
1

Comment on "Discrete-Time Recurrent Neural Network
Architectures: a Unifying Review"

Léon PERSONNAZ, Gérard DREYFUS

ESPCI, Laboratoire d’Électronique

10, rue Vauquelin, 75005 Paris, France

Gerard.Dreyfus@espci.fr

Abstract

Paper [1] aimed at providing a unified presentation of neural network

architectures. We show in the present comment (i) that the canonical

form of recurrent neural networks presented by Nerrand et al. [2] many

years ago provides the desired unification, (ii) that what Tsoi and Back

call Nerrand's canonical form is not the canonical form presented by

Nerrand et al. in [2], and that (iii) contrarily to the claim of Tsoi and

Back, all neural network architectures presented in their paper can be

tranformed into Nerrand's canonical form. We show that the contents of

Tsoi and Back's paper obscures the issues involved in the choice of a

recurrent neural network instead of clarifying them: this choice is

definitely much simpler than it might seem from Tsoi and Back's paper.

In [1], Tsoi and Back present a number of different discrete-time recurrent neural network

architectures and intend to clarify the links between them. The authors must be

commended for trying to perform such a task; they must also be commended for their

lucid statement that they are unable to answer the simple question: which neural network

to use for a particular given problem. Unfortunately, the authors are not content with not

answering this important question; they considerably obscure the issues related to it, by

making wrong statements, and by misunderstanding a powerful unifying tool which was

published many years ago [2]. In the present comment, we disprove some unjustified and

incorrect claims, with special emphasis on those expressed in an aggressive way in the

Tsoi and Back paper, and we prove that the choice of a recurrent neural network

architecture can be made on a principled basis.

Back in 1993, Nerrand et al. [2] proposed a general approach to the training of recurrent

networks, either adaptively (on-line) or non-adaptively (off-line). One of the main points

of that paper was the introduction of the canonical form, or minimal state-space form

(hereinafter termed Nerrand's canonical form), defined in relations (4) and (4') of their

paper as:

2

 z (n+1) = ϕ [z (n), u (n)] (state equation) (1)

 y (n+1) = ψ[z (n+1), u (n+1)] (output equation) (2)

where z (n) is the minimal set of variables necessary for computing completely the state of

the model at time n+1 if the state of the model and its external input vector u (n) (control

inputs, measured disturbances, ...) are known at time n; y (n) is the output vector. A

graphic representation of the canonical form is shown in Figure 1, assuming that

functions ϕ and ψ are computed by a single feedforward network.

In appendix 1 of their paper, Nerrand et al. showed how to compute the order (i.e. the

number of state variables) of any recurrent network, and, in appendix 2 they derived the

canonical form of various recurrent network architectures, which had been proposed by

other authors.

In section 4.9.2 of [1], Tsoi and Back claim that Nerrand's canonical form, presented in

[2], can be written as:

 y (n+1) = cT[z (n+1)] (3)

 z (n+1) = ϕ [y(n), y(n-1), ..., y(n-m)] (4)

where ϕ is the vector function performed by the neurons of the hidden layer.

This claim is wrong, for several reasons:

• in Nerrand's canonical form, the output cannot be expressed, in general, as a nonlinear

function of the past outputs,

• in Nerrand's canonical form, the output is not, in general, a linear function of the state

variables,

• in Nerrand's canonical form, there are, in general, external inputs,

• in Nerrand's canonical form, function ϕ can be implemented as an arbitrary

feedforward network, not necessarily a layered one.

What Tsoi and Back claim to be a canonical form is actually a specific input-output form,

without external inputs. It is a very special case of Nerrand's canonical form, where ψ is

the identity function, where there are no external inputs, and where ϕ is implemented as a

one-hidden layer feedforward network.

Actually, Figure 2 of the paper by Nerrand et al. shows, as a special case of Nerrand's

canonical form, a graphical representation of the most general input-output form of a

recurrent neural network; it is more general than the form (3) - (4) of Tsoi and Back

(termed "static GFGR" in their paper) in the sense that function ϕ is implemented as a

fully connected feedforward network, and that it does have external inputs.

In an aggressively repetitious way (in section 4.9.2, then in the introduction of section 6,

then in section 6.1, and in section 6.2, and also, in addition, in another paper by Tsoi [3]

published in the same issue), Tsoi and Back claim that the statement made in [2] that any

neural network can be cast into Nerrand's canonical form is not supported in [2], and

wrong in general. They also claim repetitively that there is no systematic way of

transforming a neural network into Nerrand's canonical form. This would be correct if

3

Nerrand's canonical form was the simple input-output form (3) - (4); as shown above,

this is not the case. Therefore, all claims made by Tsoi and Back related to this issue are

definitely incorrect.

The fact that any discrete-time model, of a class which contains all the neural network

architectures presented by Tsoi and Back, can be transformed into Nerrand's canonical

form, was proved in [4]. A systematic procedure for transforming any neural network

(i.e. a neural network with any graph of connections, any delays in the connections, and

any nonlinearity or absence of nonlinearity in the nodes of the graph - which includes

what Tsoi and Back call "networks with dynamic connections") into a canonical form was

proposed, and several practical examples were given, in [4] and [5].

As an additional comment, we disprove the claim that a dynamic GFGR cannot be

transformed into Nerrand's canonical form. Consider a dynamic GFGR

z(t) = Fn(A v(t) + B u(t) + C i(t) + τz)

v(t) = H ζ(t)

ζ(t) = F ζ(t-1) + G z(t-1)

with

u(t) =
y(t-1)

:
y(t-m)

 and

i(t) =
e(t)

:
e(t-m'+1)

, e(t) being the external input

y(t) = cT z(t)

An example is shown on Figure 2.

The transformation of such a network into Nerrand's canonical form can be readily

performed. We denote by x(t) the vector

x(t) =

ζζ(t)
z(t)
y(t)

:
y(t-m+1)

; then the state equation of the

GFGR can be written as x(t) = FNN(x(t-1), i(t))
y(t) = [0 … 0 1 0 … 0] x(t);

where FNN is the feedforward part of Nerrand's canonical form of the considered

dynamic GFGR. This canonical form is shown on Figure 3

As a practical consequence, there is definitely no point in considering all the architectures

described at length in the Tsoi and Back paper, since they are all amenable to the genuine

Nerrand's canonical form as appropriately described by equations (1) and (2) of the

present comment. All the terminology and endless architectural variations proposed in the

Tsoi and Back paper (as well as in many other papers in the literature) only bring about

extreme confusion. For practitioners of modeling with recurrent neural networks, the

situation is actually reasonably simple; two possibilities arise:

4

• no prior knowledge on the process or time series to be modeled is available (black-box

modeling); then one should try Nerrand's canonical form, since it is the most general

possible form. Training should be performed by evaluating the gradient of the cost

function with the algorithms described in [2], and weight updates should be computed

with a second-order algorithm for best results; the determination of the order of the

network and of the number of hidden neurons may be done by trial and error, or by

making use of model selection methods [6]; a real-life example, showing clearly the

superiority of state-space models (1) - (2) over input-output models (3) - (4), is given

in [7];

• some prior knowledge is available in mathematical form; then these equations, which

are generally in a state-space form, should be used in order to build the architecture of

the neural model; if the latter is not in a canonical form, it should be transformed into a

canonical form, either manually or by the procedure described in [4], and subsequently

trained as described above. This methodology, termed "knowledge-based neural

modeling", and an industrial application thereof, are presented in [8] and [9].

To summarize, we make the following points:

(i) what Tsoi and Back call "canonical form" or "static GFGR neural architecture" is not

the canonical form introduced several years ago by Nerrand et al.; it is a very particular

case of the input-output form also introduced by Nerrand et al.;

(ii) contrarily to the claims of Tsoi and Back, the genuine Nerrand's canonical form is

indeed the most general form of recurrent neural architecture; despite Tsoi and Back's

heavily repeated - but nevertheless unjustified - criticisms, any neural network

architecture can be transformed into Nerrand's canonical form;

(iii) from a practical standpoint, there is definitely no point in trying an endless variety of

architectures, such as presented in Tsoi and Back's paper, which are all amenable to

Nerrand's canonical form. In the absence of any prior knowledge on the process to be

modeled, Nerrand's canonical form should be tried first; if prior knowledge is available,

in the form of mathematical equations, this knowledge should be used for determining a

tentative architecture, which should be transformed into a canonical form and

subsequently trained.

As a final point, it is the firm belief of the authors of the present comment that, since their

paper was subject to heavy criticism by Tsoi and Back in [1], they should have been

given a fair chance to reply to these authors in the same issue.

5

LITERATURE REFERENCES

[1] A.C. Tsoi, A.D. Back, Discrete Time Recurrent Neural Network Architecture, a

Unifying Review, Neurocomputing 15 (1997) 183 - 223.

[2] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, Neural Networks and

Nonlinear Adaptive Filtering: Unifying Concepts and New Learning Algorithms, Neural

Comput. 5 (1993) 165-199.

[3] A.C. Tsoi, S. Tan, Recurrent Neural Networks: a Constructive Algorithm, and its

Properties, Neurocomputing 15 (1997), 309-326

[4] G. Dreyfus, Y. Idan, The Canonical Form of Discrete-Time Nonlinear Models,

Neural Comput. 10 (1998) 133-164.

[5] G. Dreyfus, Y. Idan, Discrete-time Neural Networks and their Canonical Form,

Machines that Learn Conference, Snowbird, Utah (1997).

[6] D. Urbani, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, The Selection of Neural

Models of Non-linear Dynamical Systems by Statistical Tests, Neural Networks for

Signal Processing IV, 229-237 (IEEE, 1993).

[7] I. Rivals, L. Personnaz, G. Dreyfus, J.L. Ploix, Modélisation, classification et

commande par réseaux de neurones : principes fondamentaux, méthodologie de

conception et illustrations industrielles, in Les réseaux de neurones pour la modélisation

et la commande de procédés, J.P. Corriou, ed. (Lavoisier Tec & Doc, 1995).

[8] J.L. Ploix, G. Dreyfus, Knowledge-based Neural Modeling: Principles and Industrial

Applications, in Industrial Applications of Neural Networks, F. Fogelman-Soulié, P .

Gallinari, eds. (World Scientific, 1997).

[9] J.L. Ploix, G. Dreyfus, Early Fault Detection in a Distillation Column: an Industrial

Application of Knowledge-based Neural Modeling, in Best Neural Network Practice in

Europe, SNN'97 (Amsterdam, 1997).

6

Feedforward network

Output at
time n

External network
inputs at time n

State variables at
time n

...

.....

.....

State variables at
time n+1

Unit
delays1 1 1

Figure 1

7

∑ ∑ ∑

∑ ∑

∑

y(t)

z(t)

v(t)

ζ(t)

ζ(t-1) z(t-1) u(t)

e(t)

y(t-1)

y(t-1) y(t-2)

Unit
delays

Unit
delays

1

Output

e(t-1)

i(t)

ƒ
∑

ƒ
∑

ƒ
∑

Figure 2

8

∑ ∑ ∑

∑ ∑

∑

y(t)

z(t)

v(t)

ζ(t)

ζ(t-1) z(t-1) u(t)

y(t-1)

y(t-1) y(t-2)

1

ζ(t)

z(t)

State variables at time t-1 : x(t-1)

Output

State variables at time t : x(t)

u(t+1)

e(t) e(t-1)

i(t)

ƒ
∑

ƒ
∑

ƒ
∑

Figure 3

9

FIGURE CAPTIONS

FIGURE 1

Nerrand's canonical form of a recurrent neural network.

FIGURE 2

Example of GFGR network

FIGURE 3

A canonical form of the GFGR network of Figure 2

