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Abstract

We present a novel neural method for data cluster-

ing using temporal segmentation of spiking neurons.

Our clustering algorithm relies only on distances be-

tween data points. Each point is associated with

a neuron, and the distances are used to determine

the synaptic weights between those neurons. The

dynamical development of this system leads to syn-

chronous �ring of neurons that belong to the same

cluster, while di�erent clusters �re at di�erent times.

Such dynamic behavior is called temporal segmenta-

tion. It is achieved via two mechanisms - intra cluster

synchrony, induced by excitatory connections within

each cluster, and desynchronization between clusters

induced by inhibitory competition. We test our clus-

tering method on the iris data set. For problems that

do not have a unique clustering solution, we construct

a pair-correlation matrix on the basis of multiple clus-

tering solutions. By performing a second clustering

algorithm, this time on the pair-correlation matrix,

we are able to de�ne second order clusters of the orig-

inal distance matrix. This method is demonstrated

on a biological data set.

1 Introduction

Analyzing large sets of data has become an important

task in many scienti�c research areas. This inevitably

�irito@post.tau.ac.il
yhorn@neuron.tau.ac.il
zBrigitte.Quenet@espci.fr

involves clustering [4], which becomes a di�cult task

when the data space is high dimensional, i.e. when

the number of features that characterize each point is

very large. In such situations, it might be useful to

rely solely on the distances between the data points.

This is the basis of many clustering methods that use

these distances as a dissimilarity measure. Under the

assumption that points within a cluster are closer to

one another than to points in other clusters, clustering

becomes equivalent to searching for groups of points

where the distances within each group (cluster) are

much smaller than the distances between points in

di�erent clusters.

In this paper we present a non parametric approach

to data clustering, based on an analogy between data

points and a neural system. We associate the data

points with spiking neurons, and use the distances

to determine the synaptic interactions between these

neurons. We show how temporal properties of our

neural system, namely segmentation and binding, can

be used to perform clustering. Synchrony is believed

to be a powerful binding mechanism in animal brains.

This inspires us to employ a temporal tagging device

as the means of clustering. We demonstrate how a

system of integrate-and-�re (I&F ) neurons can be

used to perform a clustering task, relying on the fact

that coupled I&F neural systems can exhibit stag-

gered oscillations of neuronal cell assemblies. These

assemblies are de�ned through the synchrony of their

neurons, and we use them to represent clusters. As

a result, neurons that belong to the same cluster �re

together, while neurons that belong to di�erent clus-

ters are temporally segmented. Thus, some of the
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topology of the data space is observed. We apply our

clustering procedure to the well known iris data[5],

and to a biological data set[2].

Whereas for the �rst data-base our method leads to

unique clustering solutions, this is not the case for the

second data base. In the latter we �nd many possible

clustering solutions, hence we have to employ a sec-

ond clustering algorithm in order to obtain a clear cut

classi�cation of the data set. To do that, we consider

the pair-wise correlations of neurons in many di�er-

ent clustering solutions to the same problem. These

correlations can serve as a measure of the similarity

between data points. Using these correlations we de-

�ne a distance matrix that forms the basis for the

second order clustering problem. The resulting clus-

ters reveal new structure in data space.

2 Interacting I&F Neurons

Our analysis is performed by a set of continuous

integrate-and-�re (CIF) neurons for which we em-

ploy a description [6] that uses two dynamic variables.

When driven by strong external input I = Iext, our

CIF neuron is a nonlinear oscillator. The details of

the single neuron dynamics are speci�ed in [6].

We consider an array of such neurons interacting

with each other via constant synaptic couplings Wij.

This means that in addition to the external input,

each neuron receives internal input that results from

the �rings of other neurons:

Ii(t) = Iexti + �jWijfj(t) (1)

where fj denotes the spike of neuron j. Note that

these pulse-coupled interactions do not undergo any

delay. Excitatory interactions in a system like that

lead to synchrony among the �ring neurons, whereas

inhibition leads to desynchrony. This is the property

that we rely on when we perform data clustering [7].

3 The Clustering Method

Our clustering method[7] is based on distances be-

tween the points of the data set. If the feature space

is not Euclidean, we have to deal with the problem

of de�ning the relative scaling of the various axes and

the suitable metric to be used for de�nition of the dis-

tance. One may use the city-block metric, a Euclidean

metric or a generalized Minkowski distance [12]. For

measuring distances between clouds of points with dif-

ferent variance, it is sometimes helpful to use the Ma-

halanobis distance[8]. The calculation of the latter is

done after performing a whitening similarity transfor-

mation, leading to a trivial correlation matrix in the

new basis.

Another di�culty arises when the various fea-

tures di�er by orders of magnitude (e.g. meters and

nanometers). This can be overcome by normaliza-

tion of the data features. In our applications we saw

that the speci�c choice of normalization had almost

no e�ect on our clustering results. Therefore, unless

otherwise noted, we restrict ourselves to simply cal-

culating the Euclidean distance between data points

whose coordinates lie between 0 and 1.

From now on, we will assume that the data we an-

alyze are characterized by a distance matrix Dij be-

tween data points i and j. We will associate each

data point with one of our neurons, and choose the

coupling Wij to be a decreasing function of Dij , e.g.

Wij =
a�Dij

b
; Wii = 0 (2)

For example, one may take a and b as the average

value and standard deviation of the distance matrix,

respectively. This standard choice will assign positive

synaptic weights between neurons whose distance is

less than the mean value of the distance matrix, and

negative weights otherwise, while maintaining the val-

ues of the weights within certain limits.

Under these conditions, neurons that are close to

one another tend to �re synchronously, thus de�ning a

cluster. For better separation, we induce competition

between the clusters using global inhibition propor-

tional to the total activity:

Ii(t) = Iexti +�jWijfj(t) � 
�jfj(t) (3)

Taking the external input Iexti to be the same for

all neurons, the system generally converges after a

short while onto a periodic solution, where the dif-

ferent clusters �re at di�erent times, thus achieving

temporal segmentation.

3.1 The Iris data

As �rst demonstration of our technique we apply it

to the iris data set[5], that consists of 150 data points

belonging to 3 groups of equal size. The groups are 3

species of iris, and each of the data points is described
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by 4 valued features: petal-length, petal-width, sepal-

length, and sepal-width.

Using synaptic weights of the form of eq. 2 and

running the dynamics of eq. 3 we were able to clas-

sify correctly 85% of the data points. Better results

can be obtained by a slight modi�cation of the clus-

tering procedure. We impose a normalization condi-

tion, rescaling the synaptic weights so that �jWij is

constant. Moreover, we impose such normalization

conditions separately on the excitatory and on the in-

hibitory connections. In addition, we limit each neu-

ron to one spike per cycle, where a cycle is de�ned by

the overall period of the system. This requires disre-

garding the spike of a neuron unless all others have

�red since its last spike. Under these conditions, our

neural simulation turns into an algorithm that classi-

�es correctly 90% of the iris data points. The results

are shown in Fig. 1.

N
e

u
ro

n
 N

o
.

150

100

50

0

10

T
o

ta
l 
A

c
ti
v
it
y

T I M E

Figure 1. Results of our clustering algorithm for the

iris data set. The sum of weights that each neuron re-

ceives is the same, and a neuron is not allowed to �re

twice in the same cycle. The bottom frame displays

the total spiking activity of the system while the up-

per frame shows the activity of all 150 neurons. The

neurons are ordered according to their species, so that

neurons 1-50 belong to one species, etc.

In the lower frame we see that the periodic total

activity of the system has three di�erent peaks, the

phenomenon we refer to as temporal segmentation.

The groups of neurons belonging to the three peaks

de�ne the three clusters of the data. The segregated

activity of the three clusters is shown in the upper

frame as a raster plot. Note that each peak in the

total activity corresponds to the activation of one of

the clusters.

It is interesting to note that our results are compa-

rable with other powerful clustering algorithms. Our

success rate of 90% is an improvement over the 83%

of [3] (who use an analogy of data points with mag-

netic spins) but falls short of the 98% success rate of

the geometric neurons of Lipson and Siegelmann[10].

4 Second Order Clustering

The answer to a clustering problem is not always

unique. This often happens when one studies bio-

logical or psychological data where the features of the

data points are not embedded easily into a continu-

ous metric space. Moreover, the topology of the data

space may not reduce to a hierarchical order of clus-

ters, where one can divide the data into a few large

subsets that are composed of a few subsets them-

selves, and so on. Rather, the data space may be

composed of many overlapping clusters. Such a situ-

ation is manifested in our system by the existence of

many cluster candidates to the same problem. These

solutions may even be contradictory, i.e. a particu-

lar pair ij of two elements may sometimes appear in

the same cluster and sometimes in two di�erent clus-

ters. The number of clusters may change as well. An

example is shown in Table 1, where the 16 most fre-

quent cluster solutions of the bee data set[2], to be

explained below, are presented.

In general, multiplicity of cluster solutions does not

mean that there is no structure in the data space.

The individual solutions need to be examined in order

to extract some information regarding that structure.

We suggest the following analysis that results in clear

cut classi�cation of the data set.

Our method relies on �rst generating many cluster-

ing candidates by varying over the parameters a; b and


 in Eqs. 2 and 3. We then construct a correlation

matrix

Cij =
1

M

MX

m=1

Xm
ij (4)

where the factor Xm
ij is 1, if i and j appear in the
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same cluster in the solution m, and is zero otherwise.

M is the number of cluster solutions that were pro-

duced. We can regard the elements Cij as a similarity

measure between neurons i and j. Since our cluster-

ing procedure is applied on a dissimilarity matrix, it

would be better to de�ne a distance matrix, based on

the correlations in C. This can be done by de�ning

�mij = 1�Xm
ij . Note that the triangular inequality is

satis�ed by the �'s. Next we de�ne distance elements

by averaging over all solutions:

dij =
1

M

MX

m=1

�mij : (5)

Clearly, the elements of d, that are the sums of �'s

obey the triangular inequality:

dij � dik + dkj 8i; j; k: (6)

Therefore, d can be regarded as a new distance matrix

which may be used for performing a second clustering

procedure. The clusters of the correlation-based dis-

tance matrix are then to be regarded as second order

clusters of the original distance matrix D.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 2 2 2 3 3 1 3 3 2 1

2 1 2 1 1 1 3 3 3 2 3 2 1 1

3 1 2 1 3 3 3 2 2 1 2 2 1 1

4 1 1 1 2 2 2 3 3 3 3 3 2 1

5 1 1 1 2 2 2 3 3 1 3 3 3 1

6 1 1 1 2 2 2 3 3 3 1 3 2 1

7 1 2 1 1 1 3 2 2 3 3 3 3 1

8 1 2 1 1 1 2 3 3 3 2 3 2 1

9 1 2 1 3 3 2 2 2 2 2 3 3 1

10 1 2 1 3 3 3 2 1 1 2 2 2 1

11 1 1 1 2 2 2 3 3 3 3 3 1 1

12 1 2 1 3 3 2 2 2 2 2 2 3 1

13 1 2 1 1 1 2 3 3 3 2 3 1 1

14 1 2 1 3 3 3 2 2 1 2 1 3 1

15 1 2 1 1 1 3 2 2 3 3 3 2 1

16 1 2 1 1 1 2 2 3 3 2 3 3 1

Table 1: Each line describes one clustering can-

didate solution of the bee data set. There are

13 elements in this problem, and each is assigned

one of three clusters in every one of the 16 candi-

date solutions shown here. The cluster to which the

�rst element belongs is always assigned the number 1.

It is interesting to note that the leading eigenvectors

of C can serve as a geometrical representation

of some of the structure of the data set. In the

next section, where we discuss the bee data set, it

becomes obvious that whereas no apparent structure

of D is observed by a multi-dimensional scaling

technique, some structure of C comes out from an

analogous two-dimensional display while a clear-cut

classi�cation is obtained by the second clustering

algorithm performed on the new distance matrix d.

5 Analysis of the Bee Data Set

We apply our second-order clustering method to a

data set resulting from the analysis of the cuticular

hydrocarbon pro�les of honeybees extracted from the

same colony and belonging to 13 subfamilies. The cu-

ticular hydrocarbon pro�les have been shown to be

genetically based: in a given colony, two workers that

are full sisters (they are said to belong to the same

'subfamily') have signi�cantly closer pro�les than half

sisters[1]. Each subfamily can be labeled by a pro-

�le averaged over its members and represented by a

normalized vector in the 22 dimensional space of the

chemical compounds of a pro�le. The following ques-

tion arises: can the subfamilies of a given colony be

gathered into di�erent classes according to their dis-

tances in pro�le space?[2]

There exist 13 subfamilies in this problem. They

were identi�ed by using the Mahalanobis distance

with a metric governed by the mean intra-subfamily

covariance matrix weighted by the number of cases

in each subfamily (see for instance [11]). This cal-

culation led to a 13� 13 matrix of distances Dij be-

tween the 13 subfamilies which are the elements of our

clustering problem. To envisage the structure that

such a matrix implies one can apply a conventional

multi-dimensional scaling technique such as classi-

cal scaling[8] (also known as metric scaling). This

method is based on the assumption that the distances

can be derived from an embedding of the N data

points in an N-1 dimensional Euclidean space, i.e. all

distances obey the triangular inequality. One may

then de�ne a positive semi-de�nite matrix F by per-

forming the following transformations on the distance

matrix D:

eij = �0:5(Dij)
2 (7)

Fij = eij � heilil � helj il + helkilk (8)

where hil means average on l. The eigenvectors of F

can serve as principal coordinates. In our case, there
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Figure 2. Results of classical scaling performed on

the bee distance matrix. The 13 elements are spread

throughout the 2-dimensional space.

are two large eigenvalues (whose sum is half the sum

of all eigenvalues). Taking
p
�jVj as the jth axis, for

j = 1; 2 results in a di�use con�guration of the 13

elements, with no evident structure, as can be seen in

Fig. 2. This rather homogeneous distribution of data

points must be the reason for the many possible clus-

tering solutions of the type shown in Table 1. We pro-

ceed now to show howmore structure can be extracted

from these data. Using our clustering algorithm we

obtained many possible classi�cations. Table 1 shows

the 16 most frequent ones, all of which correspond to

3 cluster classi�cations. 4 and 5 cluster classi�cations

occur as well but they are relatively rare. We have

used a large set of such solutions (860 di�erent clus-

tering candidates in 1781 solutions) to construct the

13�13 correlation matrix of Eq. 4. This matrix turns

out to have three large eigenvalues. The eigenvector

with the highest eigenvalue, �0 = 4:47, has roughly

identical contributions from all 13 elements, since it

points to the mean of the distribution of pairs. Hence

it is not helpful in �nding the structure we are after.

However, the next two eigenvectors, �1 and �2, whose

sum is approximately equal to the sum of all remain-

ing 10 eigenvalues, can serve such a purpose. These

eigenvectors are identical with the two highest eigen-

vectors of the covariance matrix, in which the mean

is eliminated. They span the two-dimensional space

of Fig. 3.

Fig. 3 displays quite clearly some of the clustering

structure of the correlation matrix. It is important

to note that this structure could not have been ex-

tracted directly from the original distance matrix. It
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Figure 3. A two dimensional projection of the corre-

lation matrix of the 13 elements of the bee data set

reveals some clustering structure.

took the clustering procedure, and the correlation ma-

trix based on the clustering outcome, to generate this

result. We may identify in Fig. 3 some structure that

is also evident in Table 1. Thus note that the points 1,

3 and 13 are very close to one another, re
ecting the

fact that they belong to the same cluster. In Table

1 these elements always appear together. The slight

separation between them in Fig. 3 results from the

existence of other solutions that we take into account

in constructing the matrix C, where these three ele-

ments are not always grouped into the same cluster.

At this stage we perform the second clustering al-

gorithm on the matrix d itself. The result, which is

robust under changes of a and b, resembles the partial

representation of Fig. 3. We �nd the following clus-

ters: A=[1,3,4,5,13], B=[2,7,8,9,10,11] and C=[6,12].

One may wonder to what extent this method really

describes structure existing in the data. To demon-

strate that it does, we employ a distance criterion that

can serve as the means for de�ning a cluster partition-

ing: The average distance between two clusters (de-

�ned by averaging over all distances between points

in the two clusters) has to be larger than the aver-

age distance between the elements in each cluster1.

The partitioning of the data into groups A B and C

obeys this rule. Hence we conclude that it describes

true structure that is not evident unless second-order

clustering is performed.

1Minimization of this criterion can serve as the basis

for a clustering algorithm. However, when the number of

data points is large, this calculation becomes impractical.
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6 Summary

We have shown that a simple model of CIF neu-

rons can serve as a tool for data clustering. Clus-

tering relies on dynamical synchronization properties

of spiking neurons: Intra cluster synchrony can be in-

duced by instantaneous excitatory connections, while

inter cluster desynchronization is induced by global

instantaneous inhibition. This method can be ap-

plied to data points that are embedded in high dimen-

sional spaces, since it uses only the distances between

the points. Specifying guidelines for determining the

weights, our method does not require problem speci�c

preprocessing. Fast convergence of systems of spik-

ing neurons allows us to use this clustering method

for problems of arbitrary size. Imposing a constraint

so that each neuron is allowed to �re only once in

a cycle, and using normalization constraints on the

weights, we considerably improved the results of our

clustering procedure.

This neural clustering method can be generalized

to perform image analysis. For this purpose we need

to embed our CIF neurons in a two-dimensional sur-

face, so that each neuron corresponds to one pixel in

the image. Identifying objects in the image with clus-

ters, the task of segmenting an image into its compo-

nents may be identi�ed with clustering. The relevant

dimensions in this problem are de�ned by the two-

dimensions of the surface and the grey scale of the

pixels. In other words, pixels that lie close to one

another and have very similar grey scales are to be

associated with the same object, or cluster. In [7] we

have demonstrated how image analysis can be per-

formed by our neural system. Other algorithms for

image segmentation that rely on neuronal synchrony

exist in the literature. They include LEGION [13]

and the PCNN method [9].

When the clustering procedure does not lead to a

unique solution we propose a method that allows us to

uncover some structure in the data and de�ne second

order clusters. This method can be described as per-

forming two consecutive clustering algorithms. The

�rst one, clustering of the distance matrix D, leads

to many (contradictory) clustering solutions. They

serve as the basis for de�ning a pairwise correlation

matrix C, out of which a new distance matrix d is cal-

culated. Then, the second clustering procedure may

be performed. Using this second procedure we were

able to uncover structure that was not observable oth-

erwise.
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