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1    INTRODUCTION

The development of engineering applications of neural networks
makes it necessary to clarify the similarities and differences
between the concepts and methods developed for neural networks
and those used in more classical fields such as filtering and
control. In previous papers [Nerrand et al. 1993], [Marcos et al.
1993], the relationships between non-linear adaptive filters and
neural networks have been investigated, and a general framework
has been introduced, which encompasses the recursive training
of neural networks and the adaptation of non-linear filters. Out
of this approach, three new families of training algorithms for
feedback networks emerged; algorithms used routinely in
adaptive filtering and in the training of neural networks were
shown to be specific cases of this general approach.
The adaptive identification of non-linear processes is a natural
field of application of these algorithms. The first part of the
paper will be devoted to a short survey of the recursive training
of feedback (also termed recurrent) discrete-time neural networks
for non-linear identification; the algorithms presented in that
section can be used either for adaptive or for non-adaptive
systems.
Pursuing our effort along the same lines,we show that
algorithms for the adaptive control of non-linear processes by
neural networks can be derived from the above approach.
However, process control has its own goals and constraints:
therefore, the algorithms must be tuned to such specificities.
The second part of the paper is devoted to the presentation of
these algorithms, which are illustrated in detail in the third part.

2 RECURSIVE TRAINING OF FEEDBACK
NEURAL NETS

Network

A neural network architecture of the type shown on Figure 1,
featuring M external inputs, N feedback inputs and one output,
can implement a fairly large class of non-linear functions; the
most general form for the feedforward part is a fully-connected
net. The basic building block of the network is a "neuron",
which performs a weighted sum of its inputs and computes an

"activation function" f - usually non linear - of the weighted
sum:

zi = fi vi     with vi = ∑
j

cij xj      

where zi denotes the output of neuron i, and xj denotes the j-th
input of neuron i; xj may be an external input, a state input, or
the output of another neuron.
The task of the network is determined by a (possibly infinite)
set of inputs and corresponding desired outputs. At each
sampling time n, an error e(n) is defined as the difference
between the desired output d(n) and the actual output of the
network y(n): e(n)=d(n)-y(n). The network training algorithms
aim at finding the synaptic coefficients which minimize a given
satisfaction criterion involving, usually, the squared error e(n)2

[Widrow 1985]
Thus, it is clear that filters and neural networks are formally
equivalent, and that neural networks, which are potentially
capable of realizing non-linear input-output relations, define a
class of non-linear filters.
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FIGURE 1.
Any discrete-time recurrent neural network of

order N can be cast into the above form (termed
canonical form), featuring M external inputs and

N state variables S(n).

Three families of algorithms for the recursive
training of neural networks

The present paper focusses on gradient-based methods using a
sliding window of length Nc, whereby the updating of the
synaptic coefficients is given, at time n, by

∆cij(n) = - µ Dn
∂

∂cij

 1
2

 e(k)2∑
k=n-Nc+1

n

C(n-1)

  (1)



where µ is the gradient step and D[.] stands for a linear
transformation of the gradient. These algorithms aim at
diminishing, on the average, the value of the "training function"

T(n) = 1
2

 e(k)2∑
k=n-Nc+1

n

It is well known that, for linear FIR filters with stationary
input and output sequences, this algorithm, with Nc=1,
produces a sequence of coefficients which converges to the
coefficients which minimize the expectation value of the squared
error (LMS algorithm).

For the computation of the gradient to be meaningful, the
coefficients must be considered as being constant on a window
of length Nt≥Nc, corresponding to the last Nt sampling times.
Thus, for the updating at time n, the Nc errors {e(k)} and their
partial derivatives, appearing in relation (1), are computed from
Nt computational blocks; the values of the coefficients used for
all Nt blocks are the coefficients C(n-1) which were updated at
time n-1. We denote by Sin

m(n) the value of the state input of
block m at time n, by Sout

m(n) the state output, and by em the
error computed by block m. The choice of Nc and Nt depends on
several factors, including the typical time scale of the non-
stationarity of the signals.

The choice of the values of the state inputs and of their partial
derivatives, as inputs of each block, gives rise to a variety of
algorithms. These algorithms fall into three categories
depending on the choice of the state inputs.

1)    Directed     algorithm     s   (Figure 2) : the values of the state inputs
Sin(n) are taken equal to their desired values D(n), for all
blocks; therefore, the network is trained as though it were a
feedforward network obtained by suppressing the feedback loops
of the canonical form of the network. Thus, the error em(n) does
not depend on the errors computed previously   {ek(n), k=1 to
m-1).

2)    Semi-directed     algorithms   (Figure 3) : the values of the state
inputs of the first block at time n are taken equal to their desired
values, and the values of the state inputs of the other blocks are
taken equal to the state outputs of the previous block.

3)    Undirected     algorithms   (Figure 4) : the values of the state
inputs of the first block at time n are taken equal to the
corresponding states computed at time n-1, and the values of the
state inputs of the other blocks are taken equal to the state
outputs of the previous block; therefore, errors are computed
recursively: em(n) depends on the errors computed previously.
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FIGURE 2
Directed algorithm (with Nt=Nc=3).

The blocks perform all operations necessary for
the computation, at time n, of ∆C1(n), ∆C2(n),

∆C3(n); the total coefficient modification is
given by:

∆C(n) = ∆C1(n)+∆C2(n)+∆C3(n).
For more details see [Nerrand et al. 1993{  EX

"Nerrand et al. 1993" } ].
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FIGURE 3
Semidirected algorithm (with Nt=4 and Nc=2).
The blocks perform all operations necessary for
the computation of ∆C1(n), ∆C2(n), ∆C3(n);
the total coefficient modification is given by:

∆C(n) = ∆C1(n)+∆C2(n)+∆C3(n)+∆C4(n). For
more details see [Nerrand et al. 1993].
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FIGURE 4
Undirected algorithm (with Nt=3 and Nc=2).

The blocks perform all operations necessary for
the computation, at time n of ∆C1(n), ∆C2(n),

∆C3(n); the total coefficient modification is
given by: ∆C(n) = ∆C2(n)+∆C3(n).

For more details see [Nerrand et al. 1993]



Directed and semi-directed algorithms can be used only if all
state variables have desired values, as is the case in black-box
models, where the state variables are the output and its delayed
values. If some, but not all, state inputs do not have desired
values, hybrid versions of the above algorithms can be used:
those state inputs for which no desired values are available are
taken equal to the corresponding computed state variables (as in
an undirected algorithm), whereas the other state inputs may be
taken equal to their desired values (as in a directed or semi-
directed algorithm).

In each category, three algorithms are defined, depending on the
choice of the partial derivatives of the state inputs. This is
summarized in Table 1. Note that backpropagation cannot be
used with UD, D-UD and SD-UD algorithms.

Illustrative examples of the application of these algorithms to
problems in adaptive filtering and in process identification can
be found in [Dreyfus et al. 1992{  EX  "Dreyfus et al. 1992" } ].

3   NON-LINEAR IDENTIFICATION BY NEURAL
NETWORKS

The application of these algorithms to identification is
straightforward: the desired output of the network whose
synaptic coefficients must be computed is the output of the
process to be modelled. In the following, we show how the
above algorithms are related to classical approaches in system
identification [Ljung 1987].
Three approaches with black-box models
(S(k) = {y(k), y(k-1), ...y(k-N+1})will be considered, depending
on the assumptions made on the process : (i) the NARX

(equation error) model , (ii) the NARMAX model, and (iii) the
output error model .
The first initials of the acronyms refer to the choice of the state
inputs; the second initial refers to the choice of the partial
derivatives of the state inputs. Backpropagation cannot be used
with D-UD, SD-UD and UD algorithms.In the equation error
approach (Non-linear Auto-Regressive with eXogeneous inputs,
or NARX, model), it is assumed that the process obeys the
following equations:

s(k+1) = ϕ U(k), S(k)  + w(k+1)  ,
y(k) = s(k)  ,

where w(k) is white noise and U(k) stands for the external
inputs. The associated predictor of the output y(k) is given by

ym(k+1) = ϕ U(k), S(k)   ,
where ym(k) is the predicted value of y(k). Thus, the predictor
of the equation error process is actually a non-recursive
predictor, whose inputs are the external inputs of the process
and the (measured) outputs of the process. This has an
important consequence: assume that there exists a neural
network which can realize function ϕ  exactly; this network can
therefore implement the predictor, and it has precisely the
structure of the network which is trained by a Directed
algorithm, as defined above.

A NARMAX (Non-linear Auto-Regressive Moving Average
with eXogeneous inputs) model obeys the following equations:

s(k+1) = ϕ U(k), S(k), W(k)  + w(k+1),
y(k) = s(k)  ,

where W(k) = {w(k), w(k-1), ..., w(k-Nw+1). The associated
predictor is defined by:

ym(k+1) = ϕ U(k), S(k), E(k)   ,
with e(k)=y(k)-ym(k) and E(k)= e(k), e(k-1), ..., e(k-Nw+1)   .
Thus, the predictor of the NARMAX process is recurrent of
order Nw.

In the output error approach, it is assumed that the process
obeys the following equations:

s(k+1) = ϕ U(k), S(k)   ,
y(k) = s(k) + w(k)  .

In this case, the associated predictor for the ouptut y(k) is given
by:
ym(k+1) = ϕ U(k), Ym(k)   ,
where Ym(k) = ym(k), ym(k-1), ..., ym(k-N+1)  .
Thus, the associated predictor of the output error process is
recurrent of order N. Assume that there exists a neural network
which can realize function ϕ exactly; this network can therefore
implement the predictor, and it has precisely the structure of the
network which is trained by a Undirected algorithm, as defined
above.

To summarize, the algorithms derived for the adaptive training
of discrete-time neural networks can readily be applied to the
adaptive identification of dynamical non-linear processes.
Directed algorithms are best suited to the identification of
equation error models, whereas Undirected algorithms are best
suited to the identification of NARMAX and output error
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Undirected
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∂cij

 (n-1) ∂Sout
m-1

∂cij

 (n)
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1 (n-1) Sout

m-1(n) zero zero

UD-SD
Sout

1 (n-1) Sout
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zero
∂Sout
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∂cij

 (n)

Table 1.
Summary of algorithms
Des. val. = desired value



models. It is intuitive, and it can be shown analytically in
simple cases [Dreyfus et al. 1992], that Semi-directed
algorithms bridge the gap between these approaches; they can be
especially useful when dealing with unstable NARMAX
predictors [Chen and Billings 1989].

4    ADAPTIVE TRAINING OF FEEDBACK
NEURAL NETS FOR NON-LINEAR CONTROL

The approach to non-linear control which is presented in this
section can be regarded as a non-linear, adaptive version of
Linear Quadratic (LQ) state feedback control with a reference
model (see for instance [Åström and Wittenmark 1989]). It
capitalizes on the fact that the algorithms described above can be
used for controlling the system in such a way that the output of
the process can be made as close as possible to the output of the
(suitably chosen) reference model.
We first make the assumption that the process to be controlled
has been identified by one of the above algorithms, so that there
exists a neural network predictor model, whose coefficients are
known. In addition, assume that a reference model of the
process, prescribing the desired output yr corresponding to the
reference sequence {r}, has been designed. We want to find the
coefficients of a neural network controller which computes a
control sequence {u}, from the reference sequence {r}. Thus, the
ingredients of the control system are:
- a reference model,
- a "neural" predictor, with fixed coefficients, which

computes its output ym from the control signal U,
- a "neural" controller, whose coefficients are to be

computed, adaptively or non-adaptively.
We denote  the output of the process by yp.

Three families of algorithms

1)    R-M,      RS-M     and      U-M     algorithms   (Figure 5)
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FIGURE 5
Architecture associated to a R-M control

algorithm

The training function involves the squared difference between
the output of the model (hence the M in the acronym) and the
output of the reference model. In a R-M algorithm, the state
variables and their partial derivatives are initialized to the values
of the state variables of the reference model (hence the R in the
acronym), and the algorithm is run in a Directed fashion. RS-M

and U-M algorithms are similar in spirit except for the fact that
they are run in a Semi-directed or Undirected fashion. The
approach of neural control developed in [Narendra et
Parthasarathy 1991] lies entirely within the specific framework
of R-M, RS-M and U-M algorithms.
The process itself is absent in these algorithms: therefore, they
can be useful for validating the structure of the controller by
computer simulations, since they do not require any
measurement to be taken from the plant.

2)    P-M     and      PS-M     algorithms   (Figure 6)
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Architecture associated to a PS-M control

algorithm

The training function involves the squared difference between
the output of the model (hence the M in the acronym) and the
output of the reference model. In a P-M algorithm, the state
variables and their partial derivatives are initialized to the values
of the state variables of the process (hence the P in the
acronym), and the algorithm is run in a Directed fashion. PS-M
algorithms are similar in spirit except for the fact that they are
run in a Semi-directed fashion.
Here, the process itself is used for the state initializations, so
that this architecture can actually be used for controlling the
process in an adaptive context.

3)    P-P,      PS-P     and      U-P     algorithms   (Figure 7)

The training function involves the squared difference between
the output of the process (hence the second P in the acronym)
and the output of the reference model. In a P-P algorithm, the
state variables and their partial derivatives are initialized to the
values of the state variables of the process (hence the first P in
the acronym), and the algorithm is run in a Directed fashion.
PS-P and U-P algorithms are similar in spirit except for the fact
that they are run in a Semi-directed or Undirected fashion.
Here again, the process itself is used for the state initializations,
so that this architecture can actually be used for controlling the
process in an adaptive context.



R-M, P-M and P-P algorithms must involve NARX predictors;
all other algorithms must involve recursive predictors.

 In addition to the above algorithms, other combinations of
state initializations and error computations are possible. For the
sake of brevity, they will not be considered here.

5   ILLUSTRATION: IDENTIFICATION AND
CONTROL OF A NON-LINEAR PROCESS

We consider a non-linear first-order process simulated by

yp(n+1) = [1 - T
a1+a2yp(n)

] yp(n) +  T 
b1+b2yp(n)

a1+a2yp(n)
 u(n)

with a1=-0.14 , a2=1.2 , b1=5.63 , b2=-0.33 , T=0.1 sec.

Identification can be performed adaptively with a simple
first-order model which is locally accurate in state space, or non-
adaptively with a more complex first-order model which is
globally accurate in the region of state space which is spanned
during training. Figure 8 shows the response and the
identification error of the adaptive equation error predictor in
response to a step function with added noise; function ϕ  is
implemented by a linear neuron with inputs u(n), yp(n) and
bias. Figure 9 shows the response and the identification error of
the non-adaptive model (same inputs, one layer of five hidden
neurons and one linear ouput neuron) after training with a
Directed algorithm. The adaptive model is more accurate than
the non-adaptive one except during transients.
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Control: the reference model is a first-order low-pass filter.
The predictor model is the above non-adaptive model. The
controller is a fully connected feedforward network with four
hidden neurons; its inputs are r(n), y(n) and a bias; the
amplitude of the control signal u(n) is constrained to be in the
interval [0.1, 10]. Training takes place in two steps: first, a R-
M algorithm (y(n)=yr(n)) is used non-adaptively in order to get a
first approximation of the coefficients; the resulting network is
subsequently adapted with a P-M algorithm (y(n)=yp(n)). Figure
10 shows the error during the latter phase.
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6    CONCLUSION

We have presented a general approach to the identification and
training of non-linear dynamical systems with neural networks.
The general framework for recursive identification, which had
been proposed earlier, has been briefly summarized and put into
the perspective of familiar recursive identification approaches. In
the second part of the paper, we have presented three families of
new algorithms for control. We have illustrated these
approaches with an example of identification and control, both
adaptive and non-adaptive.
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