
Industrial applications of neural networks, F. Fogelman, P. Gallinari, eds
(World Scientific, 1996)

KNOWLEDGE-BASED NEURAL MODELING:
PRINCIPLES AND INDUSTRIAL APPLICATIONS

J.L. PLOIX
NETRAL S.A.
14, rue Verdi

92130 ISSY LES MOULINEAUX

G. DREYFUS
Ecole Supérieure de Physique et de Chimie Industrielles

Laboratoire d'Electronique
10, rue Vauquelin

75005 PARIS

A methodology for designing semi-physical neural models is presented. Starting from a
mathematical model of the process, a recurrent neural network is constructed, and some of its
weights are adjusted from the measurements by training. The application of this methodology to
the modeling of an industrial distillation column, designed for early fault detection, is described.

The use of neural networks as black-box models of dynamical processes has been
more and more widespread during the past years. It is a conceptually straightforward
consequence of the universal approximation property of neural nets, and it has proved
very useful in many applications. However, the black-box character of these models
has often been criticized, since it is indeed wasteful to throw away all the
information that can be gathered from a physico-chemical analysis of the process,
even though this information may be incomplete or insufficiently accurate. In the
present paper, we introduce a methodology, termed knowledge-based neural
modeling, which allows us to take advantage of the available mathematical
knowledge, while retaining the flexibility of neural black-box models. The principles
of knowledge-base neural modeling are first be presented; it is illustrated by the
simulation of an industrial distillation column.

1. Principles of knowledge-based neural modeling
When modeling a dynamical process, two situations may be encountered:
- the mathematical knowledge on the process is very inaccurate, or possibly non-
existent: in such a case, the only possibility is black-box modeling. The use of
neural networks for such purposes has been investigated extensively: the optimal
predictor structures and the optimal training algorithms under various noise
assumptions (NARX models, NARMAX models, Output Error models, etc.) have
been derived1 and applied to various processes, simulated and real;

- a state-space model can be derived from a physical analysis of the process; this
model is reasonably accurate, but the approximations made in the derivation of the
equations, the insufficient knowledge of some phenomena, or the uncertainties on
the numerical values of the parameters of the model, make it unsuitable for the
purpose that it should serve. The key idea of the present paper is that, despite its
shortcomings, such a model can be used as a basis for designing an accurate neural
model.
Assume that the state-space model is of the form:

dx
dt

 = f x(t), u(t)

y(t) = g x(t)
where f and g are known analytically. In a typical chemical engineering unit, the
number of state variables would be on the order of one (or a few) hundred.

The state equations can be discretized to
x(k+1) = x(k) + f x(k), u(k)
y k+1 = g x k+1

 (1)

by Euler's method (other discretization techniques can be used as well). If two
feedforward neural networks can be trained to approximate functions f and g, then a
network such as shown on Figure 1 obeys the same discrete-time equation as the
model.

Since x(k) is a vector, f is a vector too; therefore, instead of using a single network
for approximating the whole vector f, it is generally advantageous to use different
networks for different components fi of f. Several situations may arise:
- function fi (known analytically) can readily be computed: it can therefore be put

simply into a "neural" form; this is a purely formal step, which is just intended
to ease the implementation of the whole model as a neural network ;

- the computation of function fi (known analytically) is time-consuming: for
instance, one has :

dxi

dt
 = fi [x(k), T [x(k), u(k)], u(k)]

with Γ x(k), T[x(k), u(k)], u(k) = 0
where Γ is known analytically; the computation of the value of xi(k+1) requires
solving the second equation at each time step. In such a case, it may be
advantageous to generate a set of representative sequences by solving numerically
the above equations, and to use these sequences for training and validating neural
network #i. Since a properly designed neural network uses a very small number
of neurons, the time necessary for a trained network to compute xi(k+1) can be
smaller than the time necessary for solving the above equations by several orders
of magnitude. The same considerations apply to function g.

- function fi is known with very poor accuracy: it can be implemented purely in a
black-box fashion.

Thus, at the end of this step, one has a neural network which performs exactly as
well - or as badly - as the state-space model.

Feedforward
neural

network #1

Σ

q -1

x 1(k+1)

x1(k) u(k)

Feedforward
neural

network #2

Σ

q-1

x2 (k+1)

Feedforward
neural

network #3

Σ

x 3(k+1)

q-1

x 2(k) x 3(k)

Feedforward neural network

y(k+1)

g

fi

Figure 1 A third-order network obeying equations (1)

As a final step, the knowledge-based neural model is trained with sequences measured
on the process itself. In this step, not all weights are adjustable: since most weights
of the network have a physical meaning, those which are known to be accurate and
not to require any adjustment are kept fixed during training. The only adjustable
weights are the weights of the black-box networks (if any), and the weights whose
values are not known accurately from theory.

One of the benefits of this procedure is that it allows the designer to divide the
global task into smaller subtasks, which greatly facilitates the analysis of the
behaviour of the network.

2. An industrial application

We illustrate the above methodology by the real-time simulation of a distillation
column which is a part of a steam-cracking unit. The purpose of the model is early
anomaly detection: if an accurate model of the normal operation of the column is
available in real time, anomaly detection can be performed by detecting statistically
significant differences between the predictions of the model and the actual
measurements performed on the column.

The distillation column under consideration processes a mixture of three main
species, with impurities up to 9 %. The measurements taken on-site are the
temperatures of eight trays in the column, and the mole fractions of the components
at the top and at the bottom of the column. Therefore, there are only 10 measurable
variables. The state variables of the process are the mole fractions of two species at
each tray; the dynamics of the whole column can be described, as a first
approximation, by a set of 51 coupled non-linear differential equations2, 3 each of
them involving 2 state variables, thereby combining into a model with 102 state
variables. These equations could be solved numerically, but the required accuracy
necessitates the use of much more complex models, which cannot be solved in real
time on personal computers. Therefore, the use of a knowledge-based neural model is
an attractive alternative to a pure knowledge model.

In a simple model, each tray is described by the following differential equations:
Mi xa,i = L xa,i-1 + V ya,i+1 - L xa,i - V ya,i ,

Mi xb,i = L xb,i-1 + V yb,i+1 - L xb,i - V yb,i ,
where xa,i is the mole fraction of component a in the liquid phase at tray i, ya,i is
the mole fraction of component a in the vapour phase at tray i, Mi is the mass of
material held at tray i, V and L are the vapour and liquid flows, assumed (in this
simple model) to be constant throughout the column. The mole fraction of a given
component in the liquid phase is related to its mole fraction in the vapour phase by
the equations of thermodynamics:

ya,i = Ga P, xa,i, xb,i

yb,i = Gb P, xa,i, xb,i ,
where P is the pressure, and where Ga and Gb are known functions.

Since the measurable variables are temperatures, the relation between the temperature
and the mole fractions at tray i must be taken into account :

Ti = Θ P, xa,i, xb,i

Applying the methodology described in the previous section, each tray was modeled
by two small neural networks (3 hidden neurons each) implementing the right-hand
side of the discretized non-linear equations of the process. The external inputs of the
network that models tray i are the control inputs P, L , V , and the mole fractions of
components a and b at trays i-1 and i+1, at time t (xa,i-1(t), xb,i-1(t), xa,i+1(t),
xb,i+1(t)); the state inputs of each tray model are the mole fractions of components a
and b at time t (xa,i(t), xa,i(t). The outputs of each tray network are the mole
fractions of components a and b at tray i at time t+1 (xa,i(t+1), xa,i-1(t+1).

These networks were stacked (with shared weights) so as to build a complete model
of the column. The resulting canonical form1 of the recurrent network is shown on
Figure 3; it has 9 inputs, 10 outputs, 2 of which (mole fractions) are state variables
and 8 of which (temperatures) are related to state variables by non-linear relations.
No measurement can be performed on the other state variables. Due to weight
sharing, and to many weights being fixed by the physics of the process, the network
has 32 adjustable weights only, although the total number of neurons is in excess of
one thousand. Algorithms used for training recurrent networks for dynamical process
identification, when some state variables are not measured (thus cannot be assigned
desired values during training), have been described previously1, 4.

ya, 1
x a, 51

F
L
VF

Ttop

Tbottom

xa
xb

St
at

e
va

ri
ab

le
s

P
L

V

C
on

tr
ol

 v
ar

ia
bl

es
 a

nd

co
ns

tr
ai

nt
s

M
easured variables

 x a i (t),

Delay

, (xa i t+1)

ya
yb

Figure 3 The canonical form of the neural model

This model is implemented on a standard PC 486 running at 66 MHz. One minute
of computation allows the simulation of six minutes of real operation of the
column, which is faster, by at least one order of magnitude, than dynamical models
of equivalent accuracy. Detailed results have been reported in a previous paper5.

3. Conclusion
The present paper introduces an original neural modeling methodology which allows
the designer of a model of a non-linear dynamical process to take advantage of the
existing mathematical knowledge while retaining the flexibility of neural black-box
modeling. This methodology thus circumvents the frequently criticized black-box
character of neural net models, and opens the way to the modeling of large, complex
non-linear dynamical systems in industry. Similar concepts have been applied to the
automatic control of an autonomous four-wheel-drive vehicle6.

Acknowledgments
The authors are very grateful to Jean-Pierre Corriou, who made this work possible,
and to Léon Personnaz and Isabelle Rivals for helpful comments and suggestions.

References:
1. O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, S. Marcos, Neural

Computation 5, 165 (1993).

2 M. Rovaglio, E. Ranzi, G. Biardi, T. Faravelli, Computers Chem. Engng. 14,
871 (1990).

3 L. Lang, E.D. Gilles, Computers Chem. Engng. 14, 1297 (1990).

4 O. Nerrand, D. Urbani, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, IEEE
Transactions on Neural Networks 5, 178 (1994).

5 J.-L. Ploix, G. Dreyfus, J.-P. Corriou, D. Pascal, in Neural networks and their
applications, ed. J. Hérault (1994).

6 I. Rivals, D. Canas, L. Personnaz, G. Dreyfus, IEEE Conference on Intelligent
Vehicles (Paris, 1994).

