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Abstract - A procedure for the selection of neural models of dynamical
processes is presented. It uses statistical tests at various levels of model
reduction, in order to provide optimal tradeoffs between accuracy and
parsimony. The efficiency of the method is illustrated by the modeling of
a highly non-linear NARX process.

INTRODUCTION

The representation of the behaviour of dynamical processes is a conceptually
straightforward application of neural networks, whether feedforward or
recurrent, as non-linear regressors. In practice, however, the modeling of a
process requires solving several problems:
(i) the choice of the nature of the model (static model vs dynamic model,
input-output representation vs state representation, ...) requires an analysis of
the future use of the model (for instance, whether it will be used for
predicting the future evolution of the process, or whether it will be used
within a control system), and an analysis of the a priori knowledge on the
phenomena involved in the process;
(ii) the choice of the structure of the model, defined by the number of its
inputs, by the number of its outputs, by the type of input-output relationship
(linear, polynomial, radial-basis function, multi-layer neural network, etc.),
and by its structural parameters (degree of the polynomial approximation,
number of radial basis functions, number of neurons, etc.);
(iii) the estimation of the optimal set of adjustable coefficients (synaptic
weights in the case of neural net models) of the chosen structure
("identification" in automatic control, "training" in neural network parlance);

The first problem is fully application-dependent: no general statement can be
made. The third problem has been investigated in great depth in the case of



linear models [1]; in the case of neural network models, a variety of training
algorithms is available [2], and it has been shown that the choice of a training
algorithm, in the context of dynamical process modeling, is based on the
nature of the noise present in the process to be modeled [3].

In the present paper, we investigate the second problem, namely, that of
model selection, which is a key factor for a model to be successful [4]. We
suggest a pragmatic model selection procedure for dynamical input-output
non-linear models, which features three steps in succession: first, the inputs
(external inputs and feedback inputs) of linear models of the process around
operating points are selected; in a second step, the relevant inputs of the non-
linear model are selected, thereby determining the order of the model;
finally, the structural parameter of the model is determined. An optimized
model of a dynamical process is thus derived.

We describe the selection procedure in the case of stable (within the range of
operation for which a model is needed), single-input-single-output processes.
We assume that the process is NARX:
yp(t) = Φ[yp(t-1), ..., yp(t-ν), u(t-1), ..., u(t-µ)] + w(t)
where {w(t)} is a gaussian sequence of zero mean independent random
variables, ν is the order of the assumed model, and µ is the memory span of
the control sequence {u(t)}.
The following predictor is used:
y(t) = Ψ[yp(t-1), ..., yp(t-n), u(t-1), ..., u(t-m)];
We know from [3] that such a predictor (trained with a directed, or teacher-
forcing, algorithm) is optimal as a predictor for a NARX process.
If n = ν , if m = µ, and if Ψ(.) is an accurate approximation of Φ(.), then the
predictor is optimal for the process.
In the following, we describe the three steps of the procedure, in the case of a
neural network model.

THE PROCEDURE

First step

In the stability domain of the process, operating points (ui, yi) are chosen.
The process is subjected to time-dependent control sequences of length N in
the ranges [ui + ∆ui, ui - ∆ui], such that a linear model of the process can be
considered valid in each of these ranges. For each operating point, we select,
as described below, a linear model which is a satisfactory tradeoff between
accuracy and parsimony. At the end of the first step, the set of all inputs
which were selected is available for use in the second step of model
selection.



For each operating point, we make the assumption that the process can be
described as an ARX model :

yp(t) = α i yp(t-i)∑
i=1

ν
 + α ν+1 u(t-i)∑

i=1

µ 

 +w(t)  .

where ν et µ are unknow parameters.

We consider a training set of size N, and a family of predictors of the form:

 
y(t) = θi yp(t-i)∑

i=1

n

 + θn+i u(t-i)∑
i=1

m

  .

The aim of the procedure is to find a predictor such that n = ν, m = µ.
We denote by yp, x1, x2, …, xn, xn+1, …, xn+m, w , y the N-vectors,
corresponding to the values yp(t), yp(t-1), ..., yp(t-m), u(t-1), ..., u(t-n), w(t),
y(t), for t=1 to N; thus:
y = [x1,  ... x M] θ , where M = m + n.

We have to find Μ  regressors, corresponding to M independent vectors
{x1, …, xΜ} such that the subspace spanned by these vectors is the subspace
of smallest dimension containing E[yp]. In order to find this subspace, we
start with a complete model, whose parameters n' and m' are chosen  to be
larger than can be expected from the a priori knowledge available on the
process. We thus make the assumption that the subspace H spanned by the
M'=n'+m' vectors contains E[yp], and we expect to extract the satisfactory
subset of significant regressors from the initial set. This could be achieved by
computing and comparing all possible regressions; however, this method
becomes too expensive for large M'.
In order to decrease the amount of computation, we build from the initial set
{x1, …, xM'} an ordered set of orthonormal vectors {p1 , …, pM'} such that
the model defined by {p1, …, pk}, for all 1≤k≤M', gives a sum of squares of
errors (SSE) which is smaller than the SSE given by all other models with k
regressors [5].
We first choose, among the M' vectors {x1, …, xM'}, the vector xj giving the
largest square regression |p1

Typ|2, with p1 = xj / ||xj||. The (M'-1) remaining
{xi} vectors are orthonormalized with respect to p1.
Consider the kth step of the ordering procedure, where p1, …, pk–1 have been
selected. We denote by SSE(k) the SSE obtained with the selected model
having k regressors, thus :
SSE(k-1) – SSE(k) = |pk

Typ|2 ,
with :
SSE(0) = ||yp||2 .
This contribution decreases as k increases. This procedure is iterated M'-1
times for p2 , p3, ... until completion of the list. Thus :

||yp||
2 = pk

Typ
2∑

k=1

M'

 + SSE(M')

where SSE(M') is the sum of squares of errors for the complete model.



Subsequently, the above list is scanned in the inverse order of its
construction, and each model is compared with the complete model, using
the Log Determinant Ratio Test (LDRT). The number of models we have to
take into account is at most equal to M’. Note that the comparison between
these models by LDRT is easy (see Appendix for further details about this
test), since the variable used to compare the k-regressor model and the
complete model is :

XLDRT = N 
log SSE(k)

log SSE(M')  .
We select the smallest predictor model accepted by the test.
In order to further decrease the number of tests, we introduce a simple
stopping criterion during the formation of the subset {p1, …, pM’} : at the kth

step, the procedure is terminated if pk
T y p

2
 < ρ ||yp||2. The choice of ρ is not

critical provided it is small (typically ρ<10-8).
In the present work, we use LDRT, but Fisher-Snedecor test, Akaike's
Information Criterion (AIC) test are also available (for a review see [4]) and
lead to similar results.

Thus, for each chosen operating point, a linear model is available, which
achieves a satisfactory tradeoff between accuracy and parsimony. Note that
the techniques which are used in the linear context of this step are not
computationally expensive, so that a large number of external inputs n and
feedback inputs m can be used as a starting model for selection.
At the end of the first step, each regressor which was selected for at least one
operating point is available for consideration in the second step of model
selection.

Second step
In this step, the process is subjected to large-amplitude control signals
corresponding to the conditions of operation which the model is expected to
account for. A non-linear model is defined (e.g. a neural network), whose
inputs are the set of inputs which were determined during the previous step,
and whose structural parameters are deemed to be appropriate for the non-
linear input-output function to be accurately approximated (e.g. a neural
network with an appropriate, possibly too large, number of neurons, trained
by an algorithm which allows an efficient minimization of the SSE). Such
methods tend to be computationally expensive, so that the chosen number of
neurons should not be excessively large. The best subset of inputs is selected
by statistical tests (LDRT or AIC criterion (see appendix)) : we compare the
complete non-linear model with all these sub-models with one input less. If
all the models are rejected, this step of the procedure is terminated.
Otherwise, the best submodel is chosen, and compared with all these sub-
models having one input less, and so on.
At the end of this step, a non-linear model M1 is available, whose inputs
have been selected.



Third step
The final step aims at determining the structural parameter of the model: in
the case of a neural network model, this parameter is the number of hidden
neurons. Here, the accuracy/parsimony tradeoff is expressed by the fact that
too large a number of hidden neurons leads to overtraining (small SSE on the
training set, large SSE on the test set), whereas too small a number of
neurons leads to poor approximation (large SSE on the training set itself).
The model M1 resulting from the previous two steps is considered as the
complete model, and models with a smaller number of hidden neurons than
M1 are considered for selection. As in the previous steps, statistical tests are
used in order to find a satisfactory tradeoff. Note that most model reduction
algorithms used for neural networks aim at eliminating connections [6],
whereas this final step aims at eliminating neurons.

EXAMPLE

The efficiency of the above procedure is illustrated by the modeling of a
second-order, highly non-linear NARX process, which is simulated by the
following equation:

yp(t) = 50 tanh 2. 10-3  
24 + yp(t-1)

3
 yp(t-1) - 8 

u t-1 2

1 + u t-1 2
 yp t-2

        + 0.5 u t-1  + w t   ,

where w(t) is white noise with variance (σw)2 . The behaviour of this process
is essentially that (i) of a linear first-order low-pass filter for amplitudes
smaller than or on the order of 0.1, and (ii) of a second-order, oscillatory,
linear (0.1 < |u| < 0.5), or non-linear (0.5 < |u| < 5) system for larger
amplitudes; it becomes almost static for positive signals of very large
amplitude; in addition, it is not symmetrical with respect to zero. Figure 1
shows the response of the process to steps of random amplitude in the region
of interest, with (σw)2 = 10-2.

First step

The operating points were ui = {-10, -8, -5, -2, -1, -0.5, 0.1, 1, 2, 5, 8, 10}. At
each of these points, a uniformly distributed random sequence was added to
the control input, with maximum amplitude ∆ui=0.1 (σu2 = 3.10-3). The
initial model was chosen to have n' = m' = 100. The training sequence was of
length N = 1000. The orthonormalization procedure retained 15 inputs, and
the subsequent LDRT tests (with 1% risk) led to the selection of n+m = 2 to
5 inputs, depending on the operating points.

Second step



The training set was a sequence of large-amplitude steps, such as shown on
Figure 1. M1 was a fully connected neural network, with the 5 inputs (n = 3,
m = 2) selected in the first step, and with 10 hidden neurons. After training,
the variance of the prediction error (as estimated by SSE/N) was on the same
order of magnitude as σw , which shows that the network was sufficiently
large, and had been trained efficiently. Subsequently, the networks obtained
by suppressing 1 input, then 2 inputs, etc., were trained and submitted to the
LDRT procedure, as illustrated on Table 1: the full model M1 is compared to
M2, M3, ..., M6. The test selected only M2 and M4 (the deletion of one input
leads to the deletion of 11 connections; the corresponding value of the χ2

variable for a 1% risk is 24.7). Since the SSE of M4 was smallest, it was
selected for comparison with all models smaller than M4

1; M7 is the only
three-input model which was selected. All models smaller than M7 were
rejected. Therefore, M7 was finally accepted. The success of the procedure is
shown by the fact that M7 is indeed the only model which has the same
inputs as the simulated process. A similar result is obtained if the AIC test is
used.
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FIGURE 1
Sequence of control input and process output.

Third step

Model selection is performed on neural nets having the inputs of M7, and 0 to
10 hidden neurons, with the same training set for all nets. The result of the
selection depends on σw. With σw  = 10−2, a model with 9 neurons is
selected. With σw = 10−1, the same inputs are selected by the first two steps
and the third step leads to a neural network with 4 neurons. As should be

1 Actually, the SSE's of M2 and M4 are very close; if M2 is selected instead
of M4, the same result is obtained, since M7 is a sub-model of both M2 and
M4.



Model yp(t–1) yp(t–2) yp(t–3) u(t–1) u(t–2) SSEx102 XLDRT

1 X X X X X 19.1

2 X X X X – 19.6 11
3 X X X – X 13.0 832
4 X X – X X 19.5 10
5 X – X X X 31.6 218
6 – X X X X 31.8 221

7 X X X – 19.6 1.2
8 X X – X 97.7 697
9 X – X X 11.8 980
10 – X X X 39.4 1303

11 X X – 25.4 1114
12 X – X 18.7 978
13 – X X 18.2 968

TABLE1
Models labelled by boldface figures are those
whose inputs include the inputs of the process.

expected, the procedure selects a smaller number of neurons if the noise level
is high than if it is low.

CONCLUSION

A pragmatic three-step procedure for non-linear dynamical model selection
has been proposed, which uses statistical tests at various levels of model
reduction. It relies on the fact that efficient training procedures are available.
It allows the selection of the delayed external inputs, of the feedback inputs
(hence the determination of the order of the model) and of the structural
parameters such as the number of hidden neurons. Its main shortcoming
seems to be the fact that its application is subject to the availability of two
types of data from the process, namely, small-signal responses around chosen
operating points, and large-signal responses in "normal" operation. Its
efficiency is shown on an illustrative example: the neural modeling of a
highly non-linear NARX process.

APPENDIX

The Logarithm Determinant Ratio Test (LDRT) [4]

The problem of the selection of one model out of two can be formulated as a
statistical testing problem. We suppose that an accurate model M1, described
by the vector of paramters θ, is available to explain a set of N experimental
data.  The null hypothesis states that a part θ2 of the vector parameter θ is



equal to zero; if this assumption is true, θ =[θ1, θ2] can be reduced to θ1. If
the alternative hypothesis is true, then θ2 cannot be taken equal to a zero
vector. A very efficient test to solve such a problem is the Likelihood Ratio
Test (LRT), but this test requires the expression of the likelihood function. In
our case, with very large N, it reduces to the Log Determinant Ratio Test
(LDRT) : under the null hypothesis θ2=0, with a scalar output, the
distribution of the statistics :

XLDRT = N log SSE(θ1)

SSE(θ)
converges to a chi-square distribution with dim(θ2) degrees of freedom.

The Akaike's Information Criterion Tests (AIC)

The AIC is an alternative way of selecting a model from a set of models,
using statistical tests. For each model of the set, we compute the AIC value :
AIC = 2 N log(SSE/N) + 2M
where N is the number of data and M is the number of parameters of the
model.
The model corresponding to the smallest AIC value is thus selected as the
best model of the set, with respect to this criterion. This procedure requires
no assumptions on the models. There exist more efficient variants of the
classical AIC [4], such as the AIC*, used in this work :
AIC*= 2 N log(SSE/N) + 4 M
.
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