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Abstract

We describe and discuss the properties of a binary neural network that
can serve as a dynamic neural filter (DNF), that maps regions of input space
into spatiotemporal sequences of neuronal activity. Both deterministic and
stochastic dynamics are studied, allowing the investigation of the stability of
spatiotemporal sequences under noisy conditions. We define a measure of the
coding capacity of a DNF, and develop an algorithm for constructing a DNF
that can serve as a source of given codes. On the basis of this algorithm we

suggest using a minimal DNF capable of generating observed sequences as a



measure of complexity of spatiotemporal data. This measure is applied to
experimental observations in the locust olfactory system, whose reverberating
local field potential provides a natural temporal scale allowing the use of a
binary DNF. For random synaptic matrices, a DNF can generate very large
cycles, thus becoming an efficient tool for producing spatiotemporal codes. The
latter can be stabilized by applying to the parameters of the DNF a learning

algorithm with suitable margins.

1 Introduction

Three types of neural network paradigms (Hertz, Krogh & Palmer 1991, Peretto 1992)
were developed two decades ago. Two of them were based on supervised learning, in
order to construct feedback attractor networks (Hopfield 1982) for associative mem-
ory and feedforward multilayer perceptrons (Rumelhart, Hinton & Williams 1986)
for functional representation. The third used unsupervised learning to produce self-
organized maps (Kohonen 1982). These three conventional paradigms of neural com-
putation were formulated in terms of mathematical neurons that are very different
from biological reality, and it is still unclear how, if at all, biological neural net-
works perform any of them. Over the past decade interest in theoretical neuroscience
(Dayan & Abbott 2001) has shifted to analyzing neural networks of spiking neurons
with dynamical synapses in the hope of getting closer to the natural roles and pur-
poses of the relevant biological networks. We will argue that it is nevertheless timely
to consider yet another model of binary neurons with discrete temporal dynamics,
and show its applicability to a biological system.

An interesting issue in neuroscience is the question of spatiotemporal coding.
Its existence has been demonstrated (Wehr & Laurent 1996) in the locust olfactory

system, where the spatiotemporal behavior of projection neurons encodes the odor



presented to its receptor neurons. This transformation from odor-input to spatiotem-
poral activity occurs in the antennal lobe, that is the first module of the olfactory
system. This system may therefore be regarded as a dynamic neural filter that turns
spatial information distributed over its many glomeruli, that are fed by the receptor
neurons, to specific spatiotemporal outputs. It is interesting to point out that, al-
though this is a complicated biological system, it has an important simplifying feature
that allows it to be represented by a simplified model of mathematical neurons, i.e.
the fact that the activity of the projection neurons is limited to temporal bins defined
by an oscillatory local field potential. Hence a model with binary neurons obeying
Hopfield-Little dynamics (Peretto 1992) can provide a valid first order approximation
of the spatiotemporal behavior of that system. We study a recurrent model of this
kind, using an asymmetric coupling matrix that allows for the generation of large
temporal sequences. The novelty of our approach is that we use this model as a Dy-
namic Neural Filter (DNF), relating input space to spatiotemporal behavior of the
recurrent network. As such it does not correspond to any of the three paradigms
quoted above, it does not come to rest at fixed-points, and is not necessarily based
on supervised learning.

We have presented this model in a previous work(Quenet, Horn, Dreyfus & Dubois
2001) and demonstrated how it can be used to generate the spatiotemporal behavior
of projection neurons observed by (Wehr & Laurent 1996). Here we wish to discuss
several fundamental issues concerning this model, such as its stability and coding ca-
pacity. Moreover, we provide an algorithm for constructing a DNF that can generate
a given set of spatiotemporal data. This algorithm is used to define and characterize
the complexity of the data set of (Wehr & Laurent 1996). It should be emphasized
that the latter is used only as a relevant example, and we do not claim that the DNF

is a realistic representation of the biological reality. Nonetheless, as in the conven-



tional three paradigms quoted above, it can be used as a schematic model that will

subserve further detailed modeling of biological systems.

2 The Model

2.1 Short Biological Motivation

The antennal lobe of insects serves as the first stage of olfactory computation, using
as input signals of chemical receptors and transforming them into outputs of projec-
tion neurons (PN) to the next stage of the olfactory tract (the mushroom body). In
the locust there are about 800 excitatory PN cells (Laurent & Naraghi 1994), and a
slightly smaller number of inhibitory local interneurons (LN) that form dendroden-
dritic interactions with the PNs and with themselves, and receive receptor information
as well. The output of this system is that of PNs only, hence we will consider our
model as a rough sketch of PNs, with interactions that should be regarded as effective
interactions mediated by the LNs.

The antennal lobe exhibits a reverberating field potential (LFP) at frequency of
about 20Hz. This LFP reverberates for a few cycles (up to tens of them), then
quiets down until it begins to repeat such behavior. See, e.g., the review of (Laurent,
Stopfer, Friedrich, Rabinovich, Volkovskii & Abarbanel 2001) for more details. The
PN fire within the up phase of the LFP, hence the latter may be regarded as defining
an effective clock, with time bins of, e.g., 30 ms of activity and 10 ms of rest. This

motivates us to use a simplified model with discrete temporal dynamics.



2.2 The Recurrent Network

In our model, a binary neuron %, representing a PN, may either fire, n; = 1, or be
quiescent, n; = 0, in a given temporal bin of the LFP. There are N neurons in the

model obeying the following Hopfield-Little dynamics
ni(t+1) = H(hi(t+ 1)) wanj )+ R, —6;) (1)

where w;; is the synaptic coupling matrix, R; is the external constant input (specifying
odor activation) and 6; is the threshold. H is the Heaviside step function taking the
values 0 for non-positive arguments and 1 for positive ones.

This model can be readily generalized to account for the presence of noise by

replacing the deterministic rule by the stochastic one

1

where € is the noise parameter. We will study the stability of results of the determin-

istic dynamics to the noise introduced by the stochastic dynamics.

2.3 Deterministic Dynamics

In order to analyze the one-step dynamics of Eq. 1 we define a Lyapunov function L
that describes just this one-step, in the sense that, considering all dynamical states
at time ¢ + 1, it will be minimal for the state that is a solution to these dynamics.

Let us define the initial and final states,

n! =n,(t) ni =mn;(t+1) (3)

)

relevant to the one-step of Eq. 1. Clearly I and F' are just two of the 2V states that

the system of neuron possesses. We can prove that

=— Zw”n‘]n - Zn (4)



obtains its unique minimum on the state J = F.

Consider
k= —(2n — Dhi = —(2n] = )3 wynj + R — 0;). (5)
J

For J = F this quantity is negative for every 1, following the deterministic dynamics.
For any other J there will be elements i for which the sign will flip. Hence 3°; k77 will
be minimal for J = F. We note in Eq. 5 that &/ contains terms that are dependent

on n/, to be denoted by 217 where
J

and terms that are independent of n/. Since the latter are common for all I, the
minimum of ¥, k77 will be reached for the same J as the minimum of L/ = ¥, [/1,

the Lyapunov function of Eq. 4.

2.4 Stochastic Dynamics

The one-step Lyapunov function (4) plays an important role in the stochastic dynam-
ics'. As we will see, the probability of obtaining a state J after starting from a state
I can be written in terms of this function:

—LT /e

P(J|I) = Sk o—LKT /e

(7)

To prove this result we start from the probability of obtaining the state F, i.e.

the one following from the deterministic dynamics. It is straightforward to show that

1
1+ eki/e ®)

Tt was applied to a model with symmetric synaptic couplings by (Quenet, Cerny, Dreyfus &
Lutz 1997).

P(nf|1) =




hence
P(F|I) =TLP(nl|I). (9)

Any other state J differs from the state F' by some flips of neuronal states, e.g.

n) =1-—nl. In such a case, P(J|I) will be the probability of obtaining the corrupted

state F', having the wrong digit in its mth place, which is P(Fl[)ekfw[/e. But, at this
location m,
1

kL = G 2D = 17— (1)

Since for all other neurons 71 = [/1 it follows that
P(J|I) = P(F|I)e®"—E"/e, (11)

This will be true for any state irrespective of how many flips occur because of their
independent nature. Hence, eq. 7 is proved.

The stochastic dynamics of Egs. (1) and (2) leads to a homogeneous and irre-
ducible Markov process, i.e. the transition matrix is time invariant and all elements

of the transition matrix

Ty = P(J|I) (12)

are strictly positive. Such a Markov process has a stationary probability distribution,

p(I), that is an eigenvector of the transition matrix with the highest eigenvalue, 1:

Z Typ(I) = p(J) (13)

JFrom this stationary probability distribution, that is obtained asymptotically in
the evolution of the system, one can calculate the asymptotic probabilities of the
transitions p(I — J):

p(I — J) = P(J|1)p(I) (14)



The stationary Markov process has an entropy rate (Cover & Thomas 1991)

H=—> p(ITylog, Ty (15)
IJ

that serves as a lower bound on the expected dimension of any binary code of the
Markov process. Since in our case all states are described by vectors of length N it
follows that

H < N. (16)

The upper limit is approached when the noise parameter € is high and all transition

matrix elements tend to be equal.

3 Numerical Examples

As explained in the Introduction, we propose to view the model described in the
previous chapter, as a filter relating input space R; to spatiotemporal sequences of
the recurrent network. In this chapter we will demonstrate numerically how the DNF

acts. For simplicity we choose both w;; and R; to have positive and negative integer

1

values, while fixing 0; = 5. This means that R; will now effectively represent both

input and threshold of neuron 7.

3.1 Mapping of Input Space

It should be noted that, once the matrix w is given, there is a restricted range of
interest for R :
— Zwin(wij) <R; <-— Zwin(—wij) +1 (17)
J J
Outside this range the dynamics becomes trivial because the input determines directly

the neuronal values.



As a first example of deterministic dynamics we study an N = 2 system because

it can be easily mapped in an exhaustive manner. We choose the synaptic matrix

W:<—12 —21)

and use an initial null state n;(0) = 0. The dynamics generate 14 different sequences,
including the four (2%) fixed points, several two-cycles and one four cycle. In Fig. 1
we display the coding zones, i.e. the ranges of R corresponding to a single temporal
sequence. The overall range of R space is chosen to be somewhat larger than the
range of (17). In its center we find that many different sequences are produced (small
coding zones), while in the periphery a single sequence dominates. Fig. 2 shows
the length of each sequence, on the same R plane. We define it as the length of
the sequence the model generates before one of its states is being repeated. This
definition of length takes into account both the order of the cycle and the transition
time it takes to reach it. The interesting (i.e. long) sequences appear near the center
of R space. The periphery is dominated by fixed points and two-cycles.

Building on this experience we study next an N = 5 system with the synaptic

matrix
0O -2 -5 =3 0
6 2 8 =14 0
w = 1 1 0 -2 1
—4 6 1 1 3
4 -1 2 —4 0

Now much larger sequences can be generated, and we would like to see the ensuing
mapping of input space and test the stability of the sequences to noise. In order to
be able to view the results, we choose R3 R, Rs to lie in the center of their expected
range, as specified by Eq. (17), and study the system in the R; Rs plane, limited to
their relevant ranges.

First let us view, in Fig. 3, the coding zones of different sequences in R-space.

Their average size is 10, i.e. there is an order of magnitude of information compression

8
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Figure 1: Ranges of input space in a 2 neuron problem that lead to identical spa-
tiotemporal behavior, defined as coding zones. The label of each code, or spatiotem-

poral behavior, varies from 1 to 14 in this problem.
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Figure 2: Sequence length of the N = 2 problem mapped on the 2-dimensional input

space.



from R space to the spatiotemporal sequences. The lengths of the latter are displayed
in Fig. 4. They include many cycles of lengths 4, 5 and 6.

The coding zones are the analogs of basins of attraction. The latter signify do-
mains of initial conditions that lead to the same attractor. Here we stay with a fixed
initial condition (the null state) and search for domains in input space that lead to the
same temporal sequence (transition into a cycle). Note the large number of different
sequences obtained in this problem. It is exponentially larger than the number of
fixed points that we are accustomed to in attractor neural networks (describable by
the same dynamics with symmetric synaptic matrices). We estimate, on the basis of
simulations, that the total number of sequences in the 5-dimensional R-space is of
the order of 3800. In the two-dimensional section of R-space shown in Fig. 3 we find

38 different sequences, whose lenghts are displayed in Fig. 4.

3.2 Distances Between Codes

The mapping of R space into spatiotemporal codes can also serve as defining a distance
between different codes. It is thus interesting to compare different sequences generated
over a neighborhood of R space, as seen in Table 1. All these sequences can be read
off as we move along the R, axis at fixed Ry = 4. The sequences are ordered according
to increasing value of Ry, where we indicate the central value of the coding zone, and
the states for each time bin are written in the binary representation 1+ $7_, n,;2°7%.
The columns Dg and Dgr describe two distances, to be defined below, from the first
sequence.

As one moves along from the first sequence to the second, and then to the third,
only one state changes over the observed range of T'= 7. Moreover, this change cor-

responds to the flipping of just one neuron (ny at ¢t = 3 between the first and second
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Figure 3: Coding zones of spatiotemporal sequences of an N = 5 problem, plotted
on a plane defined by two of the input variables. Other inputs are held constant at

their central values.
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Figure 4: Sequence length of the 38 different sequences mapped out in Fig. 3.



Table 1: A list of six neighboring sequences in a system with five neurons, displayed

over seven time steps.

Ry | Dg | Dyz | t=1 2 3 4 5 6 7
-151 0 0 17 22 6 8 3 17 22
12 2 1 17 22 14 8 3 17 22
-8 | 4 2 17 22 14 16 3 17 22
-3 5 10 17 30 16 3 17 30 16
2 6 11 25 30 16 3 17 30 16
8 7 7 25 30 16 11 3 17 30

sequence). Proximity in R may therefore be related to proximity in the identity of
states appearing in two sequences, or proximity in the sense of Hamming distance
between all neurons at all time steps. Thus we define three distances between se-
quences: Dg is the “edit distance”, defined as the number of insertions and deletions
needed to change one sequence into another, limiting oneself to the natural length of
each sequence, i.e. until one of the states reappears. Dp is the Hamming difference
between the two spatiotemporal patterns of neural activities. Clearly this grows with
the length of the sequence. In the example of Table 1, where we limit ourselves to
7 time steps, we list the corresponding 7-step Hamming distance, Dg7. Finally, we
may define Dpg, the Euclidean distance between the centers of the coding zones in R
space. Table 1 lists the values of Dg and Dgr distances from the first sequence in
this table. Using 18 sequences of this problem, including the six shown in Table 1,
we find a high correlation (0.87) between Dy and Dg and a lower correlation (0.56)
between Dy7 and Dy. The latter signifies the fact that, whereas for some sequences

the Hamming distance correlates well with R distance, there are cases where several
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neurons flip as one moves from one code to the next. In Table 1 this occurs between
the third and the fourth sequences and between the fifth and the sixth ones. Note,
however, that in the fourth sequence the state 30 replaces two states, 22 and 14, of
the third sequence. Therefore, Dg between the two will be only 3. This explains
in what sense the two sequences should be regarded as close to one another, as also
borne out by the short distance in R.

These results can also be studied from the viewpoint of the individual neurons.
Since the first line has the lowest value of Ry, none of its states involve an active
neuron number 2, i.e. all have ny = 0. Moving up to Ry = —12, ny is activated in
state 14. At the next stage it is activated in state 16. Further increases of Rs lead to
activation of neuron number 2 in the states 30 and 25. Thus we envisage a gradual
increase in the number of states that contain an active neuron number 2. Since the
volume of state-space is relatively moderate, 32, we find that in spite of the change
in the identity of the state, e.g. change of 6 to 14 in step t = 3 between the first and
the second row, the next state remains 8 and the rest of the sequence is reiterated.
This leads to the good correlation with Dg. We believe that this property may be
useful in DNF applications to the study of problems such as gene sequences, where
low N models may apply.

The correlation between R-distance and edit-distance may be lost at large N. The
reason is that the volume of state-space grows like 2V. Hence, once a change occurs
in one state, the next transition may point to another state in this large space and
the ensuing sequence may change completely. Numerical trials in an N = 50 model
have shown this to be the case. Thus the correlation of nearby sequences, as defined

by proximity in R-space, may be lost in large neural networks.

13



3.3 Stability under Stochastic Dynamics

Next let us ask how robust these sequences are against noise. We choose € = 0.5,
which is where considerable effects may be expected, since this is the lowest absolute
value that the potentials h; can have. As an example let us look at the probability

of a correct four step sequence
Py = P(Fy|F3) P(F3|F2) P(Fo|Fy) P(F1[1), (18)

where 1 designates the initial null state. This is the product of the probabilities of
obtaining the correct first four states of the appropriate deterministic sequence at a
given point in R-space. The results for the problem at hand are plotted in Fig. 5 on
the same grid of R-space as in the two previous figures. We see that a few sequences
are relatively stable, but others have low probability of being correctly recovered
during the first four steps of this Markov process.

To exemplify the origins of instability we compare two 6-cycles, at locations (10,
-10) and (10,15) of Figs. 4 and 5. In Fig. 6 we plot the histograms of the h; values
(over all neurons for the first four steps of the dynamics) for these two cases. Clearly,
at € = %, the occupancy of the bins of h = :i:% will determine the instability following
from Eq. 2. Since the sequence at (10,-10) has three elements in these bins, it is
reduced to P, = 0.36. All other sequences in Fig. 5 have either three elements in
these bins or more. The sequence at (10,15) has five elements in these bins, as can
be seen in Fig. 6, hence its retrieval probability is reduced to Py = 0.18.

Let us remark at this point on the Markov chain properties discussed in section 2.4
and, in particular, the stationary probability distribution p(7) of Eq. 13. Using the
R-space point (10, -10) as an example, we find that the following states are the most
probable ones: 17, 22, 30, 32. Their respective probabilies are: 0.106, 0.175, 0.173,

0.169. In the problem at hand we start with state 1 as the initial condition, looking

14
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Figure 5: Probability of recovering correctly the first four time-steps in the sequences

of Figs. 3 and 4 when stochastic dynamics is being used with ¢ = 0.5.

Figure 6: Histograms of h; values of two 6-cycles in the NV = 5 problem.
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for the sequence 1 — 17 — 22 — 30 — 32. The relevant transition probabilities for
the terms in Eq. 18 are 0.98 x 0.95 x 0.73 x 0.53 leading to Py = 0.36. Obviously, the
major reduction of the probability occurs at the first two steps, from state 1 to 17
and from 17 to 22. This is also where the three appearances of h = i% occur: two of

them affect the transition of 1 to 17 and one occurs in the transition from 17 to 22.

Figure 7: Entropy of the Markov chains corresponding to the sequences of Figs. 3

and 4 when stochastic dynamics is being used with € = 0.5.

3.4 Entropy of the Markov Chains

Finally we show in Fig. 7 an analysis of the entropy of the different Markov chains of
this system. This is done for € = 0.5 and can be compared with the P, results in Fig.
5. The Markov chains with low entropy are the ordered ones, leading to relatively
high probability of correct retrieval of the first four states. The chains with high

entropy are the disordered ones, leading to low probability of correct retrieval.
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4 The Inverse Problem

The previous chapter exhibited examples of what may be called the direct DNF
problem: given a matrix w and a set of R values, solve the dynamics of Eq. 1 and
generate the resulting sequence. We wish to pose now an inverse problem: given a
set of several sequences, find a corresponding DNF, i.e. values of w and R that can
produce this set. There are two parts to this question. First, does a solution exist?
Second, if the problem is soluble, find an example. This may be further expanded
into a search for all possible solutions, which lies outside the scope of the present

work.

4.1 The Existence Problem

Suppose a given data set is comprised of K different spatiotemporal sequences of
length 1" each, presented as activities of N neurons. An example is shown in Table
2 for K = 6, T = 4 in a system with N = 4 neurons. We wish to find out if
there exists a DNF such that this set of sequences is elicited by K different inputs
RF k=1,.-- K.

Table 2: Six spatiotemporal sequences defined for four time-steps in a system with

four neurons.

t/k| 1 2 3 4 5 6

11100 1000 1110 1000 1011 1000
2 /1110 1100 1111 1010 1000 1110
3 /1101 1101 0111 0110 1110 0111
4 {0001 0001 0011 0111 1111 0001

The neuronal values may be labelled nf(t), t = 1,---T. Each time step, for each

17



sequence, defines a state of the system
|kt >= {nF()}izr..n- (19)

24 such states can be seen in Table 2, some of which are identical with one another,
yet no identical states appear in a single sequence. Each state |k,t > follows from the
previous state |k,t — 1 > through deterministic dynamics. The initial state |k, 0 > is
chosen as the null state nf =0 foralli=1,---Nand k=1,--- K.

Consider a single neuron 7 in this system. We may then reduce the question
posed here into a perceptron problem for this neuron. The neuron is given KT initial
vectors (counting states from t = 0 to ¢ = T — 1) and its required output values
n¥(t) (from ¢t = 1tot =T for all k = 1,--- K). It has to perform the calculation
(1) given a different input RF for each of the K sequences. To take account of the
K different inputs (biases) we extend the vector states of length N to new vectors of

length N + K through the concatenation
|k, t) = |k, t > x{0ak a1, K (20)

where 9, is the Kronecker delta function obtaining the value 1 for @ = k£ and 0
otherwise. The extension by K bias axes allows us to represent the deterministic
dynamics, for each neuron i, as KT perceptron inequalities in an N + K dimensional

system. These can be strictly met (see, e.g., (Hertz et al. 1991)) for N obeying
A: KT <N+ K or K(T'—1) < N. (21)

In the large N limit one can apply the Cover result (Cover 1965), saying that a

solution may be found for

B: KT <2(N+K) or %K(T—Q)gN. (22)
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For the example of Table 1, the strict condition A implies N > 18, and condition
B leads to N > 6. This could mean one should extend the system shown in Table 2 by
at least two, if not more neurons. Nonetheless, one can obtain a solution for N = 4.
This is due to the fact that the states in this table were not chosen in a random and
independent fashion?. Note also the example discussed above in section 3.1. 33 out of
the 38 sequences in Fig. 4 have length 4 or more. Counting only the first four states
we find 22 different sequences, much more than conditions A and B would suggest.
This is so because we did not ask in 3.1 for the matrix that can produce an arbitrary
choice of states appearing in K sequences of length 4, but counted how many different
sequences were produced by a given matrix. These sequences turned out to be quite
similar to one another, as described in 3.2.

Thus, conditions A and B should be regarded as sufficiency conditions, assuring
us, A that a solution must exist, and B that it may be found for lower N. With more
effort one can try to solve the inverse problem, i.e. find an explicit matrix w, for yet

smaller N

4.2 Perceptron Learning

JFrom our approach to the existence problem it should be quite evident that if a
solution exists it may be obtained using a straightforward extension of the Rosenblatt
algorithm (Rosenblatt 1962, Hertz et al. 1991). We describe it in this section, realizing
explictly the abstract vectors in N + K dimensions described in the previous section.

Let us start by defining, for each neuron 7, an N + K dimensional vector of

perceptron weights "

(@), =w;; forj=1,---N  (@0)yp=R\—0; fork=1,-- K. (23)

2The rationale for the choice of states in Table 2 will be discussed below in section 5.3.
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The sequence states of interest will be represented by vectors #*(t), for neuron i,
living in the same N + K dimensional space but carrying further indices of k and ¢

as follows
(@F(t); =nft)2nf(t+1)—1) forj=1---N t=0,---T—1 (24)

(@F ) Nta = 6k (2nf(t+1) —1) fora=1,---K.
In other words, the vectors #*(t) represent the states weighted by a positive or
negative sign depending on whether the target neuron ¢ at the next time step will be

1 or O respectively. With these definitions, all constraints of the inverse problem can

be written as K'T' perceptron inequalities
w2t >0 forallk=1,---K t=0,1,---T — 1. (25)
We propose to use the perceptron learning rule (Hertz et al. 1991)
At = 9zt (t) H (—; - (1)) (26)

while iterating the system, time and again, over all KT states. The Heaviside function
guarantees that W' gets modified at a given iteration by the vectors #*(¢) that do
not satisfy the inequality. This algorithm converges (Hertz et al. 1991) if the system
of inequalities is soluble.

Moreover, one can use the same algorithm to require stability under stochastic

dynamics, by insisting on a margin M in the perceptron inequalities:

@ TR > M (27)

AW = k() H(—w" - 2% (t) + M). (28)



In Chapter 3, where we used integer values of w and R and kept all 0 = %, we worked

with an implicit margin of size % This is the reason that testing the system with

stochastic dynamics of € = % we found considerable effects. Insisting on larger M,
if the data allow it, will guarantee stability for larger ranges of €. Given a situation
of the type encountered in Fig. 5, one may want to improve robustness of a possible
code, such as the one located at (10,15) in the R plane. This can be tried by applying
the algorithm presented by the previous equation for a suitably chosen M. The size
of M is of course limited by the data. For a general discussion of optimal margin
selection see (Vapnik 1995).

If the algorithms are implemented with n = 1, they lead to integer values of w
and R — 6. An arbitrary choice of n < 1 can lead to continuous A values. It is then
advisable to keep a finite M to ensure some robustness to noise.

Finally, we wish to comment that one may apply in a similar manner the Ho-

Kashyap procedure (Duda, Hart & Stork 2001), indicating, if it does not converge,

that a given set of data is not linearly separable.

5 Capacity and Complexity

5.1 Capacity of Codes of Given Length

The DNF produces sets of spatiotemporal codes. Its capacity could be measured by
the number of codes it can produce. This is a very large number and may not be very
meaningful if we consider an application with stochastic dynamics. Moreover, what
would be really interesting is a measure of capacity of random codes, expected to be
very distant from one another. Clearly two codes that are close will not constrain the
system. If one is learned, some other close-by codes will be automatically produced

for nearby R values.
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Suppose we look for the number of codes of length T such that the same state
does not appear twice, neither within the same code nor among the different codes.
This would be the case if the states are chosen randomly from all 2V possibilities
of an N-neuron system. Following the reasoning of section 4.1 this number can be
expected to reach

2N

if criterion B is applied. Cp may be viewed as a capacity measure of a DNF.
Note that the last equation leads to Cp = 1 for T"' = 2N + 2. This means that a
DNF of order N may be expected to accomodate a cycle of length 2N + 2. The latter

may then be used to construct the DNF.

5.2 Random Synaptic Weights

There exist synaptic matrices that do not have the ability to generate large cycles.
It is well known that symmetric matrices w lead to fixed-points or two-cycles and
antisymmetric matrices may lead up to four-cycles only (Peretto 1992). In general,
however, a system of N neurons may generate large cycles, limited by the total num-
ber of states, 2¥. (Gutfreund, Reger & Young 1988) have shown that, for R; = 0,
large cycles are generated when values of w;; are chosen randomly from a Gaussian
distribution centered at zero, and thresholds 6; = 3, w;; ~ 0 ®. This was further
studied numerically by (Niitzel 1991), who pointed out that large cycles can be ob-

D WigWsi

tained for some range of the asymmetry a = S around the point 0 of random
ij )

asymmetry 4. The average size of the cycles grows as an exponential in N, with an

3Related questions within the framework of Ising spin systems have been studied by (Crisanti &

Sompolinsky 1988).
4This definition of asymmetry differs from the parameter used by (Gutfreund et al. 1988) and

(Niitzel 1991) but it shares the relevant characteristics of varying between 1 and -1, with the ex-
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exponent that increases as the asymmetry approaches zero. A system with a simi-
lar structure but slightly different dynamics was studied by (McGuire, Littlewort &
Rafelski 1991).

Working with non-zero R values in our DNF, we noted that the interesting large
cycles occur around the center of the relevant range of R. This is where the average
effect of the inputs cancels the average effect of the synaptic weights, in agreement
with the observations of (Gutfreund et al. 1988). Thus we expect, for any given
N, that matrices w that have large capacities Cp for large T, have a random-like
distribution of synaptic values. We are, however, content even with cycles of order
N, as is the case of our examples in Chapter 3. Note that in the locust antennal lobe
(see section 2.1) there are hundreds of neurons participating in the real biological
system. Hence it is quite reasonable for it not to display cyclic behavior over the few

LEFP bins over which it is measured.

5.3 An Example: The Wehr-Laurent Experiment

We wish to return now to the example that motivated our investigation. (Wehr &
Laurent 1996) display in Fig. 3 of their paper the response of two specific neurons
to nine mixtures of odors. Significant results were obtained during the first four
reverberations of the local field potential. They can be presented as six different
binary codings shown in Table 3, three of which appeared twice in the nine odor
mixtures. Each of the six columns specifies the state of activity of the observed pair
of neurons for one of the six spatiotemporal codes.

Looking at the first column it is clear that it cannot be produced by a DNF, where

states at time ¢ are determined by states at t—1, unless it possesses at least two hidden

tremes characterizing the symmetric and anti-symmetric cases. The completely asymmetric case

corresponds to a = 0. The example of the 5-dimensional matrix in chapter 3 has @ = —0.4067.
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Table 3: Binary Odor Coding

t/k| 1 2 3 4 5 6
11 10 11 10 10 10
11 11 11 10 10 11
11 11 01 01 11 01
00 00 00 01 11 00

= W N =

neurons. Hence we conclude that this should be treated as a T'=4, K = 6 problem.
Looking for a system with Cy ~ 6, we know we can do it with N = 18 (using condition
A), but may expect to be able to do it with N = 6 (using condition B) or less. Tt
turns out we can do it with N = 4. A set of states of 4 neurons, that accomodate the
two observed neurons of Table 3, is given in Table 2. The latter was constructed by
choosing states of hidden neurons by trial and error until all perceptron inequalities
were satisfied, assuring the existence of DNFs with matrices w and inputs R* that
can generate this table. Thus we are able to implement the binary odor coding of

(Wehr & Laurent 1996) in an N = 4 model.

5.4 Minimal DNF as Measure of Complexity

The example of the Wehr-Laurent experiment raises the possibility of using the DNF
model to define the complexity of a spatiotemporal data set. This degree of complexity
can be characterized by the minimal number of neurons N needed to accommodate
the data within a DNF. ; From the discussion in the previous paragraph we conclude

that the Wehr-Laurent problem of Table 3 has DNF-complexity of degree 4 °.

5Obviously this should be regarded as a mathematical statement and may have nothing to do
with the biological reality. In the antennal lobe one finds excitation of hundreds of PNs during each

odor presentation.
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6 Discussion

The problem of odor spatiotemporal encoding was recently reviewed in detail by
(Laurent et al. 2001). As a theoretical model these authors suggest ‘winnerless com-
petition’, a concept that was further expanded in (Rabinovich, Huerta, Volkovskii,
Abarbanel, Stopfer & Laurent 2000) and (Rabinovich, Volkovskii, Lecanda, Huerta,
Abarbanel & Laurent 2001). Basing their intuition on Lotka-Volterra equations they
point out that for suitably chosen parameters, there exist heteroclinic orbits connect-
ing all N attractors of the N dimensional system, that are very sensitive to external
inputs. Systems of FitzHugh-Nagumo neurons that exhibit spatiotemporal sensitivity
to external inputs are studied by them as a neural implementation, but no attempt
is made to fit a particular data set such as the one of (Wehr & Laurent 1996).

In comparison, we use a binary model with discrete dynamics, but nevertheless we
claim that it is relevant to the observed data. The reason is that the periodic LFP in
the antennal lobe provides a temporal scale that accounts for specific time bins, and
allows discrete coding, as observed by (Wehr & Laurent 1996). With a DNF model
that fits these data, one can envisage a model of spiking neurons capable of mimicking
the experimental results (Quenet, Dubois, Sirapian, Dreyfus & Horn 2002). This can
be done by imposing overall periodic inhibition that allows for action potentials during
periodic time windows, and by fitting synaptic delay parameters to match the same
windows.

Recently, (Friedrich & Laurent 2001) have observed spatiotemporal odor repre-
sentations in the olfactory bulb of zebrafish. This system has also a reverberating
local field potential and mitral cells that fire in coincidence with it. The authors have
studied the response of this system to similar odors, characterized by small changes

in molecular structures of the relevant chemicals. One of their interesting results is
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that the correlation between temporal patterns of similar odors over the mitral cells
reduces with time (between the first and second 500 ms after odor presentation). This
contradicts the expectation that short distances in R-space lead to high correlations
between the spatiotemporal sequences. The reason is the large value of N in this
system. Since the volume of state-space is 2V, once a change in a sequence occurs, it
may lead to a new sequence uncorrelated with the old one.

Our model can be compared with recent work by (Maass, Natschlager & Markram
2001) who propose a recurrent neural network that performs what they call ‘liquid
computation’. Their network is composed of spiking neurons and is structured in two
stages: (1) a filter transforming spatiotemporal input into spatiotemporal behavior
of the network. (2) the activation of a readout map. Thus this network projects
spatiotemporal input into an output representation that is spatial in nature. Although
these authors put special emphasis on real-time learning based on perturbations, the
common feature of their approach and ours is the use of a filter projecting from an
input to an output space. Whereas in our model the input space is spatial and the
output space is spatiotemporal, their model goes in the opposite direction. However,
in general, both models can connect spatiotemporal spaces to one another, and both
use neural networks as filters, performing computations that are different from the
conventional major paradigms. Our model is based on binary mathematical neurons,
whereas (Maass et al. 2001) deal with more realistic neural behavior. Nevertheless,
the advantage of our DNF is that its structure can be made explicit, thus allowing
full understanding of its operation and capabilities. Among other things, we can use
this understanding to solve an inverse problem, i.e. construct a DNF that produces

a given repertoir of spatiotemporal data.
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