where specifically designed chips

are laid on a common silicon substrate which provides interconnections (especially for

power and common signals), the rest of the connections being wired between the chip

pads, as in classical chip carrier bonding. This technology seems to be the most promising

for the near future; therefore, we have decided to design a network based on the same

architecture as the one described here, having four times its size. Each chip will then

contain only 16 neurons arranged in open chain, each of them having a 256 word memory,

11-bit wide. An array of 16 of these chips, connected serially to form the systolic ring, will

implement the whole network. Another advantage of this technique is that it allows the use

of tested chips only, which alleviates the design and reliability issues, as compared to

Wafer Scale Integration.

5. CONCLUSION

One of the central - and often overlooked - problems in the VLSI design of neural networks

in digital technology is the determination of the accuracy of the synaptic coefficients; this is

especially important when integrating the training algorithm itself. Clearly, the accuracy

requirements depend to a great extent on the number of neurons, on the architecture of the

network, on the data to be processed, and on the training algorithm. The present paper

focusses on the determination of the accuracy, in the case of the design of an auto-

18

associative memory, for the storage of correlated patterns, with on-chip training. Various

learning rules, which are integrable in silicon, have been investigated, and the associative

memory properties of the resulting networks have been studied in detail by means of

extensive simulations. The relationships between the architecture of the circuit and the

learning rule have been investigated in order to minimize the extra circuitry required to

implement training. Finally, the implementation of a 64-neuron associative memory with

on-chip training, which has been manufactured, has been described, together with its future

extensions.

Acknowledgments:

This work was supported by DRET under contract 87-187, by EEC under BRAIN contract

ST27-0312-C, by G.CIS of CNRS, and by PRC "Architectures de Machines Nouvelles".

19

FIGURE CAPTIONS

Figure 1: Speed of learning with the Widrow-Hoff rule.

Number of presentations (Π) of the prototype set vs. the number of neurons (n) in order to

have |vi
k-σi

k| ≤ (1/n), for i=1 to n, and for all prototypes σk ; p/n = 0.25.

Figure 2: Mean value and standard-error of the diagonal coefficients (<Cii>), averaged over

100 different sets of prototypes, vs. the number of prototype vectors which have been

presented (Np), for n = 64 and p/n = 0.25. The behaviour is similar for uncorrelated or for

correlated prototypes, but the speed of convergence decreases when the <cos> increases.

Figure 3: Evolution of the mean and standard-error of the magnitude of the potentials, averaged

over 100 different sets of prototypes, vs. the number of prototype vectors which have been

presented (Np), for n = 64 and p/n = 0.25.

Figure 4: Comparison between the behaviour of the Projection network and the behaviour of

the IWH network during retrieval: the curve shows the proportion of identical initial states

leading to different stable states with the Projection network, and with the IWH network, for

various values of βJ (number of bits for encoding the coefficients); p/n = 0.25. This curve is

the average over 10 000 initial states and over 20 prototype sets.

Figure 5: Behaviour of the Projection network: attractivity of the prototypes; the histogramm

shows the distribution of the final normalized Hamming distances from one prototype (after

retrieval) when the Projection network is initialized in a state at a normalized Hamming distance

of 0.125, and 0.25 from this prototype.

Figure 6: Behaviour of the IWH network: attractivity of the prototypes for two values of

βJ : a) βJ =7 bits ; b) βJ =9 bits.

Figure 7: Comparison between the Projection network and the IWH network: attractivity of the

prototypes for various correlations between prototypes.

Figure 8: Projection network with integer coefficients: attractivity of the prototypes for two

values of b.

20

Figure 9 : Schematics of the chip: most signals have self-explanatory names. The CODE and

DECODE blocks and the CODEvalid signal implement the spurious state detection, the

RANDOM block implements the random bit string generation for annealing purposes.

Figure 10 : Simplified schematics of one neuron: σ is the component of the network state vector

(sequential), Cvg is the convergence signal (combinatorial), the Cij are the synaptic

coefficients. Common command and clock signals have been omitted for clarity.

Figure 11 : View of the chip: the neurons are arranged in 4 rows of 16. The surface of each

neuron is divided into two parts of approximately equal areas: the memory (darker) and the

ALU. The I/O and control circuitry are visible on the left-hand side of the chip.

21

LITERATURE REFERENCES

[1] J.J.Hopfield: "Neural Networks and Physical Systems with Emergent Collective

Computational Abilities", Proc. Nat. Acad. Sci. USA, vol.79, pp.2554-2558, 1982.

[2] J.J.Hopfield, D.W.Tank, "Neural computation of decisions in optimization problems",

Biol.Cybern., vol. 52, pp.141-152 (1985).

[3] For an overview, see for instance: L. Personnaz, E. Bienenstock, G. Dreyfus, "A

Cursory Introduction to the Physicists' Neural Networks", J. de Physique, vol. 50,

pp. 207-208 (1989).

[4] L.Personnaz, I.Guyon, G.Dreyfus, "Collective computational properties of neural

networks : New learning mechanisms", Phys. Rev. A, vol. 34, pp. 4217-4223

(1986).

[5] B.Widrow, S.D.Stearns, "Adaptive Signal Processing", Prentice-Hall Signal

Processing Series, A.V.Oppenheim ed, 1985.

[6] F. Rosenblatt, "Principles of Neurodynamics: Perceptrons and the theory of brain

mechanisms", Spartan Books, Washington (1962).

[7] W.Krauth, M.Mézard, "Learning algorithms with optimal stability in neural

networks", J.Phys. A, vol. 20, pp. L745-L752, (1987).

[8] S.Diederich , M.Opper, "Learning of correlated patterns in spin-glass networks by

local learning rules", Phys. Lett. Rev., vol. 58, pp.949-952, (1987).

[9] For an overview of silicon implementations of neural networks, see for instance:

Microelectronics for Neural Networks, U. Ramacher, ed. (Springer, 1991)

Silicon Architectures for Neural Nets, M.G. Sami, ed. (Elsevier, 1991).

[10] S.Y. Kung, J.N. Hwang, "Parallel Architectures for Artificial Neural Nets",

Proceedings of the IEEE Conference on Neural Networks, vol. 2, pp. 165-172

(1988).

M. Weinfeld, "A Fully Digital CMOS Integrated Hopfield Network Including the

Learning Algorithm", in VLSI for Artificial Intelligence, J.G. Delgado-Frias and

W.Moore eds. (Kluwer Academic, 1989).

J.-D.Gascuel, M.Weinfeld, "A 64 Neuron Digital CMOS Fully Connected Neural

Network with Properties Intended for Building Higher Level Architectures",

International Joint Conference on Neural Networks, Seattle, 1991.

