
1

Neural Computation, vol. 10, No 1.

The Canonical Form
of Nonlinear Discrete-Time Models

Gérard DREYFUS and Yizhak IDAN

ESPCI, Laboratoire d’Électronique

10, rue Vauquelin, 75005 Paris, France

dreyfus@neurones.espci.fr

Abstract
Discrete-time models of complex nonlinear processes, whether physical,

biological or economical, are usually under the form of systems of

coupled difference equations. In order to analyze such systems, one of

the first tasks is that of finding a state-space description of the process,

i.e. a set of state variables and the associated state equations. We present

a methodology for finding a set of state variables and a canonical

representation of a class of systems described by a set of recurrent

discrete-time, time-invariant equations. In the field of neural networks,

this is of special importance since the application of standard training

algorithms requires the network to be in a canonical form. Several

illustrative examples are presented.

1 Introduction
Black-box modeling, whether linear or nonlinear, is a highly valuable engineering tool,

whose limitations are well known: the training data is usually corrupted with random

noise, or with deterministic but unmeasured disturbances, it may not be representative of

the whole range of operation of the process, etc. The bayesian approach, imposing

constraints on the parameters based on prior knowledge, is one way to circumvent some

of these problems; alternatively, when confronted with the task of modeling a complex

process, one may take advantage of the wealth of knowledge that usually exists on the

process, or on part of it, under the form of mathematical equations derived from physics

(or from chemistry, biology, economy, etc.); these equations may be approximate or

incomplete, hence may not meet the accuracy requirements of the application under

consideration, but they are nevertheless useful for describing the deterministic behavior of

the process. Semi-physical modeling is the approach whereby a first model, usually

containing unknown parameters, is designed from prior mathematical knowledge, is

complemented with "black boxes" wherever necessary, and whereby the unknown

parameters are finally determined from measurements as in black-box modeling

(Lindskog 1994). This technique has been successfully applied to the modeling of a

2

complex industrial process (Ploix et al. 1994, Ploix et al. 1996). One of the problems of

this approach is the following: the discretized equations of the physical model are a set of

coupled nonlinear difference equations which are not, in general, in the form of a state-

space model. Handling such a model usually requires finding a set of state variables and

deriving the corresponding discrete-time state equations.

The black-box capabilities of discrete-time recurrent neural nets for modeling dynamic

processes have been extensively investigated (see for instance Zbikowski et al. 1995); in

most cases, the dynamic models used are input-output models, consisting of a

feedforward net whose output is fed back to the input with one or several unit delays.

Such an architecture can readily be trained by backpropagation through time. However, in

the case of semi-physical modeling, the equations of physics may suggest much more

complicated architecture, with feedback within the neural network itself for instance

(various such architectures will be considered in the paper). In that case, the alternative is

the following: either derive and implement an ad hoc training algorithm for the specific

architecture used to solve the specific modeling problem, or put the network into an

equivalent canonical form (introduced in Nerrand et al. 1993) which can be trained by

backpropagation through time; in this sense, backpropagation is generic, in that it can be

applied to any neural network, whether recurrent or feedforward, however complex,

provided its canonical form has been derived.

In the present paper, we show that, given a set of discrete-time, time-invariant difference

equations of the form (1) shown below, it is possible to find automatically a set of state

variables and the corresponding canonical form; the proposed procedure is based on a

sequence of transformations and simple computations on a graph representation of the

model, reminiscent of the flow graph technique used in linear systems theory (linear

control, electronics, ...). In nonlinear modeling, bond-graph techniques (Thoma 1991)

have been extensively used for deriving mathematical models from physical equations; the

use of bond graphs may be viewed as a "preprocessing": it may provide a set of

difference equations which can subsequently be handled as described in this paper in

order to derive an appropriate canonical form.

The paper is organized as follows: in section 2, we present the problem in detail and

provide definitions which will be used throughout the paper. Section 3 describes the

various steps of the derivation of the order of the network, and subsequently of the

derivation of a state vector and of the state equations. Section 4 shows typical examples

of the procedure described in section 3. The appendices provide formal proofs and a

detailed treatment of the examples.

3

2 Definitions and presentation of the problem

2.1 The canonical form of a discrete-time nonlinear model

It is well known from linear systems theory that a process described by a given transfer

function may be represented by a number of state-space representations, corresponding to

different sets of state variables. All these state-space representations are strictly

equivalent, but some of them have specific properties which are apt to make them more

useful or more easily tractable than others; such specific representations are termed

canonical forms (Jordan canonical form, first companion form, etc.).

For nonlinear model, the term canonical form does not have a universal meaning. It has

been defined for specific families of models, such as S-systems (Voit 1991). In the

present framework, we consider that a discrete-time model is in a canonical form if it is in

the form

 z (n+1) = ϕ [z (n), u (n)]

 y (n+1) = ψ[z (n+1)]

where z (n) is the minimal set of ν variables necessary for computing completely the state

of the model at time n+1 if the state of the model and its external input vector u (n) (control

inputs, measured disturbances, ...) are known at time n, and y (n) is the output vector.

In terms of recurrent neural network architecture, the dynamic part of the canonical form

is made of a feedforward network computing function ϕ , whose inputs are the state

variables and external inputs at time n, and whose outputs are the state variables at time

n+1. The output at time n+1 is computed from the state variables at time n+1 by a

feedforward neural network implementing function ψ.

2.2 Presentation of the problem: from an arbitrary discrete-time model to

a canonical form

We consider a discrete-time model consisting of a set of N equations of the form:
 xi(n+1) = Ψi xj (n - τij,k + 1) , ul(n - τil,k + 1 ,

i, j = 1, ..., N, l = N+1, ..., N+N’, k > 0 (1)

where Ψi is an arbitrary function, τij,k is a positive integer denoting the delay of the k-th

delayed value of variable xj used for the computation of xi(n+1), and where ul denotes an

external input. Relation (1) expresses the fact that the value of variable xi at time n+1 may

be a nonlinear function of (i) all past variables xj (including xi itself) and present variables

(excluding xi itself), and (ii) of all external inputs at time n+1 or at previous times. These

equations are usually complemented by an output (or observation) equation expressing

the relations between the outputs and the state variables of the model.

In the context of neural networks, equations (1) may be considered as the description of a

recurrent network where xi is the output of neuron i, or the output of a feedforward

4

neural network i, and Ψi is the activation function of neuron i, or the function

implemented by the feedforward network i.

As a didactic example, consider a process described by the following model :
 x1 = f1 x1, x2, x3, u

x2 = f2 x1, x3

x3 = f3 x1, x2

y = x3

where f1, f2 and f3 are nonlinear functions. After discretization (by Euler's method for

instance), these equations have the following form:
x1(n+1) = Ψ1 x1(n), x1(n-1), x2(n-1), x3(n-1), u4(n-1) ,

x2(n+1) = Ψ2 x1(n+1), x3(n+1) ,

x3(n+1) = Ψ3 x3(n), x3(n-1), x1(n-1), x2(n), x2(n-1)

 (2)

 y(n+1) = x3(n+1) .

Thus, referring to relations (1), one has N = 3, N' = 1, τ11,1 = 1, τ11,2 = 2, τ12,1 = 2,

τ13,1 = 2, τ14,1 = 2, τ21,1 = 0, τ23,1 = 0, τ33,1 = 1, τ33,2 = 2, τ31,1 = 2, τ32,1 = 1,

τ32,2 = 2.

The purpose of the paper is to present a methodology that allows one to transform a set of

discrete-time equations of the form (1) into a canonical form as defined in 2.1, i.e. to find

the minimal set of state variables and the corresponding functions ϕ and ψ (which will,

in general, have parameters which are to be estimated from measured data).

This transformation is performed in three steps:

(i) find the order ν of the system, i.e. find the minimum number of variables {zi}

which describe completely the model at time n if their initial values are known, and

if the values of the external inputs {ul} are known at times 0 to n;

(ii) find a state vector, i.e. a set of ν state variables,

(iii) transform equations (1) into the state equations which govern the state variables

derived in (ii).

In the above example, the equations (2) are not in a canonical form; however, a canonical

form is readily derived by substituting the expression of x2(n+1) into the equations giving

x1(n+1) and x3(n+1) (or, in the continuous-time model, substituting x2(t) into the

expressions of the second derivatives of x1(t) and x3(t)): the order of the model is 4, and

the state variables are x1(n), x1(n-1), x3(n), x3(n-1) (or x1(t), x3(t) and their first

derivatives). We prove in this paper that, for discrete-time models, these derivations and

substitutions can be viewed as a sequence of graph transformations which can be

performed on a computer in polynomial time.

5

3 Derivation of a state vector

3.1 Graph representation of a dynamic model

We show in the following that the derivation of a canonical form can be performed by a

set of transformations on a graph representation of the recurrent equations (1). We define

a finite directed graph G(E,V) consisting of a set of edges E and of a set of vertices V .

Each vertex vi represents a variable xi. A directed edge eij from vertex vj to vertex vi

represents a non-zero term on the right-hand side of equation i of the system of equations

(1). The length of each edge is the associated delay τij,k: the number of parallel edges

from vj to vi is equal to the number of different delays τij,k. A directed edge from vj to vi

of length τ is denoted by eijτ (however, for simplicity, the superscript τ will be omitted

whenever the context makes it unnecessary); {Ri} denotes the set of outgoing edges from

vertex vi, and the length of the incoming edge to vi of maximal length is denoted by Mi.

c(vi) is the number of cycles (i.e. the number of paths that start and end at the same

vertex) which include vertex vi; c(eij) is the number of cycles which include edge eij; Aji

is the number of edges eij from vertex vj to vertex vi. Note that the dynamic system is

causal if and only if the graph G(E,V) does not contain any cycle of length zero. Figure

1a shows the graph representation of model (2).

3.2 Computation of the order of the model

The first step in the determination of the canonical form of the network consists in finding

which variables of the model will give rise to state variables, i.e. will appear as

components of the state vector z (n) (for instance, in the above example,

 z (n) = [x1(n), x1(n-1), x3(n), x3(n-1)]T : only x1 and x3 give rise to state variables).

Therefore, we want to reduce the initial graph G0 of the model to a simpler graph G1

which contains only the vertices that give rise to state variables (vertices v1 and v3 in the

above example), and which has the same number of state variables (but not necessarily

the same state variables) as the model described by G0. From this simplified graph we

will be able to compute the order of the model.

6

0

1 2

0

2

2

2

1

2

2 1 1 2 3

2

4

y(n+1)

(a)

2

2 1 3

(b)

FIGURE 1

(a) Graph representation G0 of the model described by equations (2); (b) Graph G1. Following standard

notations, the vertices are numbered and the lengths of the edges are written in the squares. The

transformations of G0 to G1 are described in detail in Appendix 1.

The simplifications of graph G0 are based on the following considerations:

(i) assume that a model has two state variables zi(n) and zj(n) which are such that zi(n+1)

depends on zj(n), but zj(n+1) does not depend zi(n):

zi(n+1) = ϕ i [{zm(n), m = 1, ..., ν}, {ul(n)}]

zj(n+1) = ϕ j [{zk(n), k = 1, ..., ν, k ≠ i}, {ul(n)}] .

In terms of graph representation, edge eji is not within a cycle. zj(n) can be substituted

into zi(n+1) without changing the order of the model. Then zi(n+1) does not depend

explicitly on zj(n), and zj(n+1) does not depend explicitly on zi(n). As a consequence,

edges of the graph which are not within cycles are irrelevant for the computation of the

order of the network;

7

(ii) assume that a vertex i in G0 represents an equation of the form
 xi(n+1) = Ψi xj (n + 1) , ul(n - τil,k + 1 ,

then this relation is static, thus irrelevant for the determination of the state vector;

(iii) assume that one has
 x

m
(n+1) = Ψ

m
x

j
(n – τ), u

l
(n - τ

ml,k
+ 1 ,

x
j
(n+1) = Ψ

j
x

i
(n – τ’), u

l
(n - τ

jl,k
+ 1 .

xm depends on the external inputs and on xj only, and xj depends on the external inputs

and on xi only; in addition, suppose that no variable other than xm depends on xj; then

variable xj can be deleted from the model by substitution into xm without changing the

order of the model;

(iv) it has been proved (Nerrand et al. 1993) that the order ν of the model represented by
a graph G1 is given by ν = ωi

i
∑ where

∀ ν i ∈ G1 ωi =

Mi – mineji ∈ Ri
M j – τ ji if Mi – mineji ∈ Ri

M j – τ ji > 0

0 otherwise

Assume that two parallel edges, incoming to vertex vi, exist. Since the computation of ωi

involves the length of the incoming edge of maximal length, only the larger delay is

relevant. Now assume that two parallel edges exist, outgoing from vertex vi, with delays

τ ji
1
 and τ ji

2
, τ ji

1
 > τ ji

2
. Then Mj- τji

1
 < Mj- τji

2
 , so that min (Mj- τji) = Mj- τ ji

1
. Thus,

when several parallel edges exist, only the edge of maximal length is relevant for the

computation of the order of the model.

These remarks result in the following procedure for determining graph G1 from the initial

graph G0 of the model; G denotes the current state of the graph before and/or after the

considered transformation is performed; the tools necessary for performing these

transformations, and their time complexity, are described in appendix 1.

I. Delete all edges of G0 that do not belong to any cycle
 G ← G0 - eij c(eij) = 0

and delete all isolated vertices (vertices without incoming nor outgoing edge) that

may result.

This transformation stems from remark (i) above. Note that none of the subsequent

transformations, described in step II, can generate an edge which does not belong to

a cycle. Therefore there is no need for iterating back to this step once the

transformations of steps II have been performed. In principle, the present

transformation is sufficient for the determination of the order. The transformations of

steps II result in further simplifications of the graph, hence of the computations using

the information of the graph.

We show in Appendix 1 that the present transformation can be performed in

polynomial time.

II. Iterate until no change is possible:

8

II.1 Delete vertices whose incoming edges are all of zero length, and recombine their

incoming and outgoing edges
 ∀ vj, eji

0, ekj
τ | Mj = 0 G ← G - vj - eji

0 - ekj
τ + eki

τ

This transformation stems from remark (ii) above: vertex vj is deleted, and each

pair of edges (eji
0
, ekj

τ
) is replaced by an edge eki

τ
 from vi to vk with length τ.

II.2 Iterate until no change is possible: if a vertex has one incoming edge only (or one

set of parallel incoming edges only) and one outgoing edge only (or one set of

parallel outgoing edges only) delete the vertex; if there is a single incoming and a

single outgoing edge, merge the edges into a single edge whose length is the

sum of the lengths of the merged edges; if there is a set of parallel incoming

edges and a set of parallel outgoing edges, merge each pair of one incoming and

one outgoing edges into a single edge whose length is the sum of the lengths of

the merged edges
 ∀ vj, eij

τ1, ejk
τ2 | Aji ≥ 1, Ajl = 0 ∀ l ≠ i, Akj ≥ 1, Alj = 0 ∀ l ≠ k ,

G ← G - vj - eij
τ1 - ejk

τ2 + eik
τ1 + τ2

This transformation stems from remark (iii) above.

II.3 Iterate until no change is possible: if several parallel edges between two vertices

exist, delete all but the edge of maximum length.
 ∀ vj, eij

τ1, eij
τ2 G ← G - eij

min(τ1, τ2)

This transformation stems from remark (iv) above: for each pair of parallel

edges, the edge of minimum length is deleted, until only one edge remains.

When no further change is possible, the resulting graph G1 may be a non-connected

graph.

The state equations of the model described by graph G1 are of the form :

z1(n) ≡ x1(n) = ψ1 zj∈ P1

(n–1)

z2(n) = z1(n–1)

...
zω1

(n) = zω1–1(n–1)

zω1+1(n) = ψ2 zj∈ P2
(n–1)

...
zω1+ω2

(n) = zω1+ω2–1(n–1)

...
zν–ωNV

+1(n) = yNV
zj∈ PNV

(n–1)

...
z (n) = z (n–1)

where NV is the number of vertices in G1 and Pi is the set of edges incoming to vertex vi.

9

Figure 1b shows the graph G1 derived from the graph G0 of Figure 1a. Following the

above procedure, edge e14
2
 is deleted, and the output edge from vertex 3 is deleted, since

they do not belong to any cycle; then, vertex 2 is deleted since all its incoming edges have

zero length, edge e13
2 and two edges e31

2 and e31
1
 are generated; finally, parallel edges

are deleted iteratively until only edges of maximum length are left. The order of the model

is easily derived: one has M1 = 2, M3 = 2, ω1 = 2, ω3 = 2, hence ν = 4.

3 . 3 Determination of a state vector

The order of the model having been computed as shown above, we are looking for a state

vector z (n), of dimension ν, such that z (n+1) = ϕ [z (n), u (n)], of the form:
 z (n) = [x1(n-k1) ... x1(n -k1-w1+1) x2(n-k2) ...x2(n-k2-w2+1) ... xN

V
(n-kN

V
-wN

V
+1)]T

where ki and wi are non-negative integers. wi is the number of occurrences of the variable

xi in the state vector. If wi = 0, then the variable xi of the model is not a state variable,

and the corresponding ki is irrelevant; otherwise, ki denotes the lag of the most recent

occurrence of variable xi in the state vector z (n). The w i's must comply with the

following constraint :

Σiwi = ν
In the canonical form, the lag between two successive state variables represented by the

same vertex is equal to one. Note that several equivalent canonical representations exist:

the wi's may be different from the ωi's, the only constraint being that the sum of the w i' s

must be equal to the order ν.

Thus, one must find a set of 2NV integers {ki, wi}. In order to do this, we first derive a

new graph, termed "graph of time constraints", which accounts for the time constraints

that exist between the state variables. We subsequently derive the state vector itself.

Determination of the graph of time constraints

The graph of time constraints G2 is derived from the model graph G0 by deleting all

vertices and edges which are not significant with respect to the time constraints that the

state variables must satisfy. The main difference between G2 and G1 is the fact that, in

order to take the time constraints into account, edges which are not within cycles (thus are

not relevant to the determination of the number of state variables), but which express a

relation between cycles, should be kept because they are relevant to the choice of the state

variables.

I. Initialize G to G0. Iterate until no change is possible:

I.1 Delete all vertices whose incoming edges are all of zero length, and recombine

their incoming and outgoing edges
 ∀ vj, eji

0, ekj
τ | Mj = 0 G ← G - vj - eji

0 - ekj
τ + eki

τ

I.2 Iterate until no change is possible: if a vertex has one incoming edge only (or one

set of parallel incoming edges only) and one outgoing edge only (or one set of

10

parallel outgoing edges only) delete the vertex and merge the edges into a single

edge whose length is the sum of the lengths of the merged edges
 ∀ vj, eij

τ1, ejk
τ2 | Aji ≥ 1, Ajl = 0 ∀ l ≠ i, Akj ≥ 1, Alj = 0 ∀ l ≠ k ,

G ← G - vj - eij
τ1 - ejk

τ2 + eik
τ1 + τ2

I.3 Iterate until no change is possible: if several parallel edges between two vertices

exist, delete all but the edge of maximum length.
 ∀ vj, eij

τ1, eij
τ2 G ← G - eij

min(τ1, τ2)

II. Delete all edges that do not have both vertices belonging to at least one cycle:
 ∀ eij ∈ G | c(vi) = 0, c(vj) = 0, G ← G - eij

The reason for doing this is the following: we are interested in time constraints

between state variables only, and we know that state variables arise only from

vertices which are within cycles.

The variables of the model which are represented by the vertices of the resulting graph G2

are the state variables; thus, two integers ki and wi (ki ≥ 0, wi > 0) are associated to each

vertex vi ; the computation of this set of integers is the final step of the determination of

the state vector.

–

(a) (b)

 n – ki – wi + 1 n – ki

n – k j wj + 1 n – k j + 1

 τ ji
 τ jii j

FIGURE 2

(a) The dependence of state variable xj (represented by vertex vj) on state variable xi (represented by vertex

vj) due to the edge eij
τ; (b) the striped zones represent the time spans of the variables xi (a) and xj (b)

Determination of the state vector

We denote by NE the number of edges in the graph of time constraints. Consider an edge

eji of G2 of length τji (Figure 2a): from the very definition of the state vector, and from the

construction of the graph of time constraints, it must be possible to compute xj(n-kj+1)

from one of the state variables, arising from vertex vi, which are available at vertex vj at

time n-kj+1; these variables must have been computed at vertex vi at time n-kj+1-τ ji.

Therefore, the following relations must hold if τji ≠ 0:
n - ki - wi + 1 + τji ≤ n - kj + 1≤ n - ki + τji

or equivalently
 kj - wi + τji ≤ ki ≤ kj + τji - 1 (3)

Hence, a set of 2NE such inequalities with 2NV integer variables must be satisfied.

11

Thus, the problem of finding the state variables and the state equations is amenable to the

following linear optimization problem in integer numbers: find the set of integers {wi}

such that Σiwi is minimum (since the state representation is the smallest set of variables

that describe the model), under the set of constraints expressed by the inequalities (3). In

addition, the value of the minimum is known to be equal to ν, whose value is derived as

shown in section 3.2.

Note that there is a trivial solution to the set of inequalities (3): ki = 0, wi = maxj τ ji. This

solution is valid if Σiwi = ν. Otherwise, a solution that satisfies all constraints can be

found by linear optimization methods, such as the simplex (Dantzig 1963). The

minimized objective function is Σiwi and at least one solution with Σiwi = ν is known to

exist. We prove in Appendix 3 that the algorithm (Kuenzi et al. 1971, Press et al. 1992)

converges to a solution with integer values, which is precisely what is needed. The

solution may not be unique.

Once the pairs {ki, wi} have been determined, the canonical network can be constructed.

Note that the effect of merging parallel edges into a maximal delay edge, in step I.3 of the

derivation of G2, eliminates possible singular situations, in which two or more

inequalities cannot be simultaneously satisfied: consider two parallel edges of delays τ ji,1,

τji,2; then two equations (2) should be satisfied simultaneously:
 kj - wi + τji,1 ≤ ki ≤ kj + τji,1 - 1 and kj - wi + τji,2 ≤ ki ≤ kj + τji,2 - 1

If τ ji,1 - τ ji,2 > wi - 1, this is impossible; therefore, vertex vi will be duplicated in the

canonical form. The choice of assigning the largest delay to merged parallel edges

guarantees the feasibility of the canonical form.

4 Examples

The following examples illustrate the application of the proposed method.

4 . 1 The didactic example

We derived from Figure 1 the order of the model described by equations (2). The graph

of time constraints G2 is identical to G1. Running the simplex algorithm in this case is

useless: from symmetry considerations, and knowing that the order is 4, it is clear that the

state vector is z (n) = [x1(n) x1(n-1) x3(n) x3(n-1)]T. From the definition of the canonical

form, the state variables and the external inputs are the inputs of its feedforward part;

therefore, in order to find this feedforward part, the variables are "backtracked" from the

outputs to the inputs (Figure 3): the feedforward part of the canonical form computes

x1(n+1) from the external output and from the components of z (n); we see from G0 that

x1(n+1) is computed from x1(n-1), x1(n), x3(n-1), x2(n-1), u4(n-1); the first three

quantities are state variables, so that a direct connection is made between these inputs and

vertex 1; u4(n-1) will be an input of the feedforward part of the canonical form; x2(n-1) is

12

not present in the input, so that vertex 2 is added; it computes x2(n-1) from x3(n-1) and

x1(n-1), which are state variables; thus connections are made from these inputs to vertex

2, which completes this part of the graph; the part of the graph which computes x3(n+1)

is similarly derived, requiring the replication of vertex 2 because of the two parallel edges

between vertices 2 and 3 in G0. The presence of intermediate neurons 2 expresses

graphically the fact that the initial model can be put into a canonical form by simply

substituting x2 into the expressions of x1 and x3. Note that this network has shared

weights: the weights of the inputs of neurons 2. The canonical form of the equations of

the model is:

z1(n+1) ≡ x1(n+1) = ψ1 z1(n), z2(n), ψ2 z2(n), z4(n) , z4(n), u4(n–1)

z2(n+1) = z1(n)

z3(n+1) = ψ3 ψ2 z1(n), z3(n) , ψ2 z2(n), z4(n) , z2(n), z3(n), z4(n)

z4(n+1) = z3(n)

-1 n -1n

2 2

-1

1)

1)1)

∆ ∆

1)

1)1)
1)

1) 1)

1) 1)

(n+1)

FIGURE 3

The canonical form of the model described by equations (2). ∆ stands for unit delays.

13

4 . 2 An example where the trivial solution is valid

We consider now the model whose graph G0 is shown on Figure 4a. It is made of two

cascaded parts. G1 and G2 are shown on Figures 4b and 4c.

Clearly, the input edges e16, e37 and the output edge from vertex 5 are not within cycles;

for simplicity, we delete them right away. The mathematical details of the subsequent

transformations are given in Appendix 2. The first step of the transformation of the model

graph to G1 is the deletion of edge e426, which does not belong to any cycle. Vertex 5 has

one incoming edge (e54
3
) and one outgoing edge (e45

2
), which can be merged into a

single edge e44
5
; similarly, vertex 3 has one incoming edge (e32

2
) and one outgoing edge

(e13
3
), which can be merged into a single edge e12

5
; in the resulting graph, vertex 1 has

only one set of incoming edges (e12
4
 and e12

5
) and one outgoing edge (e21

2
), which can

be merged into two edges e22
6
 and e22

7
. Finally, parallel edges are merged, leading to

graph G1 which has two disconnected nodes with one self-loop each. The order ν of

graph G1 is easily derived: ν = 12.

The graph of time constraints G2 is similarly derived: edges e45
2
, e54

3
, e32

2
 and e13

3
 are

deleted, edges e44
5
 and e12

5
 are created. Then edges e12

5
, e12

4
 and e21

2
 are deleted and

edges e22
7
 and e22

6
 are generated. Finally, parallel edges are merged. Both ends of edge

e42
6
 belong to cycles, thus this edge is kept, resulting in graph G2. In this case, the trivial

solution (wi = maxj τji ; ki = 0) is valid since Σj maxj τji = ν. This solution thus defines

the state vector:
 z(n) = x2(n) x2(n-1) ... x2(n-6) x4(n) x4(n-1) ... x4(n-4)

T

The corresponding canonical form is shown on Figure 5.

Once this form has been derived, all the weights, either associated to the connections

shown, or imbedded in one (or more) feedforward network represented by one (or more)

vertex of the graph, can be estimated by training with algorithms using backpropagation

through time for computing the gradient of the cost function.

4 . 3 An example where the trivial solution is not valid

Now the output of the previous model is fed back to one of its inputs with zero delay.

Thus, the only difference between the network described in figure 4 and the network

described in figure 6a is the addition of edge e350. Since all vertices belong to at least one

cycle, no graph simplification is possible: G1 and G2 are identical to the original graph.

The order is Σiωi = 14, where:
 ω

1
= 4 – min

e
21

(2–2) = 4 ; ω
2

= 2 – min
e

32
, e

42
(2–2, 6–6) = 2 ; ω

3
= 2 – min

e
13

(4–3) = 1

ω
4

= 6 – min
e

54
(3–3) = 6 ; ω

5
= 3 – min

e
35

, e
45
(2–0, 6–2) = 1

The trivial solution, which leads to a model of order 16, is thus not valid.

14

Simplex optimization gives k1 = 4, w1 = 1; k2 = 3, w2 = 5; k3 = 6, w3 = 1; k4 = 2, w4 = 2;

k5 = 1; w5 = 5; the state vector is

z(n) = x1(n-4) x2(n-3) x2(n-4) ... x2(n-7) x3(n-6) x4(n-2) x4(n-3) x5(n-1) ... x5(n-5)
T

The canonical form is shown on Figure 6b.

42

7 5

62

7

4

5

21 4

3

5
3

2
6

2

4

3
2

0

u6

u7

0

y

22

21 4

3

5
3

2

2

4

3
2

22

21 4
2

4

22

5

5

2 4

22

56 7

21 4

3

5
3

2

2

4

3
2

22

21 4
2

4

22

5

5

2 4

22

56 7

6

6

6

G2G1

G0

6

7

FIGURE 4

Left column, from top to bottom: graph G after step I; graph G after the first iteration of step II.2; graph

G after the second iteration of step II.2; graph G1 (after step II.3).

Right column, from top to bottom :graph G after step I.1; graph G after the first iteration of step I.2;

graph G after the second iteration of step I.2; graph G2 (after step I.3). Details of the transformations are

given in Appendix 2

15

n-4

x2

n-6 n-5 n-4 n-3 n-2 n-1 n∆

2

x2(n +1)

1
3

x 3(n –4)

x1(n –1)

∆
x4

n-3n-2n-1n

5

4

x4(n +1)

u 6u 7

n-4 n-1

y(n+1)

x5(n –1)

FIGURE 5

Canonical form of the model shown on Figure 4.

4 . 4 An example with replicated vertices and shared weights

As a final example, we consider a model whose canonical form makes extensive use of

duplicated vertices and shared weights. Its graph representation is shown on Figure 7a.

In order to compute the order of this model, we derive the graph G1 of figure 7b.

The order of the network is 6 (ω1 = 1, ω2 = 2, ω3 = 1, ω5 = 2) but the trivial solution

from the graph of time constraints shown in figure 7c gives a solution of order 8

(w1 = w2 = w3 = w5 = 2), which is not optimal. Note that, during the graph

simplification, vertices 1 and 3 have parallel outgoing edges and corresponding

constraints that cannot be simultaneously satisfied; thus, these vertices are replicated, and

so are the weights corresponding to their inputs and outputs. These edges are e530 and

e532 for vertex 3 (once vertex 4 is eliminated) and e210 and e212 for vertex 1.

The solution found by the simplex method is: k1 = 2, w1 = 1; k2 = 1, w2 = 2; k3 = 1,

w3 = 1; k5 = 0; w5 = 2.

The canonical form of this network is shown on figure 8. It is exactly the canonical form

that was derived "manually" in a previous paper [Nerrand et al.].

16

0u6

2

0

3

2
2

2

2

4

61 4 5

3

3

2

 (a)

1 32 4 x5

n-4 n-7 n-6 n-5 n-4 n-3 n-6 n-1n-2n-3 n-5 n-4 n-3 n-2

1 32

x xx

4

x

5

 x1(n–3) x2(n–2) x3(n–5) x4(n–1) x5(n)

n-3

6u

 (b)

FIGURE 6

(a) Graph of the model of Figure 4, with feedback; G1 and G2 are identical to G0 (see Appendix 2); (b)

canonical form; for clarity, all the recurrent connections are not shown.

1 2 3 4 5
u

y
1

2
1

0 1

2

1

1

0
1

1

2

(a)

1 2 3 51

2

1

2

11

2

 (b)

21 2 3 51

2

1

2

11

2

 (c)

FIGURE 7
(a) Graph representation G0 of a model, with parallel edges; (b) graph G1 ; (c) graph G2.

17

5 Conclusions

This work was motivated by the present interest in semi-physical modeling, be it "neural"

or not. It is clear that black-box modeling is wasteful of information when large, complex

systems, such as arise in the process industry for instance, are considered. The

importance of canonical forms of models has been recognized long ago in the field of

linear automatic control; in nonlinear modeling, the problem of finding a canonical form

for a model described by an arbitrary set of coupled nonlinear equations is also important,

but it is much more difficult; in addition, when neural networks are used for modeling,

putting the network into a canonical form is mandatory for simplicity of implementation

of the training algorithms. We have proposed a general procedure for finding the

canonical form of a model described by a set of coupled nonlinear discrete-time

equations. Knowledge-based neural modeling, which consists in building a neural net

complying with the equations of the model, complementing it by black boxes taking into

account the part of the dynamics which is not modeled by the initial set of equations, and

subsequently training the network from measured data in order to estimate the unknown

parameters, has been used successfully for complex industrial applications (Ploix et al.

1994, Ploix et al. 1996). The present work is a step towards making the first part of this

task (deriving a neural network from the equations of the model and putting it in canonical

form before training) fully automatic.

Acknowledgements : the authors are grateful to Brigitte QUENET for her critical

reading of the manuscript.

18

2

1

1
3

3

5

4

1
1

x 1
(n

-2
)

x 2
(n

-1
)

x 2(
n-

2)
x 3(

n-
1)

x 5
(n

)
x 5(

n-
1)

c 11
,1

c 11
,1

c 12
,1

c 12
,1c 21

,0

c 21
,2

c 32
,2

c 33
,1

c 32
,2

c 54
,1

c 33
,1 c 43

,1

c 55
,2

c 53
,0

c 23
,1

u(
n-

2)
z 3(

n)
=

z 4(
n)

=
z 5(

n)
=

z 6(
n)

=
z

7(
n)

=
z

2(
n)

=
z

8(
n)

=

x 1(
n-

1)
x 2(

n)
x 2

(n
-1

)
x 3

(n
)

x 5
(n

+
1)

x 5
(n

)
z

3
(n

+
1)

=
z

4
(n

+
1)

=
z 5

(n
+

1)
=

z 6
(n

+
1)

=
z 7

(n
+

1)
=

z 8
(n

+
1)

=

U
ni

t
de

la
ys

u(
n-

1)
z

1(
n)

=

c 1u
,1

c 1u
,1

FIGURE 8

Canonical form of the model of Figure 7. Details of the transformations are given in appendix 2.

19

APPENDIX 1

In this appendix, we describe the computational tools that are necessary for the graph

transformations, and we show that the latter have polynomial complexity.

The basic tool is the adjacency matrix A of a graph G. Element Aij of matrix A is equal to

the number of edges from vertex i to vertex j. The diagonal terms of the matrix denote the

number of self-loops (cycles of length 1).

We consider the adjacency matrix A0 of graph G0. We define the matrix A1 as

A1 = sign(A0) : (A1)ij = 1 if (A0)ij > 0, (A1)ij = 0 if (A0)ij = 0.

Transformation of graph G0 to graph G1: step I

The first step in the transformation of G0 to G1 consists in finding and deleting all edges

that do not belong to any cycle. Therefore, for each edge eji, one has to find whether a

path from j to i exists in the graph.

In this task, the actual length of the edges (i.e. the delay associated to each edge) is

irrelevant: therefore, in the following, we consider that all edges of graph G have unit

length; the length of a path in the graph is thus equal to the number of edges of the path.

We make use of the following result : consider the sequence of matrices {An} defined by

An = sign (A1A n-1), n ≥ 2 : (An)ij = 1 if and only if there exists at least one path from i to

j in the graph.

This is easily proved by recursion. Consider matrix A1
2 :

 A1
2

ij = A1 ik A1 kjΣ
k

Each path of length 2 from i to j contributes a non-zero term to the right-hand side of the

above relation; hence A1
2

ij is equal to the number of paths of length 2 from vertex i to

vertex j. We define A2 = sign A1
2 : a non-zero element (A2)ij denotes the existence of at

least one path of length 2 from vertex i to vertex j in the graph.

Similarly, we define matrix An whose element (An)ij is equal to 1 if and only if there is at

least one path of length n from i to j in the graph, and is equal to 0 otherwise. It is easy to

show, as before, that matrix An+1 = sign(A1An) has the following property :

(An+1)ij = 1 if and only if there is at least one path of length n+1 from i to j.

The longest simple path (i.e. path that contains no cycle) in a directed graph of N vertices

is of length N. Therefore, in the worst case, the construction of the sequence of matrices

{An} is terminated when n = N , thus in polynomial time; actually, the sequence will

frequently terminate when An+1 = An with n < N, as shown in the examples below.

Finally, consider matrix
 A* = sign AnΣ

n = 1

Element (A*)ij is equal to 1 if and only if there is at least one path in the graph from i to j.

A diagonal element (A*)ii is equal to 1 if and only if vertex i belongs to at least one cycle.

20

To summarize: in step I of the transformation of graph G0 to graph G1, consider each pair

of vertices (i, j): if (A0)ij ≠ 0, there is at least one edge between i and j; if (A0)ij ≠ 0 and

(A*)ji = 0, edges eji
τ
 are deleted ((A0)ij is set to zero); otherwise, edges eji

τ
 are kept in

the graph.

Transformation of graph G0 to graph G1: step II

Step II.1 : if a vertex j has all incoming edges of length 0, all elements of row j and

column j of the adjacency matrix A of the current graph G are set to zero; for each pair of

elements (Aij, Ajk, j≠k) set to zero, add Ajk to Aik.

Step II.2 : consider two adjacent edges eij and ejk; they are both within at least one cycle

(otherwise they would have been deleted at the previous step); vertex j belongs

exclusively to this cycle (or set of cycles) if and only if there is no incoming edge to j

from vertices other than k, and no outgoing edge from j to vertices other than i; thus one

must have Akj ≥ 1, Alj = 0 for all l ≠ k, and Aji ≥ 1, Ajl = 0 for all l ≠ i: there must be

one and only one non-zero off-diagonal element in row j, there must be one and only one

non-zero off-diagonal element in column j, and both Aii and Ajj must be equal to zero.

Elements Akj and Aji are then set to zero, and Aki is increased by AkjAji.

Step II.3 consists in computing sign(A) and appropriately updating the length of the

connections.

Transformation of graph G0 to graph G2

Steps I.1, I.2 and I.3 are formally the same as steps II.1, II.2, II.3 of the transformation

of G0 to G1, but they do not act on the same initial graph: in the transformation of G0 to

G1, these steps are performed on G0 deprived of the edges which are not within cycles,

whereas, in the transformation of G0 to G2 they are performed on G0 itself.

In step II of the transformation from G0 to G2, one has to find and delete all edges that do

not have both vertices belonging to at least one cycle. Consider each edge in turn; if (A0)ij

= 0, there is no edge for consideration; if (A0)ij ≠ 0, and if (A*)ii = (A*)jj = 1, the edge

must be kept in G2; otherwise it is deleted.

Keeping track of the edge lengths during these transformations is very simple.

Example

To illustrate this technique, we consider the model whose graph G0 is shown on Figure

1a.

Derivation of G1: step I

The adjacency matrix of graph G0 is:

21

A 0 =

2 1 1 0
1 0 2 0
1 1 2 0
1 0 0 0

therefore A1 = sign A0 =

1 1 1 0
1 0 1 0
1 1 1 0
1 0 0 0

.

A1
2 =

3 2 3 0
2 2 2 0
3 2 3 0
1 1 1 0

therefore A2 = sign A1
2 =

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0

.

A1 * A2 =

3 3 3 0
2 2 2 0
3 3 3 0
1 1 1 0

therefore A3 = sign A1*A2 =

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0

.

Since A3 is identical to A2 the sequence construction stops at this point.

A* = sign AnΣ
n = 1

2
=

1 1 1 0
1 1 1 0
1 1 1 0
1 1 1 0

; A*T =
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

Considering each non-zero element of A1, and the corresponding element of A*
T
, it is

easily seen that all edges belong to at least one cycle, except for edge e14, which is

therefore deleted. At this step, the adjacency matrix of the current graph G is :

A =

2 1 1 0
1 0 2 0
1 1 2 0
0 0 0 0

.

Derivation of G1: step II

II.1: since vertex 2 has two incoming edges, which are both of zero length, A12 and A32

are set to zero, and edges e13
2
 , e31

1
 and e31

2
 are generated, resulting in a new adjacency

matrix:

A =

2 0 3 0
0 0 0 0
2 0 2 0
0 0 0 0

.

II.2: in this matrix, no vertex is such that the corresponding row and the corresponding

column both have one and only one non-zero element. Therefore, no simplification can be

performed at step II.2.

II.3: finally, matrix A shows that parallel edges exist as self-loops around vertices 1 and

3, and for edges e31 and e13. All but the edges of maximal length are deleted.

No further iteration is necessary to any of the steps II; thus, the adjacency matrix for G1

is:

A =

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

.

Graph G1 is shown on Figure 1b.

22

Derivation of G2

We start with matrix A0:

A 0 =

2 1 1 0
1 0 2 0
1 1 2 0
1 0 0 0

Step I.1: vertex 2 is deleted as in step II.1 above, leading to matrix:

A =

2 0 3 0
0 0 0 0
2 0 2 0
1 0 0 0

.

Step I.2: no transformation.

Step I.3: parallel edges are deleted except for the edges of maximal length:

A =

1 0 1 0
0 0 0 0
1 0 1 0
1 0 0 0

.

Step II: edge e41 has only vertex 1 belonging to a cycle, hence this edge is deleted,
leading to an adjacency matrix for G2 which is identical to that of G1.

23

APPENDIX 2

This appendix describes the computations of the graph transformations illustrated by

Figures 4, 6 and 7.

Figure 4

It is clear by inspection that edges e16 and e37 are irrelevant for the determination of the

order and of the state variables. In order to simplify the notations, we overlook these

edges from the beginning, thus considering only vertices 1 to 5; in a computer

implementation of the procedures, these edges are deleted in step I of the transformation

of G0 to G1, and they are deleted in step II of the transformation of G0 to G2.

Derivation of G1 : step I

A0 =

0 1 0 0 0
1 1 1 1 0
1 0 0 0 0
0 0 0 1 1
0 0 0 1 0

; A1 = A0 ; A2 =

1 1 1 1 0
1 1 1 1 1
0 1 0 0 0
0 0 0 1 1
0 0 0 1 1

; A3 =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
0 0 0 1 1
0 0 0 1 1

A4 =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 1 1
0 0 0 1 1

; A5 = A4 ; A* =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 1 1
0 0 0 1 1

; A*T =

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 1
1 1 1 1 1

.

Thus, edge e42 is deleted, hence the current adjacency matrix :

A =

0 1 0 0 0
1 1 1 0 0
1 0 0 0 0
0 0 0 1 1
0 0 0 1 0

Derivation of G1: step II
Step II.1: no transformation.
Step II.2: row 5 and column 5 have one and only one non-zero, off-diagonal element
(A45 and A54) ; same for row and column 3 (A23 and A31). Hence edges e45, e54, e13

and e32 are deleted, one edge e44 and one edge e12 are generated:

A =

0 1 0 0 0
2 1 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0

.

Row 1 and column 1 have one and only one non-zero, non-diagonal element, (A12 and
A21), hence edges e21 and e12 are deleted, and two edges from 2 to 2 are generated:

A =

0 0 0 0 0
0 3 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0

Step II.3: parallel edges are merged, resulting in graph G1.

Derivation of G2: step I

Step I.1: no transformation.

24

Step I.2: as above, edges e45, e54, e13 and e32 are deleted, edge e44 and edge e12 are

generated :

A =

0 1 0 0 0
2 1 0 1 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0

 ; edges e21, e12
4
 and e12

5
 are deleted, and two edges from

2 to 2 are generated:

A =

0 0 0 0 0
0 3 0 1 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 0

.

Step I.3: parallel edges are merged.

Derivation of G2: step II

Since both ends of edge e42 are within cycles (A*22 and A*44 are both non-zero), this

edge is kept in G2.

Figure 6

A0 =

0 1 0 0 0
1 1 1 1 0
1 0 0 0 0
0 0 0 1 1
0 0 1 1 0

; A1 = A0 ; A2 =

1 1 1 1 0
1 1 1 1 1
0 1 0 0 0
0 0 1 1 1
1 0 0 1 1

; A3 =

1 1 1 1 0
1 1 1 1 1
1 1 1 1 0
1 0 1 1 1
0 1 1 1 1

A4 =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

; A* = A4

All edges belong to at least one cycle, so that no simplification is possible.

Figure 7

Derivation of G1 : step I

A0 =

1 2 0 0 0
1 0 1 0 0
0 1 1 1 1
0 0 0 0 1
0 0 0 0 1

; A1 =

1 1 0 0 0
1 0 1 0 0
0 1 1 1 1
0 0 0 0 1
0 0 0 0 1

; A2 =

1 1 1 0 0
1 1 1 1 1
0 1 1 1 1
0 0 0 0 1
0 0 0 0 1

A3 =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 0 1
0 0 0 0 1

; A4 = A3 ; A* =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 0 0 1
0 0 0 0 1

; A*T =

1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 1 1

Edges e43
1
, e54

1
 and e53

0
 are deleted:

A =

1 2 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 1

.

Derivation of G1: step II

Step II.1: no transformation.

Step II.2: no transformation.

Step II.3: parallel edges e21
0
 and e21

2
 are merged into e21

2
.

25

Derivation of G2: step I

Step I.1: no transformation.

Step I.2: since row 4 and column 4 of A0 have one and only one non-zero off-diagonal

element, (A0)34 and (A0)45 are set to zero, and (A0)35 is increased by 1, resulting in:

A =

1 2 0 0 0
1 0 1 0 0
0 1 1 0 2
0 0 0 0 0
0 0 0 0 1

Step I.3: parallel edges e21
2
 and e21

0
 are merged into e21

2
; parallel edges e53

0
 and e53

2

are merged to e53
2
, resulting in

A =

1 1 0 0 0
1 0 1 0 0
0 1 1 0 1
0 0 0 0 0
0 0 0 0 1

Derivation of G2: step II

Since all the relevant diagonal elements of A* are non-zero, no simplification is possible:

the above matrix is the adjacency matrix of G2.

26

APPENDIX 3

We proved in Section 3.3 that the problem of the determination of a state vector is

amenable to the following linear optimization problem: minimize the cost function

wiΣ
i = 1

NV

subject to the constraints:
 wi > 0 ∀ i,

k j ≥ 0 ∀ j,

k j – ki – wi + τ ji ≤ 0 ∀ τ ji

ki – k j – τ ji + 1 ≤ 0 ∀ τ ji

where all variables ki and wi are integers, and where the constant terms τji are integers. In

this appendix, we prove that the simplex algorithm provides an optimal solution in integer

numbers.

The general form of a linear optimization problem

The general form of a linear optimization problem with N variables {xi} is the following:

find a vector [x1, x2, ..., xN]T which maximizes the cost function

fixi
i

N

=
∑

1

under the non-negativity (hereinafter termed primary) constraints

xi ≥ 0 for all i (A3.1),

and a set of C additional (hereinafter termed secondary) constraints

aij x j ≤ biΣ
j = 1

N
(bi ≥ 0) (A3.2)

akj x j ≥ bkΣ

j = 1

N
≥ 0 (A3.3)

alj x j = blΣ

j = 1

N
≥ 0 (A3.4)

In our problem, all constant terms {bi, i = 1 to C} are integers, all coefficients {aij, i = 1

to C, j = 1 to N} are equal to -1, 0 or +1. It is desired to find an optimal solution where

all variables {xi} are integers.

We first recall an essential result of linear optimization theory:

(i) if an optimal vector exists, and if N < C, i.e. if its dimension is smaller than the

number of secondary constraints (A3.2) to (A3.4), then there is an optimal vector whose

components satisfy N out of C constraints as equalities;

(ii) if an optimal vector exists, and if N > C, then all C secondary constraints (A3.2) to

(A3.4) are satisfied as equalities, and (N-C) primary constraints (A3.1) are also satisfied

as equalities, so that the optimal vector has at least (N-C) components equal to zero.

27

The simplex algorithm takes advantage of this result, by searching an optimal vector

among the vectors that satisfy N out of C secondary constraints as equalities if N < C, or

that satisfy C secondary constraints and (N-C) primary constraints as equalities if N > C.

We are going to prove that, if the optimization problem has a solution, then the simplex

algorithm provides a solution in integer numbers. The proof is organized in two steps; we

first prove that if a linear optimization problem is in restricted normal form (to be defined

below) with integer constant terms and coefficients equal to -1, 0 or +1, and if it has a

solution, then a solution in integer numbers exists and is found by the simplex algorithm.

In the second step, we show that a general linear optimization problem with integer

constant terms and coefficients equal to -1, 0 or +1 is amenable to an equivalent linear

optimization problem in restricted normal form with integer constant terms and

coefficients equal to -1, 0 or +1. Since we know that the problem of the determination of

the state vector has a solution, we conclude that the simplex algorithm provides a solution

in integer numbers.

Linear optimization problem in restricted normal form

A linear optimization problem is said to be in restricted normal form if (i) the only

constraints are the N non-negativity constraints (A3.1) and C equality constraints (A3.4),

and if (ii) each equality constraint has at least one variable which has a positive coefficient

and appears in one constraint only; these C variables {xi, i = 1 to C} are called basic

variables, and the other (N-C) variables {xi, i = C+1 to N} are called non-basic variables.

The C equality constraints can be solved for the basic variables, hence can be written in

the form:
x

i
= b

i
+ a

ij
x

j
i = 1 to CΣ

j = C+1

N

(A3.5)

All basic variables are on the left-hand side of (A3.5), while on non-basic variables are on

the right-hand side. In our problem, all bi's are integers and all aij's are equal to -1, 0 or

+1.

By setting all non-basic variables to zero, one obtains from (A3.5) an initial vector, with

at most C non-zero components (the basic variables) which are equal to the constant terms

on the right-hand side of (A3.5), and at least (N-C) components equal to zero (the non-

basic variables); this vector satisfies all constraints as equalities, but is not necessarily

optimal. We know from the basic result recalled above that an optimal vector, if it exists,

is to be found among the vectors that, similarly to the initial vector, have at most C non-

zero components and at least (N-C) components equal to zero. Therefore, a new

candidate vector can be obtained from the initial vector by turning one basic variable into a

non-basic variable and one non-basic variable into a basic variable (how this can be done

will be explained below). Assume that the non-basic variable xm has been turned into a

basic variable, and that the basic variable xn has been turned into a non-basic variable;

then the constraints are in a form similar, and equivalent, to (A3.5), where xm now

28

appears on the left-hand side of one of the equations, and xn appears on the right-hand

side of at least one of the equations; by setting all the new non-basic variables to zero, one

obtains a new candidate vector whose component xn is equal to zero, and whose

component xm may be non-zero; yet another candidate vector can be derived from the

present candidate vector by performing another exchange, and so on. Thus, the problem

of finding an optimal vector can be regarded as a combinatorial problem. A brute-force

procedure would consist in trying all possible sequences of exchanges of one basic

variable for one non-basic variable and selecting the optimal vector thus found; this would

involve impractical computation times. The simplex algorithm is a very economical

procedure which starts from the initial vector defined above, and performs an appropriate

sequence of exchanges of one non-basic variable for one basic variable, maximizing the

increase of the cost function at each exchange, until no further increase of the cost

function is possible; the details of the algorithm (Press et al. 1992, Kuenzi et al. 1971),

i.e. how the decision is made to exchange a certain non-basic variable for a certain basic

variable at each step of the procedure, are irrelevant for the present proof. The only

important point is the following: assume that it is found desirable, at the first step of the

procedure, to exchange the non-basic variable xm for the basic variable xn; the n-th

equation of (A3.5) can be solved for xm:
x

n
= b

n
+ a

nj
x

jΣ
j = C+1

N

⇒ x
m

= –
b

n

a
nm

–
a

nj

a
nm

x
jΣ

j = C+1
j ≠ m

N

+
x

n

a
nm

Then xm can be substituted into all the other equations of (A3.5), thereby making xn a

non-basic variable. In our problem, bn is an integer, and anm is equal to -1 or +1;

therefore, the constant term in the expression of xm is an integer and the coefficients of

the non-basic variables are equal to -1, 0 or +1; similarly, the constant terms in the other

constraints after the exchange of xm and xn are integers, and the coefficients of the

variables are equal to -1, 0 or +1. Clearly, the same result holds true after each exchange

of the procedure. After the final exchange, which leads to the optimal combination of

non-basic and basic variables, the vector which is found by setting the non-basic

variables to zero has N-C components which are equal to zero (the final non-basic

variables) and C components which are integer numbers (the final basic variables), equal

to the constant terms on the right-hand side of the constraints in their final form.

Thus, we have proved that, if a linear optimization problem is in restricted normal form,

if it has a solution, if all coefficients of the variables are equal to -1, 0 or +1, and if all

constant terms of the constraints are integers, then an optimal solution in integer numbers

will be found by the simplex algorithm.

General case

In the case of the determination of the order of a model, we know that an optimal solution

exists, but the problem is not in restricted normal form, so that the above result is not

directly applicable. We prove in the following that the problem is nevertheless amenable

29

to an equivalent problem in restricted normal form with coefficients equal to -1, 0 or +1,

and with integer constant terms, so that the result of the previous section holds in general.

In order to do this, one first turns the inequality constraints (A3.2) and (A3.3) into

equality constraints; this is achieved by introducing an additional non-negative variable

into each inequality constraint:
a

ij
x

jΣ
j = 1

N

≤ b
i
, b

i
> 0 → a

ij
x

jΣ
j = 1

N

– y
i
= b

i
, y

i
≥ 0 (A3.6)

a

kj
x

jΣ
j = 1

N

≥ b
k
≥ 0 → a

kj
x

jΣ
j = 1

N

+ y
k

= b
k
, y

k
≥ 0 (A3.7)

Note that the coefficients of the new variables are equal to -1 or +1.

The second step of the transformation of the general form to the restricted normal form

consists in adding a second set additional variables {zi}, which casts (A3.6) and (A3.7)

into the form (A3.5):
z

i
= b

i
+ y

i
– a

ij
x

jΣ
j = 1

N

zk = bk – yk – akj x jΣ

j = 1

N

This set of equalities defines an optimization problem which is in restricted normal form,

with integer constant terms and with coefficients equal to -1, 0 or +1. Any solution of this

problem having all zi's equal to zero is a solution of the original problem; the simplex

algorithm is organized in such a way that the solution found has all zi's equal to zero.

Therefore the simplex algorithm finds a solution of the original problem in integer

numbers, if a solution exists.

In the case of the determination of the state vector, we know that a solution exists.

Therefore, the simplex algorithm finds an optimal set of integers {ki, wi}.

30

REFERENCES

Dantzig, GB (1963), Linear programming and extensions. Princeton University Press.

Kuenzi, H.P., H.G. Tzschach, and C.A Zehnder (1971), Numerical methods of

mathematical optimization. Academic Press

Lindskog P., Algorithms and Tools for System Identification Using Prior Knowledge,

Linköping Studies in Science and Technology, thesis # 456.

Nerrand, O., P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Marcos (1993),

Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms,

Neural Computation vol. 5, 165-197.

Ploix J.L., G. Dreyfus, J.P. Corriou, D. Pascal (1994), From Knowledge-based Models

to Recurrent Networks: an Application to an Industrial Distillation Process, Neural

Networks and their Applications, J. Hérault ed.

Ploix J.L., G. Dreyfus (1996), Knowledge-based Neural Modeling: Principles and

Industrial Applications, Industrial Applications of Neural Networks, F. Fogelman, P .

Gallinari, eds. (World Scientific).

Press, W.H., S.A. Teukolsky, W.T. Vetterling, B.P. Flannery (1992), Numerical

Recipes in C : the Art of Scientific Computing, Cambridge University Press.

Thoma, J.(1991), Simulation by Bond Graphs (Springer).

Voit, E.O. (1991), Canonical Nonlinear Modeling (Van Nostrand Reinhold).

Zbikowski R., K.J. Hunt, eds (1995), Neural Adaptive Control Technology (World

Scientific).

