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ABSTRACT

A general methodology for gray-box, or semi-physical, modeling is presented. This
technique is intended to combine the best of two worlds: knowledge-based modeling ,
whereby mathematical equations are derived in order to describe a process, based on
a physical (or chemical, biological, etc.) analysis, and black-box modeling, whereby a
parameterized model is designed, whose parameters are estimated solely from
measurements made on the process. The gray-box modeling technique is very valu-
able whenever a knowledge-based model exists, but is not fully satisfactory and can-
not be improved by further analysis (or can only be improved at a very large compu-
tational cost). We describe the design methodology of a gray-box model, and illus-
trate it on a didactic example. We emphasize the importance of the choice of the dis-
cretization scheme used for transforming the differential equations of the knowl-
edge-based model into a set of discrete-time recurrent equations. Finally, an applica-
tion to a real, complex industrial process is presented.
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I. INTRODUCTION

The traditional view of neural networks is that of "black-box models", i.e. models
that are obtained from data alone, through an elaborate parameter estimation proc-
ess called training. Although these methods have gained wide acceptance in indus-
try, it is understandable that, for processes that have been investigated extensively
from the point of view of physics (or chemistry, biology, etc.), there is some reluc-
tance to forsake altogether a knowledge-based model in order to design a black-box
model even though the latter is expected to be more accurate. Very frequently, a
knowledge-based model is available, which is not satisfactory for the purpose of in-
terest, but still accounts for the main features of the dynamics of the process. In such
a case, it is desirable to take advantage of the existing knowledge while keeping the
flexibility of parameterized models trained from data. In the present paper, we re-
view a technique called semi-physical modeling, or knowledge-based neural model-
ing, which allows the model designer to incorporate, into the structure of the neural
network, whatever prior knowledge is available, provided the latter is expressed as
algebraic or differential equations. We present a general methodology for designing
semi-physical models; we emphasize the importance of the discretization scheme
used to transform differential equations arising from physics into discrete-time equa-
tions that are suitable for numerical processing. Traditionally, recurrent neural net-
works have been used in the framework of explicit discretization schemes; we show
that they can also be used within the framework of implicit discretization schemes,
which may improve the stability of the recurrent network model to a large extent.
The first part of the paper is devoted to the presentation of the mathematical frame-
work of semi-physical neural modeling. The various steps of the design of a model
are explained and illustrated by a didactic example. An original training algorithm is
introduced, for use with models that are based on an implicit discretization scheme.
In the second part of the paper, we describe an industrial application that makes use
of this design strategy.

II. DYNAMIC SEMI-PHYSICAL NEURAL MODELING:
MATHEMATICAL FRAMEWORK

A knowledge-based model is a mathematical description of the phenomena that oc-
cur in a process, based on the equations of physics and chemistry (or biology, sociol-
ogy, etc.); typically, the equations involved in the model may be transport equations,
equations of thermodynamics, mass conservation equations, etc. They contain pa-
rameters that have a physical meaning (e.g. activation energies, diffusion coeffi-
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cients, …), and they may also contain a small number of parameters that are deter-
mined through regression from measurements.
Conversely, a black-box model is a parameterized description of the process, all pa-
rameters of which are estimated from measurements performed on the process; it
does not take into account any prior knowledge on the process (or a very limited
one).
A semi-physical (or knowledge-based) neural  model  may be regarded as a trade-off
between a knowledge-based model and a black-box model. It may embody all the en-
gineer's knowledge on the process (or a part thereof), and, in addition, it relies on
parameterized functions, whose parameters are determined from measurements.
This combination makes it possible to take into account all the phenomena that are
not modeled with the required accuracy through prior knowledge. Since a larger
amount of prior knowledge is used in the design of a knowledge-based neural model
than in the design of a black-box model, a smaller amount of experimental data is
required to estimate its parameters reliably.

II.1 Design and training of a dynamic  knowledge-based neural network

II.1.1 Design principles

The design of a knowledge-based neural model requires the availability of a knowl-
edge-based model, which is usually in the form of a set of coupled, possibly nonlin-
ear, differential, partial differential, and algebraic, equations. We assume that this
model is in standard state-space form:

   dx

dt
= f x(t), u(t)

y(t) = g x(t)

(1)

where x is the vector of state variables, y is the vector of outputs, u is the vector of
control inputs, and where f and g are known vector functions. This model may be
unsatisfactory for various reasons: functions f and g (or some of their components)
may be too inaccurate for the purpose that the model should serve, or they may in-
volve parameters that are not estimated accurately, etc. In a black-box model, neural
networks are used to approximate functions f and g; they are trained from experi-
mental data. In a semi-physical neural model, those functions that are not known
accurately enough are implemented as neural models, whereas those functions,
which are known reliably, are either kept under their analytic form, or implemented
as a neural network with fixed weights and non-linearities.
In general, the design of a semi-physical neural model is performed in three steps:
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• step 1: construction of a discrete-time semi-physical model that is derived, by an
appropriate discretization scheme (see section II.2), from the knowledge-based
model;

• step 2: training of the semi-physical neural model, or of specific parts thereof,
from results obtained by numerical integration of the knowledge-based model;
this step is generally necessary in order to obtain good initial values of the
weights, to be used in step 3;

• step 3: training of the semi-physical neural model from experimental data.
This design strategy is exemplified in the next section.

II.1.2 A didactic example:

A process is described by the following second-order nonlinear model:
    dx 1 t

dt
= – x

1
t +2 x

2
t

2

+ u t

dx 2 t

dt
= 8.32 x1 t

y t = x2 t

(2)

Figure 1 shows the process response sequences to two sequences of input steps;
throughout this section, the left-hand input and output sequences will be used as the
training set, and the right-hand ones as the test set.
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Figure 1

Process response to two input step sequences; both contain 4,000 time steps; (a):

training set: (b) test set.
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The results obtained by integrating the model (2) numerically are not in good
agreement with experimental measurements of the output, as shown on Figure 2.
The mean square modeling error is equal to 0.17, whereas the noise variance is 0.01.
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Figure 2

Modeling error of the knowledge-based model (2).

One is reasonably confident that the first state equation is valid, but there are serious
doubts about the second equation:
• the parameter 8.32 may be inaccurate,
• the linear dependence is controversial,
• it is even conjectured that the right-hand side of the second equation might de-

pend on x2.
Therefore, in order to get a more accurate model, it may be advantageous to use a
knowledge-based neural network. Actually, three different knowledge-based neural
networks, of increasing complexity, may be designed in order to meet the above
three criticisms. We will describe below the design of these models and the results
thus obtained.

As mentioned above, the first step of the procedure consists in creating a discrete-
time neural network based on the knowledge-based model. Since data is gathered
with a sampling period T, the latter is a natural candidate for being the discretization
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step of the equations; if Euler's explicit discretization scheme (as defined in section
II.2.1) is used, the following discrete-time model is derived:

    
x1 k +1 T = x1 kT + T – x1 kT + 2 x2 kT

2
+ u k T

x2 k +1 T = x2 kT + T 8.32 x1 kT

(3)

where k is an integer. Then, the simplest knowledge-based neural model is described
by the equations

    
x1 k +1 T = x1 kT + T – x1 kT +2 x2 kT

2
+ u kT

x2 k +1 T = x2 kT + T w x1 kT

(4)

where w is a parameter that may be estimated by appropriate training; this model
can be cast into the form of the neural network shown on Figure 3.
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x1(k+1) x2(k+1)

Figure 3

The simplest semi-physical model, with a single adjustable parameter w. Output of neu-

ron 1: o2 = - [x1(kT) + 2 x2(kT)]2 + u(kT): output of neuron 2: o2 = w x1(kT); output of neu-

ron 3: o3 = T o1 + x1(kT); output of neuron 4: T o2 + x2(kT).
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For simplicity, in all the following figures, discrete time kT is simply denoted by k . q1

is the usual symbol for a unit time delay. Neuron 1 performs a weighted sum s of x1

and x2, with the weights indicated on Figure 3, followed by the nonlinearity -s2, and
adds u (t). Neuron 2 multiplies its input by the weight w . Neurons 3 and 4 just per-
form weighted sums. If w  is taken equal to 8.32, then this network gives exactly the
same results as the discrete-time knowledge-based model. If w  is an adjustable
weight, then its value can be computed by training the network from experimental
data with any good training algorithm (evaluation of the gradient of the quadratic
cost function by backpropagation through time, and gradient descent with the
Levenberg-Marquardt or BFGS algorithm [Press et al., 1992]). For this training, it
would be reasonable to initialize weight w to 8.32. Note that, in this very simple case,
step 2 of the algorithm is bypassed.
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Figure 4

Modeling error of the model of Figure 3.

Figure 4 shows the modeling error with this improved model. The mean square
modeling error on the test sequence is 0.08 (instead of 0.17 for the knowledge-based
model); since the noise variance is 0.01, further improvement may be expected from
a more elaborate model. Therefore, one considers the second level of criticism to-
wards model (2), i.e. the fact that the linearity of neuron 2 is not appropriate; then
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this neuron may be replaced by a single-layer neural network (shown on Figure 5
with three hidden neurons and 6 weights1).
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Figure 5

A more elaborate semi-physical model. The bias input is not shown. Neurons without numbers

have standard sigmoid nonlinearities. Neurons 1, 3 and 4 are the same as on Figure 3.

Since x2(t) is supposed to be measurable, the feedforward neural network made of
the non-numbered neurons shown on Figure 5 can be trained from data generated
by the knowledge-based model (step 2 of the design procedure): although these val-
ues are known to be inaccurate, the weights resulting from this training are reason-
able estimates, which are subsequently used for initializing the training of the neural
network from experimental data (step 3 of the design procedure). In this case, step 2
might be bypassed, but this is not advisable: since step 3 is the training of a recurrent
neural network, instabilities may occur if the weights are initialized to random val-
ues. Step 2 generates weights that are not too far from their final values, so that in-
stabilities are unlikely to occur.

                                                
1 Plus the weights related to the bias input, not shown on Figure 3.
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Figure 6 shows the modeling error with this model, with two hidden neurons in the
black-box part of the model (additional neurons generate overfitting). The mean
square modeling error on the test sequence is 0.02.
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Figure 6

Modeling error of the model of Figure 5.

Finally, since the results are still unsatisfactory, the conjecture that the right-hand
side of the second state equation does not depend on x1 only, but also depends on x2,
must be taken into account. Then a third knowledge-based neural model may be de-
signed, where the right-hand side of the second state equation is implemented as a
neural network whose inputs are x1 and  x2. This is shown on Figure 7 (with a feed-
forward net having three hidden neurons).

Steps 2 and 3 are performed as for the previous model. Figure 8 shows the modeling
error on the test sequence, with two hidden neurons in the black-box part of the
model. The mean square modeling error is on the order of the noise variance, so
that this model is satisfactory.



11

1

3 4

u(k) x1(k) x2(k)

x1(k+1)

q-1

y(k+1)

x2(k+1)

1

2

w1

1

1 T

w4

1

w2 w3

w5 w6

T

4

Figure 7

Still more elaborate a semi-physical model. The bias input is not shown. Neurons without num-

bers have standard sigmoid nonlinearities. Neurons 1, 3 and 4 are the same as on Figure 3.
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Figure 8

Modeling error of the model of Figure 7.
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We have shown on this simple example the flexibility of knowledge-based neural
modeling, which allows the model designer to take into account elements of prior
knowledge that are considered reasonably reliable and accurate.

The first step of the design, i.e. the discretization of the knowledge-based model, is
crucial because the choice of the discretization scheme may have important conse-
quences on the stability and efficiency of the model, as well as on the training algo-
rithm that must be used. This issue is investigated in detail in the next section.

II.2 Discretization of a knowledge-based model
As far as the design and training of a semi-physical neural model are concerned, two
different classes of schemes must be considered.

II.2.1 Explicit ("forward") vs. implicit ("backward") discretization schemes: defini-
tions.

Consider a first-order differential equation:
  dx t

dt
= f x t (5)

An explicit scheme discretizes it to:
  x k +1 T = x kT , T ,

(6)

where T is the discretization step (which is frequently equal to the sampling period
of the experimental data), and k  is an integer. An implicit scheme discretizes equa-
tion (5) to:

  
x k +1 T = x k +1 T , x kT , T . (7)

More generally, consider a set of state-space equations written in vector form:
   dx

dt
= f x t , u t . (8)

If an explicit discretization scheme is used, the discretized equations can be written
under the general form:

   K x kT x k +1 T + x kT , u k T , T = 0 , (9)

where K  is a matrix and  is a vector function, whereas, if an implicit discretization
scheme is used, the discretized equation can be written under the general form:

   
K x k +1 T x k +1 T + x k +1 T , x kT , u k +1 T , T = 0

 
.

(10)

It will be shown in section II.2.2 that different discretizations may result in different
numerical stability properties.
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Examples:
Euler's explicit scheme consists in considering that function f is constant, equal to
f[x(kT)] between kT  and (k +1)T, so that the integration of the differential equation
between kT  and (k +1)T gives:

  x k +1 T = x kT + T f x kT . (11)

Euler's implicit scheme consists in considering that function f is constant, equal to
f[x((k +1)T] between kT  and (k +1)T, so that the integration of the differential equation
between kT  and (k +1)T gives:

  
x k +1 T = x kT + h f x k +1 T . (12)

Similarly, Tustin's scheme consists in considering that function f varies linearly be-
tween kT  and (k +1)T, so that the integration of the differential equation between kT
and (k +1)T gives:

  
x k +1 T = x kT +

T
2

f x k + 1 T + f x kT .
(13)

It is therefore an implicit scheme.

Application
Consider the first knowledge-based neural model considered in section II.1; its dis-
cretization by Euler's explicit scheme has been given as relation (4). The discretiza-
tion of the model by Euler's implicit scheme can be put in the following form:

  
1 + Tx 1 k +1 T + 4 Tx 2 k +1 T x1 k + 1 T + 4 Tx2

2 k + 1 T = x1 kT + T u k + 1 T

    
x2 k +1 T – T w x1 k +1 T = x2 kT

(14)

This is a specific case of relation (10), with
   

K x k +1 T =

1 + T x1 k + 1 T + 4 Tx2 k +1 T 4 T x2 k + 1 T

– T w 1

(15)
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x k +1 T , x kT , u k +1 T , T =
x1 kT + T u k +1 T

x2 kT

II.2.2 Explicit vs. implicit discretization schemes: impact on numerical stability.

The main incentive for using implicit schemes instead of explicit ones is the stability
issue. For simplicity, we consider a first-order linear ordinary differential equation:

  du t

dt
= – u t ,  > 0 (16)

An Euler explicit scheme discretizes it to:
   u k+1 T − u kT

T =− α u kT
(17)

which is equivalent to:

    u k +1( )T[ ] = 1 − T( )u kT( ) (18)

Clearly, a necessary and sufficient condition for the numerical solution to be stable
is:

   
T <

2

α
(19)

Therefore, the computation time is inversely proportional to .
Consider again the simple differential equation (16). Euler's implicit scheme discre-
tizes it to:

  u k +1 T – u k T

T
= – u kT

(20)

The only difference between this equation and equation (17) is the fact that the quan-
tity u is evaluated at time (k +1)T instead of time kT . Equation (20) can be rewritten
as:

    
u k +1( )T[ ] =

1

1 + T( ) u kT( ) (21)

Since the denominator on the right-hand side is larger than 1, this scheme is stable
irrespective of the value of . Therefore, the choice of the discretization step is based
on accuracy considerations only.
However, in contrast to the above simple example, if the equations of the model are
nonlinear, they cannot be solved in closed form for the variables at time (k +1)T.
Therefore, one has to resort, at each step of the integration, to numerical methods
for solving a set of nonlinear equations. In view of the design of knowledge-based
neural models, one has to find a "neural" implementation of such methods; this
will be described in the next section.
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II.2.3 Explicit vs. implicit discretization schemes: impact on neural network imple-
mentation and training.

II .2 .3 .1  Explicit schemes

An explicit scheme is easily implemented in the form of a recurrent neural network:
since the right-hand side of the discretized equation contains quantities defined at
time kT  or earlier, a feedforward neural network can be used to approximate func-
tion  (relation (6)). This has been exemplified in section II.1.

II .2 .3 .2  Implicit schemes

The implementation of an implicit scheme as a neural network is less straightfor-
ward than that of an explicit scheme, because the value of the state vector at time
(k +1)T is present on both sides of the state equation. Therefore, computing x[(k +1)T]
involves solving the nonlinear equation

   
K x k +1 T x k +1 T + x k +1 T , x kT , u k +1 T , T = 0 . (22)

The solution of this equation can be obtained in various ways, depending on

whether an analytic expression of matrix K
-1

 is available or not. This has conse-
quences on the implementation and on the training of the model. These issues are
addressed in the next subsections.

II.2.3.2.1  Matrix K can be inverted analytically

If the state vector x(t) undergoes small variations between kT and (k +1)T, relation
(22) can be approximated as

   K x kT x k +1 T + x kT , u kT , T = 0 . (23)

A first approximation x1[(k +1)T] of x[(k +1)T] can be obtained as
   x1 k + 1 T = – K–1 x kT x kT , u kT , T . (24)

If the dimension of matrix K  is moderate, an analytic expression of its inverse can be
computed. This expression can be used iteratively, so that one has, at iteration l:

   
x l k + 1 T = – K–1 x l –1 kT x l –1 kT , u kT , T . (25)

This fixed-point iteration process (also called substitution method) is terminated
when it is essentially stationary, i.e. when    

xi
l k +1 T – xi

l – 1 k +1 T

x i
l k +1 T

Σ
i =1

N

< ε
(26)
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where is a constant.

Example:
Consider the model whose discretization with the implicit Euler scheme is given by
relations (15). The substitution method can be applied, with:

  

K–1 x kT =
1

1 + hx 1 k +1 T +4 T 1 + T w x2 k +1 T

1 –4 hx 2 k +1 T

T w 1 + Tx 1 k +1 T + 4 Tx 2 k +1 T

   
x k +1 T , x kT , u kT , T =

x1 kT + T u kT

x2 kT

(27)

The iterative method described above allows the implementation of the model in a
neural network form, hence the use of the computationally inexpensive backpropa-
gation algorithm for the estimation of the gradient of the cost function.
As an example, consider the knowledge-based neural model whose discretization
with Euler's implicit scheme is given by relation (15). The resulting neural model is
shown on Figure 9, featuring three successive fixed-point iterations.

Denoting by i1, i2 and i3 the inputs of neuron 1 (from left to right on Figure 9), this
neuron computes the quantity:

  
o1 = –

i2 kT + T i 1 kT

1 + T i 2 k +1 T + 4 T 1 + T w i3 k +1 T
+

4 T i3
2 kT

1 + T i 2 k +1 T +4 T 1 + T w i3 k +1 T

(28)

Similarly, denoting by i1 and i2 the inputs of neuron 2, it computes the quantity:
  

o2 = –
T w

1 + T i 2 k +1 T + 4 T 1 + T w i3 k +1 T
i2 kT + T i 1 kT –

1 + t i2 k +1 T +4 T i 3 k +1 T

1 + T i 2 k +1 T +4 T 1 + T w i3 k +1 T
i3 kT

(29)

These neurons are somewhat different from the usual ones, but they are perfectly
legitimate neurons, and the neural network shown on Figure 9 can be trained just as
any recurrent neural network.
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q-1
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Figure 9

Neural implementation of fixed-point iteration in the substitution method.

Note that all results reported above in the didactic example (section II.1.2) were ob-
tained through this method (explicit discretization and analytic inversion of matrix
K).

II.2.3.2.2 Matrix K cannot be inverted analytically

The implementation of the substitution method in neural network form is practical
if the dimension of matrix K (i.e. the number of state variables of the model) is not
too large (typically smaller than 10). Otherwise, one has to resort to numerical  matrix
inversion. This requires an original method for training such models.
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As mentioned in section II.2.3.2, the substitution schemes requires the iterative ap-
plication of relation (23):

   x k +1 T = – K–1 x kT x kT , u kT , T .

It should be remembered that the training of a dynamic neural network proceeds as
follows [Nerrand et al., 1993]: the dynamic network is "unfolded in time" N  times,
where N  is the length of the training sequence. This results in a feedforward neural
network made of N  identical copies of the model, which is subsequently trained by
minimizing an appropriate cost function J.

In the following, we denote by 
k
 the weights of copy number k, which corresponds

to time step kT . The quantities 
    ∂J

∂
k

=
∂J

∂yk

∂yk

∂
k

 are first computed, where y
k
 is the

output of copy k of the network. The gradient
  

∂J

∂
=

∂J

∂ k
k

∑ is subsequently com-

puted.

Therefore, it is necessary to compute the derivative of the output of a copy of the
network with respect to the parameters. It has been shown in [Oussar, 1998] that the
gradient of the output, computed in the forward direction (as opposed to backpropa-
gation) is given by:

    ∂x k+1

∂
=

∂x k+1

∂x k

∂x k

∂
+

∂x k+1

∂
k +1

(30)

The application of this relation requires the computation of the matrix of the gradi-
ent of the output x(k +1) of copy k +1 with respect to its input x(k ). From (23), it is
given by:

     ∂x(k+1)

∂x(k)
= –

∂

∂x(k)
K–1 x(k) x(k) (31)

which can be rewritten as:
     ∂x(k+1)

∂x(k)
= –

∂

∂x(k)
K–1 x(k) x(k) – K–1 x(k)

∂

∂x(k)
x(k) (32)

where 
    ∂

∂x(k)
K–1 x(k)  is a three-dimensional tensor. The latter quantity can be com-

puted if and only if the inverse of matrix K  can be computed analytically. As men-
tioned above, this is impractical in many cases because of the size of K .

In order to circumvent this limitation, relation (23) can be differentiated with respect
to x(k ):
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     ∂

∂x(k)
K x(k) x(k+1) = –

∂

∂x(k)
x(k) (33)

After some algebra, one gets:
     

∂x(k+1)

∂x(k)
= – K–1 x(k)

∂K x(k)

∂x(k)
x(k+1) +

∂ x(k)

∂x(k)
(34)

Therefore, the inverse of matrix K  can be computed numerically before computing
the derivatives.

Similarly, the computation of the quantity 
     ∂x k+1

∂
k+1  can be performed as follows:

     
∂x(k+1)

∂
k+1

= – K–1 x(k)
∂K x(k)

∂
k+1

x(k+1) +
∂ x(k)

∂
k+1

(35)

The recursions are initialized with 
   ∂x 0

∂
= 0 .

These relations are subsequently used in the Levenberg-Marquardt algorithm for the
computation of the Hessian of the model with respect to the adjustable parameters.

II.3 Conclusion
In this tutorial section, we have explained the principles of knowledge-based neural
modeling, and we have illustrated them on an academic example. We have shown
how, through successive modifications, one may include various pieces of prior
knowledge into the neural network. We have also shown the impact of the discreti-
zation scheme used for the knowledge-based model. We have proved that both ex-
plicit and implicit discretization schemes can be implemented as neural networks,
although the implementation of the former is usually more straightforward than
that of the latter; therefore, in the design phase, explicit schemes should be imple-
mented first, and one should resort to implicit schemes only if this turns out to be
mandatory.
An industrial example of knowledge-based neural modeling based on explicit discre-
tization schemes can be found in [Ploix et al., 1997]. In the following section, we pre-
sent an industrial application where implicit discretization schemes were used suc-
cessfully.
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III. THE KNOWLEDGE-BASED DYNAMIC MODELING OF A
DRYING PROCESS.

III.1 Outline of the problem
We present a problem that was investigated in the framework of a collaboration be-
tween our group and the 3M Company.
The process to be modeled is the oven drying of a thin coating on an impermeable
substrate. The coating (polymer phase) contains a single nonvolatile component -
the polymer - and a single volatile component - the solvent. The solvent diffuses
through the polymer and evaporates into the gas phase when reaching the surface.
No diffusion takes place through the substrate. The evaporation of the solvent re-
sults in a decrease of the thickness of the coating, so that the equation to be solved is
essentially the diffusion equation with a boundary condition applied at a moving
boundary. In the case of organic solvents, a detailed knowledge-based model has
been developed, as described in [Price et al., 1997]; when the solvent is water, then
the knowledge-based model is no longer satisfactory. Since measurements are avail-
able both for organic solvents and for water, dynamic knowledge-based modeling
was a natural candidate for building a model that retains most basic features of the
model for solvent-based adhesives, but that adapts to water-based adhesives through
training from experimental data. Experimental data consists of sequences of meas-
urements of the residual solvent weight, with various initial values of the concen-
tration and various oven temperatures.
The output variables of interest are:

• the solvent concentration  in the polymer phase,

• the temperature profile T
p
 in the polymer phase,

• the thickness X of the polymer phase,

• the temperature profile T
S
 in the substrate.

The input variables are:

• the temperature T
G

 in the oven,

• the initial solvent weight in the polymer phase.

Figure 10 illustrates the system.

Mass conservation is expressed as:

    

∂
∂t

=
∂F x ,t( )

∂x (36)

where F(x, t) is the solvent flow.
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Figure 10

The physical system to be modeled.

Boundary conditions for mass conservation equation:
• The solvent flow from the coating surface into the gas phase is given by:

  
F x,t +

dX

dt
= – kG pG (37)

where p
G

 is the partial pressure of solvent in the gas phase and k
G

 is a known co-
efficient.

• The solvent does not diffuse through the substrate, therefore:
F(0, t) = 0  for all t. (38)

 

 Volume conservation is expressed as:
  dX

dt
= – kG V pG (39)

where X is the polymer thickness and  V  is the specific volume of the solvent.

 

 

 Temperature profiles:
 In the knowledge-based model described in [Price et al., 1997], the variations of tem-
perature both in time (as a function of the oven temperature) and in space
(throughout the substrate and coating) are taken into account. It turns out that the
typical time scale of temperature variations is very short as compared to the evapo-
ration time. Therefore, a simplified model has been designed, which makes the sim-
plifying assumption that the temperature in the film and in the coating is spatially
uniform.
 

 Transport equation:
The variation of flow with concentration is expressed by Fick's law:

   
F x, t = D

∂
∂x

(40)

where D is the diffusion coefficient.



22

Diffusion:
The dependence, on temperature and solvent concentration, of the diffusion coeffi-
cient D of the solvent in the polymer, is given by the free-volume theory2:

    
D = Q D0 exp –

E

RT
P

exp – (41)

where E is an activation energy, and where  is a function, known analytically, of
the concentration of the solvent, involving free-volume parameters for the solvent
and the polymer which are usually estimated through regression.

Driving force for drying:
Clearly, the driving force of the process is the partial pressure of the solvent in the
gas phase (present in equations (37) and (39)); it was derived from the Flory-Huggins
theory, and the solvent vapor pressure was given by the Antoine equation:

  
pG = P 1

P exp 2
P + 2

P 2
(42)

where p
G

 is the solvent partial pressure in the gas, 
  
1
P =

0
,   

1
P + 2

P = 1, 0 is the

inverse specific volume, and is the Flory-Huggins parameter. P is the solvent va-
por pressure given by the Antoine equation:

  
log10P = A –

B

TP X,t + C
(43)

where A , B and C are known parameters.

III.2 Design of a knowledge-based neural model of the process
 The first step of the design of the knowledge-based neural model is the choice of the
equations that must still be present in the neural model, and of those that corre-
spond to assumptions that may be relaxed in the neural model.
Clearly, the equations expressing
• mass conservation
• boundary conditions
• volume conservation
• temperature profiles
are valid irrespective of the nature of the solvent, and therefore must be retained in
the knowledge-based neural model.

                                                

 2 Boldface symbols denote quantities that are unknown, and are estimated by nonlinear regression, from

measured data.
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By contrast, the validity of the last three equations (Fick's law, temperature and con-
centration dependence of the diffusion coefficient predicted by free-volume theory,
Flory-Huggins theory for the driving force) may be questioned in the case of water-
based adhesives. Therefore, black-box neural networks, within a knowledge-based
neural model, may replace all or some of them.
As described above, various models of different complexity were designed. The best
results were obtained with a network in which the temperature and concentration
dependence of the diffusion coefficient was replaced by a neural network, i.e. in
which free-volume theory was dropped.
An explicit scheme was used for space discretization, with a geometrically decreasing
step because of the rapid variation of the concentrations near the free surface. An
implicit time discretization was found mandatory, because the diffusion coefficient
varies over several orders of magnitude throughout the experiment.
The overall structure of the model, for training, is shown on Figure 11. The concen-
tration (in appropriately reduced variables) in slice j at time n is denoted by cj

n
. Re-

duced temperature at time n  is denoted by T*n; reduced thickness at time n  is de-
noted by X*n. At each space grid point, a neural network N N  computes the local dif-
fusion coefficient; the shared weight technique is used, since the neural networks are
the same at each grid point. This allows the computation of all elements of matrix K
and vector . The inverse K

-1
 is computed, and relation (23) is implemented by mul-

tiplying K
-1

 by , thereby obtaining the values of the state variables at time n+1. The
upper part of the network implements integration of the concentration over the
thickness of the sample, with space grid steps ∆ j, j=1 to M, in order to get the meas-
ured quantity, i.e. the residual solvent weight at time n+1.

The discretization of the state-space equations by an implicit scheme was found
mandatory because the diffusion coefficient varies over several orders of magnitude
from boundary to boundary, so that numerical stability is a critical issue. Since the
state-space equation were discretized by an implicit scheme, training through nu-
merical matrix inversion was performed as described in section II.2.3.2.2.
In order to validate the method and the structure of the network, a neural network
was trained from data obtained with solvent-based adhesives (for which a satisfac-
tory knowledge-based model exists. A typical result is shown on Figure 12: the pre-
diction is very good (within the accuracy of the measurements).
Figure 13 shows typical results obtained with water-based adhesives. As might be
expected, the accuracy of the prediction is not quite as good as that obtained with sol-
vent-based adhesives, but it is nonetheless very satisfactory.



24

∆ j

  

  

  q-1

 Π 

 Π

 Σ

  

   

 
 
 ∆ M

   0

  L

n+1
  T *

Solvent residual 
(g/cm2)

•   •   •

    

 
NN•     •     •     •    

-K-1

  
n+1X*   cn+1

0 cn+1
j cn+1

M-1 cn+1
M

∆ 0

K

nX* n
  T* cn

0 cn
1

cn
M

NNNN

•   •   •

Figure 11



25

Overall structure of the semi-physical model of a drying process.
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Figure 12

Results for an organic solvent-based adhesive.
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Figure 13

Results for a water-based adhesive.

IV. CONCLUSION
We have shown that dynamic semi-physical (knowledge-based) neural modeling
can be a very powerful strategy for the design of models that combine the best of two
worlds: the legibility of knowledge-based models and the flexibility of training from
experimental data. It allows the integration of the mathematical equations derived
from a knowledge-based model into the structure of the neural network. A very im-
portant issue, namely the stability of the recurrent neural network model, has been
investigated; it has been shown how the good numerical stability properties of im-
plicit discretization schemes can be taken advantage of, and an original algorithm,
specific to recurrent networks based on implicit discretization, has been derived.
Because of its hybrid nature, this design strategy should gain acceptance in the field
of engineering; an industrial application has been described, that takes full advan-
tage of semi-physical modeling.
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