Neural Computation, vol. 10, No 1.

The Canonical Form
of Nonlinear Discrete-Time Models

Gérard DREYFUS and Yizhak IDAN
ESPCI, Laboratoire d’ Electronique
10, rue Vauquelin, 75005 Paris, France
dreyfus@neurones.espci.fr

Abstract

Discrete-time models of complex nonlinear processes, whether physical,
biological or economical, are usualy under the form of systems of
coupled difference equations. In order to anadyze such systems, one of
the first tasks is that of finding a state-space description of the process,
i.e. aset of state variables and the associated state equations. We present
a methodology for finding a set of state variables and a canonical
representation of a class of systems described by a set of recurrent
discrete-time, time-invariant equations. In the field of neura networks,
this is of specia importance since the application of standard training
algorithms requires the network to be in a canonica form. Severa
illustrative examples are presented.

1 Introduction

Black-box modeling, whether linear or nonlinear, is a highly valuable engineering tool,
whose limitations are well known: the training data is usually corrupted with random
noise, or with deterministic but unmeasured disturbances, it may not be representative of
the whole range of operation of the process, etc. The bayesian approach, imposing
constraints on the parameters based on prior knowledge, is one way to circumvent some
of these problems; aternatively, when confronted with the task of modeling a complex
process, one may take advantage of the wealth of knowledge that usually exists on the
process, or on part of it, under the form of mathematical equations derived from physics
(or from chemistry, biology, economy, etc.); these equations may be approximate or
incomplete, hence may not meet the accuracy requirements of the application under
consideration, but they are nevertheless useful for describing the deterministic behavior of
the process. Semi-physical modeling is the approach whereby a first model, usualy
containing unknown parameters, is designed from prior mathematica knowledge, is
complemented with "black boxes' wherever necessary, and whereby the unknown
parameters are findly determined from measurements as in black-box modeling
(Lindskog 1994). This technique has been successfully applied to the modeling of a

2

complex industrial process (Ploix et a. 1994, Ploix et a. 1996). One of the problems of
this approach is the following: the discretized equations of the physical model are a set of
coupled nonlinear difference equations which are not, in general, in the form of a state-
space model. Handling such amodel usually requires finding a set of state variables and
deriving the corresponding discrete-time state equations.

The black-box capabilities of discrete-time recurrent neural nets for modeling dynamic
processes have been extensively investigated (see for instance Zbikowski et a. 1995); in
most cases, the dynamic models used are input-output models, consisting of a
feedforward net whose output is fed back to the input with one or severa unit delays.
Such an architecture can readily be trained by backpropagation through time. However, in
the case of semi-physical modeling, the equations of physics may suggest much more
complicated architecture, with feedback within the neura network itself for instance
(various such architectures will be considered in the paper). In that case, the dternative is
the following: either derive and implement an ad hoc training algorithm for the specific
architecture used to solve the specific modeling problem, or put the network into an
equivalent canonica form (introduced in Nerrand et al. 1993) which can be trained by
backpropagation through time; in this sense, backpropagation is generic, in that it can be
applied to any neural network, whether recurrent or feedforward, however complex,
provided its canonical form has been derived.

In the present paper, we show that, given a set of discrete-time, time-invariant difference
equations of theform (1) shown below, it is possible to find automaticaly a set of state
variables and the corresponding canonical form; the proposed procedure is based on a
sequence of transformations and simple computations on a graph representation of the
model, reminiscent of the flow graph technique used in linear systems theory (linear
control, electronics, ...). In nonlinear modeling, bond-graph techniques (Thoma 1991)
have been extensively used for deriving mathematical models from physical equations; the
use of bond graphs may be viewed as a "preprocessing”: it may provide a set of
difference equations which can subsequently be handled as described in this paper in
order to derive an appropriate canonical form.

The paper is organized as follows: in section 2, we present the problem in detail and
provide definitions which will be used throughout the paper. Section 3 describes the
various steps of the derivation of the order of the network, and subsequently of the
derivation of a state vector and of the state equations. Section 4 shows typical examples
of the procedure described in section 3. The appendices provide forma proofs and a
detailed trestment of the examples.

3
2 Definitions and presentation of the problem

2.1 The canonical form of a discrete-time nonlinear model

Itiswell known from linear systems theory that a process described by a given transfer
function may be represented by a number of state-space representations, corresponding to
different sets of sate variables. All these state-space representations are strictly
equivalent, but some of them have specific properties which are apt to make them more
useful or more easily tractable than others, such specific representations are termed
canonical forms (Jordan canonical form, first companion form, etc.).

For nonlinear model, the term canonical form does not have a universal meaning. It has
been defined for specific families of models, such as S-systems (Voit 1991). In the
present framework, we consider that a discrete-time model isin acanonicd formif it is in
theform

Z(n+1) = ¢ [z(n), u(m)]

y(n+1) = Yfz(n+1)]

where z(n) isthe minimal set of v variables necessary for computing completely the state
of themode! at time n+1 if the state of the model and its external input vector u(n) (control
inputs, measured disturbances, ...) are known at time n, and y(n) is the output vector.

In terms of recurrent neural network architecture, the dynamic part of the canonical form
is made of a feedforward network computing function ¢, whose inputs are the state
variablesand external inputs at time n, and whose outputs are the state variables at time
n+1. The output a time n+1 is computed from the state variables a time n+1 by a
feedforward neural network implementing function (.

2.2 Presentation of the problem: from an arbitrary discrete-time model to
a canonical form

We consider a discrete-time model consisting of a set of N equations of the form:

xi(n+1) = ${{x; (n- Ty + D, {un - 1y + 1}

i,j=1,..,N, I=N+1, .., N+N’, k>0 (1)

where ¥ isan arbitrary function, Tjj k is a positive integer denoting the delay of the k-th
delayed value of variable x; used for the computation of x(n+1), and where u| denotes an
external input. Relation (1) expressesthe fact that the value of variable x; at time n+1 may
be anonlinear function of (i) all past variables xj (including x; itself) and present variables
(excluding x; itself), and (ii) of all external inputs at time n+1 or a previous times. These
equations are usualy complemented by an output (or observation) equation expressing
the relations between the outputs and the state variables of the model.

In the context of neural networks, equations (1) may be considered as the description of a
recurrent network where X; is the output of neuron i, or the output of a feedforward

4

neural network i, and Y¥; is the activation function of neuron i, or the function
implemented by the feedforward network i.

As adidactic example, consider a process described by the following model :

Xy = 1 (X, Xp, X3, U)

X = TXq, Xg)

X3 = f3Xq, Xo)

Y=X3

where fy, f, and f3 are nonlinear functions. After discretization (by Euler's method for
instance), these equations have the following form:

xy(n+1) = Wi [xq(n), x1(n-1), x2(n-1), X3(n-1), ug(n-1)],

Xo(n+1) = Wa[xg(n+1), x3(n+1)], 2

x3(n+1) = Wz [xa(n), x3(n-1), x1(n-1), x2(n), x2(n-1)]

y(n+1) = x3(n+1) .

Thus, referring to relations (1), onehasN =3, N' =1, 139;= 1, T11,= 2, Tjp1 = 2,
Tizg1= 2, Ty = 2, T11 =0, T30 = 0, T30 = 1, Ta32 = 2, Ta11 = 2, Tapp = 1,

T3p2= 2.

The purpose of the paper isto present a methodology that allows one to transform a set of

discrete-time equations of the form (1) into a canonical form asdefinedin 2.1, i.e. to find

the minimal set of state variables and the corresponding functions ¢ and ¢ (which will,
in general, have parameters which are to be estimated from measured data).

Thistransformation is performed in three steps:

(i) find the order v of the system, i.e. find the minimum number of variables {z}
which describe completely the modd at timeniif ther initid values are known, and
if the values of the external inputs{u;} are known at timesOton;

(i) find astate vector, i.e. aset of v state variables,

(iii) transform equations (1) into the state equations which govern the state variables
derived in (ii).

In the above example, the equations (2) are not in acanonical form; however, a canonica
formisreadily derived by substituting the expression of x,(n+1) into the equations giving
x;(n+1) and xg(n+1) (or, in the continuoustime model, substituting X(t) into the
expressions of the second derivatives of x,(t) and xs(t)): the order of the model is 4, and
the state variables are xi(n), Xi(n-1), Xa(n), Xz(n-1) (or Xy (t), Xs(t) and their first
derivatives). We provein this paper that, for discrete-time models, these derivations and
substitutions can be viewed as a sequence of graph transformations which can be
performed on a computer in polynomial time.

3 Derivation of a state vector
3.1 Graph representation of a dynamic model

We show in the following that the derivation of a canonical form can be performed by a
set of transformations on a graph representation of the recurrent equations (1). We define
afinite directed graph G(E,V) consisting of a set of edges E and of a set of vertices V.
Each vertex vj represents a variable x;. A directed edge 8j from vertex vj to vertex v;
represents a non-zero term on the right-hand side of equation i of the system of equations
(1). The length of each edge is the associated delay Tjj k: the number of paralel edges
fromy; tov; is equal to the number of different delays tjj k. A directed edge from v; to v;
of length 7 is denoted by €;;7 (however, for simplicity, the superscript T will be omitted
whenever the context makes it unnecessary); { Ri} denotes the set of outgoing edges from
vertex vj, and the length of theincoming edge to v; of maximd length is denoted by M.
c(vj) is the number of cycles (i.e. the number of paths that start and end at the same
vertex) which include vertex vi; c(gjj) isthe number of cycles which include edge g;; A;;
is the number of edges g from vertex v; to vertex v;. Note that the dynamic system is
causdl if and only if the graph G(E,V) does not contain any cycle of length zero. Figure
1a shows the graph representation of model (2).

3.2 Computation of the order of the model

Thefirst step in the determination of the canonical form of the network consistsin finding
which variables of the model will give rise to state variables, i.e. will appear as
components of the state vector z(n) (for instance, in the above example,

Z(n) = [x4(n), X1(n-1), X5(n), X3(n-1)]" : only x; and x5 give rise to state variables).
Therefore, we want to reduce the initial graph Gy of the model to a simpler graph G,
which contains only the vertices that giverise to state variables (vertices v, and vz in the
above example), and which has the same number of state variables (but not necessarily
the same state variables) as the model described by G,. From this simplified graph we
will be able to compute the order of the model.

(]

(b)
FIGURE 1
(a) Graph representation G, of the model described by equations (2); (b) Graph G,. Following standard
notations, the vertices are numbered and the lengths of the edges are written in the squares. The

transformations of G, to G, are described in detail in Appendix 1.

The simplifications of graph G, are based on the following considerations:

(i) assume that amodel has two state variables z(n) and z(n) which are such that z(n+1)
depends on z(n), but z(n+1) does not depend z(n):

7(n+1) = ¢ [{z(n), m=1, ., v}, {u(M)}]

z(n+1) = ¢; [{z(n), k=1, .., v, k£ i}, {u(n}] .

In terms of graph representation, edge g;; is not within a cycle. z(n) can be substituted
into z(n+1) without changing the order of the model. Then z(n+1) does not depend
explicitly on z(n), and z(n+1) does not depend explicitly on z(n). As a consequence,
edges of the graph which are not within cycles are irrelevant for the computation of the
order of the network;

7
(i) assume that avertex i in Gy represents an equation of the form

x(n+1) = Y {x; (0 + D}, {un- 5, + 1))

then thisrelation is static, thusirrelevant for the determination of the state vector;
(iii) assume that one has

X (n+1)= ‘Pm(xj " -1, {ul(n - 1}) ,
xj(n+1) = séj'(xi (n -71), {ul(n - le,k+ 1}) .

Xm depends on the external inputs and on x; only, and x; depends on the external inputs
and on x; only; in addition, suppose that no variable other than X, depends on x;; then
variable x; can be deleted from the model by substitution into x;,, without changing the
order of the model;
(iv) it has been proved (Nerrand et al. 1993) that the order v of the model represented by
agraph G isgivenby v=73 w, where

Mi—ming o Ry (Mj—T;) if Mj—ming g\ (M;—T;) >0
0 otherwise

Ovi0G, o= \ !
Assume that two parallel edges, incoming to vertex v;, exist. Since the computation of),
involves the length of the incoming edge of maxima length, only the larger delay is
relevant. Now assume that two parallel edges exist, outgoing from vertex v;, with delays
Tjil and Tjiz, rjil > rjiz. Then M;- Tjil <M;- rjiz , so that min (M- 7;) = M;- Tjil. Thus,
when several parallel edges exist, only the edge of maxima length is relevant for the
compuitation of the order of the model.

These remarks result in the following procedure for determining graph G, from the initia
graph G, of the model; G denotes the current state of the graph before and/or after the
considered transformation is performed; the tools necessary for performing these
transformations, and their time complexity, are described in appendix 1.
|. Deleteall edges of G, that do not belong to any cycle
G ~ Go-{&j|c(ey) =0}
and delete dl isolated vertices (vertices without incoming nor outgoing edge) thet
may result.
Thistransformation stems from remark (i) above. Note that none of the subsequent
transformations, described in step |1, can generate an edge which does not belong to
a cycle. Therefore there is no need for iterating back to this step once the
transformations of steps Il have been performed. In principle, the present
transformation is sufficient for the determination of the order. The transformations of
steps 11 result in further smplifications of the graph, hence of the computations using
the information of the graph.
We show in Appendix 1 that the present transformation can be performed in
polynomial time.
I1. lterate until no changeis possible:

8

I1.1 Delete verticeswhose incoming edges are dl of zero length, and recombine their
incoming and outgoing edges
0 66 1M; =0 G - G-y -g}- e + &
This transformation stems from remark (ii) above: vertex v; is deleted, and each
pair of edges (e]io, &) isreplaced by an edge g from v; to vi with length 7.
I1.2 Iterate until no change is possible: if avertex has oneincoming edge only (or one
set of parallel incoming edges only) and one outgoing edge only (or one set of
parallel outgoing edges only) delete the vertex; if thereisasingleincoming and a
single outgoing edge, merge the edges into a single edge whose length is the
sum of the lengths of the merged edges; if there is a set of parallel incoming
edges and a set of parallel outgoing edges, merge each pair of one incoming and
one outgoing edgesinto asingle edge whose length is the sum of the lengths of
the merged edges
Ov, el ef| Aj=1, A =001#i,Ag21,A;=00 2k,
G- G-v-ej-gi+ep’
This transformation stems from remark (iii) above.
11.3 Iterate until no changeispossible: if several parald edges between two vertices
exist, delete al but the edge of maximum length.
0y, e, eff G - G-ef"
This transformation stems from remark (iv) above: for each pair of pardld
edges, the edge of minimum length is deleted, until only one edge remains.

When no further change is possible, the resulting graph G; may be a non-connected

graph.
The state equations of the model described by graph G, are of theform :

f zy(n) =xq(N) = Yy {Zop, (1)}

2y(n) = zy(n-1)

\Eé(n) = 2 4(V)
Zgyr1(N) = wz[{zj[lpz(n—l)}]

Z(q+o,é(n) = Z(q+o,é—l(n_l)
Zv—a&,v+l(n) = YNV[{ZjDPNV(n—l)}]

;(n) =z (n-1)

where Ny, is the number of verticesin G; and P; is the set of edges incoming to vertex v;.

9
Figure 1b shows the graph G, derived from the graph G, of Figure 1a Following the
above procedure, edge e142 is deleted, and the output edge from vertex 3 is deleted, since
they do not belong to any cycle; then, vertex 2 is deleted since al itsincoming edges have
zero length, edge e132 and two edges e312 and e311 are generated; finally, paralel edges
are deleted iteratively until only edges of maximum length are left. The order of the model
iseasly derived: onehasM; =2, M3=2, w; =2, w3 =2, hencev =4.

3.3 Determination of a state vector

The order of the model having been computed as shown above, we are looking for a state
vector z(n), of dimension v, such that z(n+1) = ¢ [z(n), u(n)], of the form:

Z(n) = [Xq(N-Kq) ... X(n -Kg-Wq+1) Xo(N-Ky) .. Xo(N-Ky-Wot1) ... xNV(n-kNV-W,\,V+1)]T
where k; and w; are non-negative integers. w; is the number of occurrences of the variable
X; in the state vector. If w; = 0, then the variable x; of the modd is not a state variable,
and the corresponding k; is irrelevant; otherwise, k; denotes the lag of the most recent
occurrence of varigble x; in the state vector z(n). The w;'s must comply with the
following congtraint :

2w =v

In the canonical form, the lag between two successive state variables represented by the
same vertex is equa to one. Note that several equivalent canonical representations exist:
thew;'s may be different from the wy's, the only constraint being that the sum of the w;'s
must be equal to the order v.

Thus, one must find a set of 2N, integers { k;, w;}. In order to do this, we first derive a
new graph, termed "graph of time constraints', which accounts for the time constraints
that exist between the state variables. We subsequently derive the state vector itself.

Determination of the graph of time constraints
The graph of time constraints G, is derived from the model graph G, by deleting dl
vertices and edges which are not significant with respect to the time constraints that the
state variables must satisfy. The main difference between G, and G, is the fact that, in
order to take the time constraints into account, edges which are not within cycles (thus are
not relevant to the determination of the number of state variables), but which express a
relation between cycles, should be kept because they are relevant to the choice of the state
variables.
I. Initialize G to G, Iterate until no changeis possible:
1.1 Deete dl vertices whose incoming edges are al of zero length, and recombine
their incoming and outgoing edges
0V, 616G IM=0 G - G-v-g- e+ e
1.2 Iterate until no changeis possible: if avertex has one incoming edge only (or one
set of paralel incoming edges only) and one outgoing edge only (or one set of

10

parallel outgoing edges only) delete the vertex and merge the edges into a single
edge whose length is the sum of the lengths of the merged edges
Ov, e gl Aiz1, A =001#i,A¢21,A;=00 #k,

G < G-vj-eﬁl-eﬁg+grlg”z

1.3 Iterate until no changeispossible: if several parald edges between two vertices
exist, delete all but the edge of maximum length.
D VJ" Qlj—l’ elzJ'Z G - G - elrjrin(rll TZ)

I1. Deleteall edgesthat do not have both vertices belonging to at least one cycle:
Ue; UG|c(v)=0,¢(v)=0, G~ G- g
The reason for doing this is the following: we are interested in time constraints
between state variables only, and we know that state variables arise only from
vertices which are within cycles.
The variables of the model which are represented by the vertices of the resulting graph G,
are the state variables; thus, two integers k; and w; (k; = 0, w; > 0) are associated to each
vertex v; ; the computation of this set of integers is the final step of the determination of
the state vector.

n—k —w +1 n—k;
AR ——»

T..

OO e
—— |~
n—k;—w;+1 n-k;+1
@ (b)
FIGURE 2

(&) The dependence of state variable x; (represented by vertex v;) on state variable x; (represented by vertex
V) due to the edge g;"; (b) the striped zones represent the time spans of the variables x; (a) and Xj (b)

Determination of the state vector
We denote by N the number of edgesin the graph of time constraints. Consider an edge
g of G, of length 7;; (Figure 2a): from the very definition of the state vector, and from the
construction of the graph of time constraints, it must be possible to compute x;(n-kj+1)
from one of the state variables, arising from vertex v;, which are available at vertex v &
time n-ki+1; these variables must have been computed & vertex v; a time n-k+1-j;.
Therefore, the following relations must hold if 7; # O:

n-k-wi+1l+g<n-k+1sn-k+ 1
or equivaently

kj'W|+Tji5ki5kj+Tji'1 (3)

Hence, aset of 2Ng such inequalities with 2Ny, integer variables must be satisfied.

11

Thus, the problem of finding the state variables and the state equations is amenable to the
following linear optimization problem in integer numbers: find the set of integers { w;}
such that 3;w; is minimum (since the state representation is the smallest set of variables
that describe the model), under the set of constraints expressed by the inequalities (3). In
addition, the value of the minimum is known to be equal to v, whose value is derived as
shown in section 3.2.
Note that thereis atrivial solution to the set of inequalities (3): k; = 0, w; = max; 7;;. This
solution is valid if 2;w; = v. Otherwise, a solution that satisfies al constraints can be
found by linear optimization methods, such as the smplex (Dantzig 1963). The
minimized objective function is 2;w; and at least one solution with 2;w; = v is known to
exist. We provein Appendix 3 that the algorithm (Kuenzi et al. 1971, Press et al. 1992)
converges to a solution with integer values, which is precisely what is needed. The
solution may not be unique.
Once the pairs{ k;, w;} have been determined, the canonical network can be constructed.
Note that the effect of merging parallel edgesinto amaximal delay edge, in step 1.3 of the
derivation of G,, eiminates possible singular situations, in which two or more
inequalities cannot be simultaneously satisfied: consider two parallel edges of delays Tj; 1,
Tj; 2 then two equations (2) should be satisfied simultaneouly:

kJ- “WH T g < ki skj + g 1 and kj “W TS ki Skj + - 1
If |7ji,1 - Tji,2>w; - 1, this is impossible; therefore, vertex v; will be duplicated in the
canonical form. The choice of assigning the largest delay to merged parallel edges
guarantees the feasibility of the canonical form.

4 Examples

The following examplesillustrate the application of the proposed method.

4.1 The didactic example

We derived from Figure 1 the order of the model described by equations (2). The graph
of time congtraints G, is identical to G,. Running the simplex agorithm in this case is
useless. from symmetry considerations, and knowing that the order is 4, it is clear that the
state vector is z(n) = [X1(n) X;(n-1) X3(n) x3(n-1)]T. From the definition of the canonical
form, the state variables and the externd inputs are the inputs of its feedforward part;
therefore, in order to find this feedforward part, the variables are "backtracked" from the
outputs to the inputs (Figure 3): the feedforward part of the canonica form computes
X¢(n+1) from the external output and from the components of z(n); we see from G, that
X(n+1) is computed from x;(n-1), x1(n), X3(n-1), Xo(N-1), uy(n-1); the first three
quantities are state variables, so that a direct connection is made between these inputs and
vertex 1; uy(n-1) will be an input of the feedforward part of the canonical form; x,(n-1) is

12

not present in the input, so that vertex 2 is added; it computes X,(n-1) from x3(n-1) and
X1(n-1), which are state variables; thus connections are made from these inputs to vertex
2, which completes this part of the graph; the part of the graph which computes x3(n+1)
issimilarly derived, requiring the replication of vertex 2 because of the two parallel edges
between vertices 2 and 3 in Gy. The presence of intermediate neurons 2 expresses
graphically the fact that the initiadl model can be put into a canonica form by smply
substituting x, into the expressions of x; and x3. Note that this network has shared
weights: the weights of the inputs of neurons 2. The canonical form of the equations of
the model is:

zy(n+1) = xy(n+1) = wj.[zl(n): 25(n), W 25(N), Z4(n) |, (M), u4(n—1)]
2(m1) = 24(n)
(1) = Y Y 2a (0, 250 YA 2o, 24 ()] 2o, 251, 240

Zy(n+1) = z3(n)

A o)
1) 1)
1) 1) 1) 1)
] /
1) 1)
2 2
A A
-1 -1 n n -1
1
1) T T 1)
FIGURE 3

The canonical form of the model described by equations (2). A stands for unit delays.

13

4.2 An example where the trivial solution is valid

We consider now the model whose graph G, is shown on Figure 4a. It is made of two
cascaded parts. G, and G, are shown on Figures 4b and 4c.

Clearly, the input edges e;¢, €37 and the output edge from vertex 5 are not within cycles;
for smplicity, we delete them right away. The mathematical details of the subsequent
transformations are given in Appendix 2. The first step of the transformation of the model
graph to G, is the deletion of edge e4,5, which does not belong to any cycle. Vertex 5 has
one incoming edge (e543) and one outgoing edge (e452), which can be merged into a
single edge e445; similarly, vertex 3 has one incoming edge (%22) and one outgoing edge
(e133), which can be merged into a single edge elzs; in the resulting graph, vertex 1 has
only one set of incoming edges (e124 and e125) and one outgoing edge (e212), which can
be merged into two edges e226 and e227. Finally, parallel edges are merged, leading to
graph G; which has two disconnected nodes with one self-loop each. The order v of
graph G, iseasily derived: v =12.

The graph of time constraints G, is similarly derived: edges e452, e543, e322 and e133 are
deleted, edges e445 and e125 are created. Then edges e125, e124 and e212 are deleted and
edges 9427 and 6226 are generated. Finally, parallel edges are merged. Both ends of edge
e426 belong to cycles, thusthis edge is kept, resulting in graph G.,. In this case, the trivia
solution (w; = max; Tji ; ki = 0) isvalid since Z]- maxj Tjj = v. This solution thus defines
the state vector:

zm = [Xz(n) Xo(N-1) ... Xo(1-6) X4(N) Xg(N-1) ... X4(N-4) '

The corresponding canonical form is shown on Figure 5.

Once this form has been derived, al the weights, either associated to the connections
shown, or imbedded in one (or more) feedforward network represented by one (or more)
vertex of the graph, can be estimated by training with algorithms using backpropagation
through time for computing the gradient of the cost function.

4.3 An example where the trivial solution is not valid

Now the output of the previous modd is fed back to one of its inputs with zero delay.
Thus, the only difference between the network described in figure 4 and the network
described in figure 6ais the addition of edge e3s0. Since all vertices belong to at least one
cycle, no graph simplification is possible: G, and G, areidentical to the original graph.
The order is Z;c9 = 14, where:
w=4-min_ (2-2)=4; w =2-min (22,66)=2;w,=2-min_ (4-3)=1

1 €1 2 32 €12 3 €13
w,=6-min, (3-3)=6;w=3-min, _(2-0,6-2)=1

54 35' 745

Thetrivia solution, which leads to amodel of order 16, isthus not valid.

14
Simplex optimization givesk; =4, w; =1, kK, =3, W, =5, k3 =6, w3 = 1; ks = 2, Wy = 2;
ks = 1; ws = 5; the state vector is
-
Z(M) =|xq(n-4) X5(N-3) Xo(N-4) ... X5(N-7) X3(N-6) X4(N-2) X4(N-3) X5(nN-1) ... X5(N-5)

The canonical form is shown on Figure 6b.

G Gz
FIGURE 4

Left column, from top to bottom: graph G after step |; graph G after the first iteration of step I1.2; graph
G after the second iteration of step 11.2; graph G, (after step 11.3).
Right column, from top to bottom :graph G after step 1.1; graph G after the first iteration of step 1.2;
graph G after the second iteration of step 1.2; graph G, (after step 1.3). Details of the transformations are
givenin Appendix 2

y(n+1)

FIGURE 5
Canonical form of the model shown on Figure 4.

4.4 An example with replicated vertices and shared weights

As afina example, we consider a model whose canonical form makes extensive use of
duplicated vertices and shared weights. Its graph representation is shown on Figure 7a.
In order to compute the order of this model, we derive the graph G, of figure 7b.

The order of the network is 6 (w; = 1, wy, = 2, w3 = 1, wy = 2) but the trivia solution
from the graph of time constraints shown in figure 7c gives a solution of order 8
(wy = wy, = wg = wg = 2), which is not optimal. Note that, during the graph
smplification, vertices 1 and 3 have pardle outgoing edges and corresponding
constraints that cannot be simultaneoudly satisfied; thus, these vertices are replicated, and
so are the weights corresponding to their inputs and outputs. These edges are es30 and
e532 for vertex 3 (once vertex 4 is eliminated) and e»10 and 212 for vertex 1.

The solution found by the smplex method is: k; =2, wg = 1; ko =1, wo = 2, kg = 1,
w3z =1; ks =0; wg =2.

The canonical form of this network is shown on figure 8. It is exactly the canonical form
that was derived "manually" in a previous paper [Nerrand et al.].

(b)
FIGURE 6
(a) Graph of the model of Figure 4, with feedback; G, and G, are identical to G, (see Appendix 2); (b)

canonical form; for clarity, all the recurrent connections are not shown.

FIGURE 7
(a) Graph representation G, of amodel, with parallel edges; (b) graph G ; (c) graph G..

17

5 Conclusions

Thiswork was motivated by the present interest in semi-physical modeling, be it "neura”
or not. It isclear that black-box modeling is wasteful of information when large, complex
systems, such as arise in the process industry for instance, are considered. The
importance of canonical forms of models has been recognized long ago in the field of
linear automatic control; in nonlinear modeling, the problem of finding a canonical form
for amodel described by an arbitrary set of coupled nonlinear equationsis also important,
but it is much more difficult; in addition, when neura networks are used for modeling,
putting the network into a canonical form is mandatory for simplicity of implementation
of the training algorithms. We have proposed a genera procedure for finding the
canonicd form of a model described by a set of coupled nonlinear discrete-time
equations. Knowledge-based neural modeling, which consists in building a neural net
complying with the equations of the model, complementing it by black boxes taking into
account the part of the dynamics which is not modeled by the initia set of equations, and
subsequently training the network from measured data in order to estimate the unknown
parameters, has been used successfully for complex industrial applications (Ploix et al.
1994, Ploix et a. 1996). The present work is a step towards making the first part of this
task (deriving a neura network from the equations of the model and putting it in canonical
form before training) fully automatic.

Acknowledgements : the authors are grateful to Brigitte QUENET for her critica
reading of the manuscript.

18

‘_‘!/)
£e
:)'U
n
7 e
—_
£e SRS
[ee]
N . N X
-
M
—
R :
g A
£ < E’/\S
~
- N N X0
o 4 (]
\ S
o ° 2
I @
LN
S ° ! ° n s
+ =~ 9 = ¢
c C &) C
£ 2 S <
&
A ©
a9 I«
TS A5
< £
£
wn
N > o N

FIGURE 8

Canonical form of the model of Figure 7. Details of the transformations are given in appendix 2.

19
APPENDIX 1

In this appendix, we describe the computational tools that are necessary for the graph
transformations, and we show that the latter have polynomial complexity.

The basic tool is the adjacency matrix A of agraph G. Element A;; of matrix A is equal to
the number of edges from vertex i to vertex j. The diagonal terms of the matrix denote the
number of self-loops (cycles of length 1).

We consider the adjacency matrix Ay of graph Gy We define the matrix A as

Ag = sign(Ag) 1 (Ag)ij = Lif (Ag)ij > 0, (A = 0if (Ag); = 0.

Transformation of graph G, to graph G;: step |

Thefirst step in the transformation of Gy to G4 consists in finding and deleting all edges
that do not belong to any cycle. Therefore, for each edge g;, one has to find whether a
path from j to i existsin the graph.

In this task, the actua length of the edges (i.e. the delay associated to each edge) is
irrelevant: therefore, in the following, we consider that al edges of graph G have unit
length; the length of a path in the graph is thus equal to the number of edges of the path.

We make use of the following result : consider the sequence of matrices { A} defined by
An=sign (AlAnq), N2 (A = 1ifand only if there exists at least one path from i to
j inthe graph.
Thisis easily proved by recursion. Consider matrix A12 :

(A9); = % (Agik (Ag)yg

Each path of length 2 from i to j contributes a non-zero term to the right-hand side of the
abovereation; hence(Af)ij is equal to the number of paths of length 2 from vertex i to
vertex . We define A, = sign (A7) : anon-zero element (Ay);; denotes the existence of a
least one path of length 2 from vertex i to vertex j in the graph.

Similarly, we define matrix A, whose element (A);; is equal to 1 if and only if there is &
least one path of length n from i toj in the graph, and is equal to O otherwise. It is easy to
show, as before, that matrix A, = Sign(AA,) has the following property :
(An+)ij = 1if and only if thereis at least one path of length n+1 fromi toj.

The longest smple path (i.e. path that contains no cycle) in adirected graph of N vertices
isof length N. Therefore, in the worst case, the construction of the sequence of matrices
{A,} is terminated when n = N, thus in polynomial time; actually, the sequence will
frequently terminate when A,,; = A, with n <N, as shown in the examples below.
Finally, consider matrix

A* =sign (ngl An)

Element (A*);;isequal to 1if and only if there is at least one path in the graph from i to j.
A diagona element (A*);; isequal to 1 if and only if vertex i belongsto at |east one cycle.

20

To summarize: in step | of the transformation of graph G to graph G,, consider each pair
of vertices (i, j): if (Ag);j 2 O, thereis at |east one edge between i and j; if (Ag); # 0 and
(A*);i = 0, edges eJiT are deleted ((Ag);j is set to zero); otherwise, edges qir are kept in
the graph.

Transformation of graph Gy to graph Gy: step 1

Step I1.1 : if avertex j has dl incoming edges of length O, al eements of row j and
column j of the adjacency matrix A of the current graph G are set to zero; for each pair of
elements (A}, Ay, j#K) set to zero, add Ay to Ay

Step 11.2: consider two adjacent edges g; and g,; they are both within at least one cycle
(otherwise they would have been deleted a the previous step); vertex j belongs
exclusively to this cycle (or set of cycles) if and only if there is no incoming edge to j
from vertices other than k, and no outgoing edge from j to vertices other than i; thus one
must have A = 1, A; =0forall | # k, and A;; =2 1, A; =0 for al | # i: there must be
one and only one non-zero off-diagonal element in row j, there must be one and only one
non-zero off-diagonal element in column j, and both A;; and Aj; must be equal to zero.
Elements Ay; and A;; are then set to zero, and Ay isincreased by AyA;.

Step 11.3 consists in computing sign(A) and appropriately updating the length of the
connections.

Transformation of graph G, to graph G,

Steps 1.1, 1.2 and |.3 are formally the same as steps 1.1, 11.2, 11.3 of the transformation
of Gg to G4, but they do not act on the same initial graph: in the transformation of G, to
G, these steps are performed on G, deprived of the edges which are not within cycles,
whereas, in the transformation of G to G, they are performed on Gy itself.

In step 11 of the transformation from G to G,, one has to find and delete all edges that do
not have both vertices belonging to at least one cycle. Consider each edgein turn; if (Ag);;
=0, thereis no edge for consideration; if (Ag);; # 0, and if (A*);; = (A*);; = 1, the edge
must be kept in G,; otherwise it is deleted.

Keeping track of the edge lengths during these transformationsis very simple.

Example
Toillustrate this technique, we consider the model whose graph G is shown on Figure
la.

Derivation of G;: step |
The adjacency matrix of graph Gy is:

21
2110 1110
_|1020 . _|1010
Ag= 1120 thereforeAl—sgn(AO)— 1110
1000 1000
3230 1110
2 12220 1110
Al= 3230 therefore A, = sgn(Al) 1110
1110 1110
3330 1110
2220 1110
* —_ *
AL* A= 3330 therefore Ag = sign(A*Ay) = 1110
1110 1110

Since Az isidentical to A, the sequence construction stops at this point.

; 1110 1111

— o — . T
A*‘sg”&glAJ‘ 1110 A 71111
1110 0000

Considering each non-zero element of A4, and the corresponding element of A*T, itis
easily seen that al edges belong to at least one cycle, except for edge e;,, which is
therefo2re1 dlel Oeted. At this step, the adjacency matrix of the current graph G is:

1020

1120

0000

A =

Derivation of Gy: step Il
I1.1: since vertex 2 has two incoming edges, which are both of zero length, A, and Az,
are set to zero, and edges e132 , 6311 and 9312 are generated, resulting in a new adjacency

matrix:
2030
_| 0000
A= 2020
0000

11.2: in this matrix, no vertex is such tha the corresponding row and the corresponding
column both have one and only one non-zero element. Therefore, no simplification can be
performed at step 11.2.
11.3: finally, matrix A shows that paralld edges exist as self-loops around vertices 1 and
3, and for edges e3; and e;3. All but the edges of maximal length are deleted.
No further iteration is necessary to any of the steps I1; thus, the adjacency matrix for G
is:

1010

_|ooo00
A= 1010

0000
Graph G; is shown on Figure 1b.

22
Derivation of G,
We start with matrix Ay:
2110
1020
1120
1000

Step 1.1: vertex 2 isdeleted asin step 11.1 above, leading to matrix:

2030
_| 0000
A= 2020

1000

Step 1.2: no transformation.
Step I.13:0 plaroallel edges are deleted except for the edges of maximal length:
0000
A=l 1010
1000
Step I1: edge e4; has only vertex 1 belonging to a cycle, hence this edge is deleted,
leading to an adjacency matrix for G, which isidentical to that of G;.

AO:

23

APPENDIX 2

This appendix describes the computations of the graph transformations illustrated by
Figures4, 6 and 7.

Figure 4

It is clear by inspection that edges e, and e;; are irrelevant for the determination of the
order and of the state variables. In order to simplify the notations, we overlook these
edges from the beginning, thus considering only vertices 1 to 5; in a computer
implementation of the procedures, these edges are deleted in step | of the transformation
of Gy to G4, and they are deleted in step |1 of the transformation of G, to G..

Derivation of G, : step |
01000 11110 11111
11110 11111 11111
Ap=[10000 |;A;=Ap;A,={ 01000 |;A3=11110
00011 00011 00011
00010 00011 00011
11111 11111 11100
11111 11111 11100
A= 11111 |;Ag=A,;A*=[11111 |;A*T=[11100|
00011 00011 11111
00011 00011 11111
01000
)]) 11100
Thus, edge &, is deleted, hence the current adjacency matrix : A= % 8 8 2 g
00010

Derivation of G;: step 11
Step 11.1: no transformation.
Step 11.2: row 5 and column 5 have one and only one non-zero, off-diagonal element

(A45 and As,) ; same for row and column 3 (A,3 and Ag;). Hence edges e4s, €54, €13
00

NOO
[ele)e]

010
210
and e;, are deleted, one edge e44 and one edge e;, are generated: A= 888

00000
Row 1 and column 1 have one and only one non-zero, non-diagonal element, (A4, and
A1), hence edges e,; and e, are deleted, and two edges from 2 to 2 are generated:

00000
03000
A=\ 00000
00020
00000
Step 11.3: parallel edges are merged, resulting in graph G;.

Derivation of G,: step |
Step |.1: no transformation.

24
Step 1.2: as above, edges e,s5, €54, €13 ad e3, are deleted, edge e, and edge e, ae

0100
2101 . s

generated : A= 8888 ; edgese,q, e, and e, aredeleted, and two edges from
0000

0

0

0

0

0

0
0
0
0
0
2to 2 are generated: A= (

Step 1.3: parallel edges are merged.

Derivation of G,: step Il
Since both ends of edge e,, are within cycles (A*,, and A* 4, are both non-zero), this
edgeiskeptin G,.

Figure 6
01000 11110 11110
11110 11111 11111
Ag=|{10000|;A;=Ay;A,={ 01000 |;A3={11110
00011 00111 10111
00110 10011 01111
11111
11111
A= 11111 |;A=A,
11111
11111

All edges belong to at least one cycle, so that no simplification is possible.

Figure 7
Derivationof G, : step |

12000 11000 11100
10100 10100 11111
Ap=|01111|;A;=|01111|;A,=|01111
00001 00001 00001
00001 00001 00001
11111 11111 11100
11111 11111 11100
Ag=| 11111 |;A;=Aq;A*={ 11111 |;A*T=[11100
00001 00001 11100
00001 00001 11111
12000
Ed ! et and O are deleted: A=| 01100
€S €3 , an are eted: A=
€S €43 , 54 €53 00000
00001

Derivation of Gy: step Il

Step 11.1: no transformation.

Step 11.2: no transformation.

Step 11.3: parallel edges 9/210 and 6212 are merged into 9212.

25
Derivation of G,: step |
Step |.1: no transformation.

Step |.2: since row 4 and column 4 of Ay have one and only one non-zero off-diagonal
element, (Ag)z4 and (Ag) s are set to zero, and (Ag)ss isincreased by 1, resulting in:

A=

2,

Step 1.3: parald edges ezlz and e210 are merged into e,;"; parald edges e530 and e532

are merged to 9532, resulting in

11000
10100
A={01101
00000
00001

Derivation of G,: step I

Since all the relevant diagona elements of A* are non-zero, no simplification is possible:

the above matrix is the adjacency matrix of G,.

26

APPENDIX 3

We proved in Section 3.3 that the problem of the determination of a state vector is
amenable to the following linear optimization problem: minimize the cost function

Ny
2w
i=1

subject to the congtraints:
w >0 Oi,
kao 0j,
kj—ki—\/\il+TjiSO Drji
ki—k]-—l'ji+150 DT“

where all variablesk; and w; are integers, and where the constant terms 7;; are integers. In
this appendix, we prove that the simplex algorithm provides an optimal solution in integer
numbers.

The general form of a linear optimization problem
The genera form of alinear optimization problem with N variables { x;} is the following:
find avector [xy, Xy, ..., Xyl T Which maximizes the cost function

N

Zl fi%

under the non-negativity (hereinafter termed primary) constraints
X = Oforali (A3.1),
and aset of C additional (hereinafter termed secondary) constraints

N

jZ]_ aij Xj < bi (bl > 0) (A32)
N

,Zl a; X 2b, 20 (A33)

J =

N
jZl a” i = b| >0 (A34)

In our problem, al constant terms {l;, i = 1 to C} are integers, dl coefficients {a;, i = 1
toC,j=1toN} areequal to-1, 0 or +1. It is desired to find an optima solution where

all variables {x;} areintegers.

Wefirst recall an essential result of linear optimization theory:

(i) if an optima vector exists, and if N < C, i.e. if its dimension is smaler than the
number of secondary constraints (A3.2) to (A3.4), then there is an optima vector whose
components satisfy N out of C constraints as equalities;

(i) if an optimal vector exists, and if N > C, then al C secondary constraints (A3.2) to
(A3.4) are setisfied as equalities, and (N-C) primary constraints (A3.1) are also satisfied
as equalities, so that the optimal vector has at least (N-C) components equal to zero.

27

The simplex agorithm takes advantage of this result, by searching an optima vector
among the vectors that satisfy N out of C secondary constraints as equalities if N < C, or
that satisfy C secondary constraints and (N-C) primary constraints as equdlitiesif N> C.

We are going to prove that, if the optimization problem has a solution, then the simplex
algorithm provides a solution in integer numbers. The proof is organized in two steps; we
first provethat if alinear optimization problemisin restricted normal form (to be defined
below) with integer constant terms and coefficients equa to -1, 0 or +1, and if it has a
solution, then a solution in integer numbers exists and is found by the simplex algorithm.
In the second step, we show that a general linear optimization problem with integer
constant terms and coefficients equal to -1, 0 or +1 is amenable to an equivaent linear
optimization problem in redricted normal form with integer constant terms and
coefficients equal to -1, 0 or +1. Since we know that the problem of the determination of
the state vector has a solution, we conclude that the simplex algorithm provides a solution
in integer numbers.

Linear optimization problem in restricted normal form

A linear optimization problem is said to be in restricted norma form if (i) the only
congtraints are the N non-negativity constraints (A3.1) and C equality constraints (A3.4),
and if (ii) each equality constraint has at least one variable which has a positive coefficient
and appears in one congtraint only; these C variables {x;, i = 1 to C} are caled basic
variables, and the other (N-C) variables{x;, i = C+1to N} are called non-basic variables.
The C equality constraints can be solved for the basic variables, hence can be written in
theform:

X=b + iax i=1toC (A3.5)

j=er 1)

All basic variables are on the left-hand side of (A3.5), while on non-basic variables are on
the right-hand side. In our problem, al by'sareintegers and all a;;'s are equal to -1, 0 or
+1.

By setting all non-basic variablesto zero, one abtains from (A3.5) an initia vector, with
a most C non-zero components (the basic variables) which are equd to the constant terms
on theright-hand side of (A3.5), and a least (N-C) components equal to zero (the non-
basic variables); this vector satisfies all constraints as equalities, but is not necessarily
optimal. We know from the basic result recalled above that an optima vector, if it exists,
isto be found among the vectors that, similarly to the initid vector, have a most C non-
zero components and at least (N-C) components equa to zero. Therefore, a new
candidate vector can be obtained from theinitia vector by turning one basic variableinto a
non-basic variable and one non-basic variable into abasic variable (how this can be done
will be explained below). Assume that the non-basic varidble x,,, has been turned into a
basic variable, and that the basic variable x,, has been turned into a non-basic variable;
then the constraints are in a form similar, and equivalent, to (A3.5), where x,, now

28

appears on the left-hand side of one of the equations, and x,, appears on the right-hand
side of at least one of the equations; by setting al the new non-basic variables to zero, one
obtains a new candidate vector whose component x,, is equa to zero, and whose
component x,,, may be non-zero; yet another candidate vector can be derived from the
present candidate vector by performing another exchange, and so on. Thus, the problem
of finding an optimal vector can be regarded as a combinatorial problem. A brute-force
procedure would consist in trying all possible sequences of exchanges of one basic
variable for one non-basic variable and selecting the optimal vector thus found; thiswould
involve impractical computation times. The simplex agorithm is a very economica
procedure which starts from theinitial vector defined above, and performs an appropriate
sequence of exchanges of one non-basic variable for one basic variable, maximizing the
increase of the cost function a each exchange, until no further increase of the cost
function is possible; the details of the agorithm (Press et al. 1992, Kuenzi et a. 1971),
i.e. how the decision is made to exchange a certain non-basic variable for a certain basic
variable a each step of the procedure, are irrelevant for the present proof. The only
important point isthe following: assume that it is found desirable, at the first step of the
procedure, to exchange the non-basic varigble x,, for the basic variable x,; the n-th
equation of (A3.5) can be solved for X,

bn aﬂj X,
xnzbn+ a X a X, =———— — X, +—
j=Crl) a j:C+1anm I a
jZm

Then x,,, can be substituted into al the other equations of (A3.5), thereby making x,, a
non-basic variable. In our problem, b, is an integer, and a,,, is equa to -1 or +1;
therefore, the constant term in the expression of X, is an integer and the coefficients of
the non-basic variables are equal to -1, 0 or +1; similarly, the constant terms in the other
constraints after the exchange of x,, and x,, are integers, and the coefficients of the
variables are equal to -1, 0 or +1. Clearly, the same result holds true after each exchange
of the procedure. After the find exchange, which leads to the optima combination of
non-basic and basic variables, the vector which is found by setting the non-basic
variables to zero has N-C components which are equa to zero (the final non-basic
variables) and C components which are integer numbers (the find basic variables), equa
to the constant terms on the right-hand side of the constraintsin their final form.

Thus, we have proved that, if alinear optimization problem is in restricted normal form,
if it has a solution, if al coefficients of the variables are equd to -1, 0 or +1, and if al
constant terms of the constraints are integers, then an optimal solution in integer numbers
will be found by the smplex algorithm.

General case

In the case of the determination of the order of amodel, we know that an optimal solution
exists, but the problem is not in restricted norma form, so that the above result is not
directly applicable. We prove in the following that the problem is nevertheless amenable

29

to an equivalent problem in restricted normal form with coefficients equal to -1, 0 or +1,
and with integer constant terms, so that the result of the previous section holds in general.
In order to do this, one first turns the inequality constraints (A3.2) and (A3.3) into
equality congtraints; thisis achieved by introducing an additional non-negative variable
into each inequality constraint:

_ia”xjsbl, b.>0 - iax—y;bl, Y20 (A3.6)

=T IS

,Z‘%‘Xj”kzo - ,Z%Xﬁyfbk, Y20 (A37)

Note that the coefficients of the new variables are equal to -1 or +1.

The second step of the transformation of the general form to the restricted norma form
consists in adding a second set additional variables { z}, which casts (A3.6) and (A3.7)
into the form (A3.5):

lebi+yi_jilaijxj

Zk:bk_yk_jilakj Xj

This set of equdlities defines an optimization problem which is in restricted normal form,
with integer constant terms and with coefficients equal to -1, 0 or +1. Any solution of this
problem having dl z's equal to zero is a solution of the origind problem; the simplex
agorithm is organized in such away that the solution found has al z's equa to zero.
Therefore the ssimplex agorithm finds a solution of the original problem in integer
numbers, if asolution exists.

In the case of the determination of the state vector, we know that a solution exists.
Therefore, the simplex agorithm finds an optimal set of integers{k;, wi} .

30

REFERENCES

Dantzig, GB (1963), Linear programming and extensions. Princeton University Press.

Kuenzi, H.P., H.G. Tzschach, and C.A Zehnder (1971), Numerical methods of
mathematical optimization. Academic Press

Lindskog P., Algorithms and Tools for System Identification Using Prior Knowledge,
Link6ping Studiesin Science and Technology, thesis # 456.

Nerrand, O., P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Marcos (1993),
Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms,
Neural Computation vol. 5, 165-197.

Ploix J.L., G. Dreyfus, J.P. Corriou, D. Pascal (1994), From Knowledge-based Models
to Recurrent Networks: an Application to an Industrial Didtillation Process, Neural
Networks and their Applications, J. Hérault ed.

Ploix JL., G. Dreyfus (1996), Knowledge-based Neurad Modeling: Principles and
Industrial Applications, Industrial Applications of Neural Networks, F. Fogelman, P.
Gallinari, eds. (World Scientific).

Press, W.H., SA. Teukolsky, W.T. Vetterling, B.P. Flannery (1992), Numerical
Recipesin C : the Art of Scientific Computing, Cambridge University Press.

Thoma, J.(1991), Smulation by Bond Graphs (Springer).
Voit, E.O. (1991), Canonical Nonlinear Modeling (Van Nostrand Reinhold).

Zbikowski R., K.J. Hunt, eds (1995), Neural Adaptive Control Technology (World
Scientific).

