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Abstract. The recent developments of statistical learning focused on vector 
machines, which learn from examples that are described by vectors of features. 
However, there are many fields where structured data must be handled; there-
fore, it would be desirable to learn from examples described by graphs. Graph 
machines learn real numbers from graphs. Basically, for each input graph, a 
separate learning machine is built, whose algebraic structure contains the same 
information as the graph. We describe the training of such machines, and show 
that virtual leave-one-out, a powerful method for assessing the generalization 
capabilities of conventional vector machines, can be extended to graph ma-
chines. Academic examples are described, together with applications to the pre-
diction of pharmaceutical activities of molecules and to the classification of 
properties; the potential of graph machines for computer-aided drug design is 
highlighted. 

Introduction 

Whether neural networks still fall in the category of “unconventional” computational 
methods is a debatable question, since that technique is well understood and widely 
used at present; its advantages over conventional regression methods are well docu-
mented and mathematically proven. Neural networks are indeed conventional in that 
they learn from vector data: typically, the variables of the neural model are in the 
form of a vector of numbers. Therefore, before applying learning techniques to neural 
networks, or any other conventional learning machine (Support Vector Machine, 
polynomial, multilinear model, etc.), the available data must be turned into a vector of 
variables; the learning machine then performs a mapping of a set of input vectors to a 
set of output vectors. In most cases, the output is actually a scalar, so that the mapping 
is from n to , where n is the dimension of the input vectors. When modeling a 
physical process for instance, the factors that have an influence on the quantity to be 
modeled are known from prior analysis, so that the construction of the vector of vari-
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ables is straightforward, requiring simply normalization, and possibly variable selec-
tion by statistical methods. 

In many cases of interest, however, encoding the data into a vector cannot be per-
formed without information loss. Such is the case whenever the information to be 
learnt from is structured, i.e. is naturally encoded into a graph. In scene analysis for 
instance, a scene can be encoded into a graph that describes the relationships between 
the different parts of the scene. In computer-aided drug design, the purpose of learn-
ing is a mapping of the space of molecules to the space of pharmaceutical activities; 
in most cases, the structure of the molecule explains, to a large extent, its activity. 
Since molecular structures are readily described by graphs, QSAR (Quantitative 
Structure-Activity Relationships) aims at mapping the space of the graphs of molecu-
lar structures to the space of molecular activities or properties. 

In the present paper, we describe an approach to learning that can be termed un-
conventional insofar as its purpose is a mapping of graphs to real numbers (or vec-
tors) instead of a mapping of vectors to real numbers. The latter quantities may be ei-
ther real-valued (graph regression) or binary (graph classification). The idea of 
learning from graphs (and generally structured data) can be traced back to the early 
days of machine learning, when Recursive Auto-Associative Memories (RAAMs) 
were designed for providing compact representations of trees [1]. It evolved subse-
quently to Labeled RAAMs [2], recursive networks [3], and graph machines (for a re-
view of the development of numerical machine-learning from structured data, see 
[4]).  

The first part of the paper is devoted to a description of graph machines and of 
some didactic, toy problems. It will also be shown that model selection methods that 
are proved to be efficient for conventional machine learning can be extended to graph 
machines. The second part of the paper will describe novel applications of graph ma-
chines to the prediction and classification of the properties or activities of molecules, 
a research area known as QSAR/QSPR (Quantitative Structure-Activity/Structure-
Property Relationships). We show that graph machines are particularly powerful in 
that area, because they avoid a major problem of that field: the design, computation 
and selection of molecular descriptors. 

Graph machines 

We first provide the definitions and notations for handling acyclic graphs, and the 
construction of graph machines from general graphs (possibly cyclic). Academic 
problems are described as illustrations. It is shown that the training and model selec-
tion methods developed for vector machines can be extended to graph machines. 

Handling directed acyclic graphs 

Definitions: we consider the mapping from a set of acyclic graphs G to a set of real-
valued numbers. 
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For each acyclic graph Gi of G, a parameterized function gi   !n
! !  is constructed, 

which is intended (i) to encode the structure of the graph [5], and (ii) to provide a pre-
diction of the quantity of interest, e.g. a property or an activity of the molecule, from 
Gi. It is constructed as follows. A parameterized function fθ (“node function”) is asso-
ciated to each node. θ  denotes the vector of parameters of the node function. All 
nodes, except the root node, have the same node function fθ; those functions are com-
bined in such a way that gi has the same structure as graph Gi: if an edge from node k 
to node l exists in the graph, then the value of the node function associated to node k 
is a variable of the node function associated to node l. The root node may be assigned 
a different function, denoted by FΘ, where Θ  is the vector of parameters of FΘ. If the 
node functions are neural networks, the gi’s are termed recursive neural networks [3]. 

Notations: the following notations are used throughout the paper. 
We denote by xj the (optional) vector of labels that provide information about node j 
of graph Gi. The size of the label vector is denoted by Xi; it is the same for all nodes of 
a given graph. Therefore, the parameterized function associated to Gi will be denoted 
as 

   
g
!,"

i
x

1
,x

2
,...,x

#
i

( ) , where νi is the number of nodes of graph Gi. If no specific in-

formation about the node is necessary, 
 
g
!,"

i  has no variable: its value depends only on 
the structure of graph Gi. 

We denote by zj the vector of variables of the node function fθ(zj) of the non-root 
node j of graph Gi. Denoting by dj the in-degree of non-root node j, and defining 

  

M
i
= arg max

j

d
j
, the size of vector zj is equal to Di = Mi + Xi + 1. The vectors of 

variables of the node functions fθ(zj) are constructed as follows: for all j, the first 
component 

  
z

j

0  is equal to 1 (the “bias” if fθ(zj) is a neural network, the constant term 

if fθ(zj) is an affine function); for node j, of in-degree dj, components 
  
z

j

1  to 
 
z

j

d
j  are the 

values of the node functions assigned to the parent nodes of node j; if dj < Mi, compo-
nents 

  
z

j

d
j
+1  to 
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j
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i  are equal to zero; if Xi ≠ 0, components 
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i  are the la-
bels of node j. 

We denote by yi the vector of variables of the node function 
  
F
!

y
i

( )  of the root 

node of graph Gi. The size of yi is Δi = dr + Xr + 1, where dr denotes the in-degree of 
the root node and Xr the size of its vector of labels. 
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0  is equal to 1 (bias), 
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are the values of the node functions assigned to the parent nodes of the root node, 
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r  are the labels assigned to the root node. 
As an example, Fig. 1 shows an acyclic graph G1 with maximum in-degree M1 = 2; 

the corresponding graph machine is: 
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Fig. 1. An acyclic graph and its graph machine 

If no information about the nodes is required by the problem at hand (X1 = 0), one 
has D = 3, and: 
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Cyclic graphs 

Graph machines handle cyclic graphs and parallel edges. To that effect, the initial 
graph is preprocessed by deleting a number of edges equal to the number of cycles, 
and all parallel edges but one; moreover, a label is assigned to each node: it is equal to 
the degree of the node, thereby retaining the information about the original graph 
structure. Finally, a root node is chosen and the edges are assigned orientations, ac-
cording to an algorithm described in [6]. 
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The training of graph machines 

Graph machines are trained in the usual framework of empirical risk minimization. A 
cost function J(Θ ,θ) is defined, and its minimum with respect to the parameters is 
sought, given the available training data. The cost function takes into account the dis-
crepancy between the predictions of the models and the observations present in the 
training set, and may include regularization terms, e.g.: 

  

J !,"( ) = y
i
# g

!,"

i( )
2

i=1

N

$ + %
1
! + %

2
" , (2) 

where N is the size of the training set, yi is the value of the i-th observation of the 
quantity to be modeled, and λ1 and λ2 are suitably chosen regularization constants. 

Since the parameter vectors θ  and Θ  must be identical within each function gi and 
across all those functions, one must resort to the so-called shared weight trick; the k-
th component of the gradient of the cost function can be written as 

!J ",#( )
!"

k

=
!J

i

!"
ki=1

N

$ , (3) 

where Ji is the contribution of example i to the cost function. We denote by 
 
n
!

k

i the 

number of occurrences of parameter θk in acyclic graph Gi; if the root is assigned the 
same parameterized function as the other nodes, then 

 
n
!

k

i  is equal to the number of 

nodes in graph Gi. The shared weight trick consists in setting 
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i
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so that one has finally: 
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!"k
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!J

i
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n
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i

$
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$ . (5) 

Relation (5) is subsequently used for minimizing cost function (2) by any suitable 
gradient descent algorithm (Levenberg-Marquardt, BFGS, conjugate gradient, …). 

If functions fθ and FΘ are neural networks, the usual backpropagation algorithm 
may be conveniently used for computing the gradient; otherwise, one resorts to nu-
merical estimations thereof. 
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Didactic examples: learning the number of nodes and the number of cycles of a 
graph 

In the present section, two simple examples are provided, whose solutions can be 
worked out analytically because they are linear. In both cases, we consider the train-
ing set made of three graphs, shown on Fig. 2. 

 

 
Fig. 2. A training set 

Learning the number of nodes of a graph: first, assume that it is desired to learn, 
from examples, the number of nodes of a graph. Then the desired mapping is: G1→4; 
G2→8; G3→9. Moreover, generalization should be performed by using the node 
functions thus obtained in any other graph machine, i.e. to compute the number of 
nodes of any graph. 
The first step consists in constructing directed acyclic graphs (DAGs) from the initial 
graphs. The construction of the DAGs is obvious for G1 and G2. Since graph G3 has 
four cycles, four edges must be deleted. Fig. 3 shows the directed acyclic graphs on 
which the graph machines will be based. 

The node function fθ is sought in the family of affine functions 
   

f
!
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j
z

j

j=0

D"1

# , 

and FΘ is taken identical to fθ. Since the presence or absence of an edge is irrelevant 
for the computation of the number of nodes, no label is necessary: X1 = X2 = X3 = 0. 
The node functions being the same for all graphs of the training set, we take 

  
D = max

i

M
i
+1= 5 . Since all edges are equivalent, one has θ1 = θ2 = θ3 = θ4 = θ. 

Therefore, there are actually two independent parameters only. 
The obvious solution is θ0 = θ = 1. For graph G1 for instance, one has: 
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Fig. 3. The acyclic graphs derived from the training set shown on Fig. 2. 

Similarly, one has, for graph G2: 
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for graph G3:
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Learning the number of cycles in a graph: similarly, consider learning, from 
examples, the number of cycles in a graph. 
By contrast to the previous example, the presence or absence of edges is highly rele-
vant, so that each node must be labeled by its degree: X1 = X2 = X3 = 1. Therefore, one 
has 
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i

M
i
+ 2 = 5 . 

fθ is sought in the family of affine functions 
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# , and the root node is 

assigned a different affine function 
  
F
!
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( ) . Therefore, the size of vectors yi is 

  
max

i

!
i
+1= 7 , because the present problem requires an additional label, equal to 1, 

for the root nodes. 
An obvious solution to the problem is the following: θ0 = -1, θ1 = θ2 = θ3 = 1, 

θ4 = 1/2, Θ0 = -1, Θ1 = Θ2 = Θ3 = Θ4 = 1, Θ5 = 1/2, Θ6 = 1; the additional label as-
signed to the root node is equal to 1. 

Consider graph G1: fθ(z1) = fθ(z2) = fθ(z3) = -1/2, 

  
y

1
= 1 !1 / 2 !1 / 2 !1 / 2 0 3 1( )

T

, so that: FΘ(y1) = –1 – 3/2 + 3/2 + 1 = 0, as 
expected. 

Similarly, for graph G3, one has: fθ(z1) = fθ(z2) = 0, fθ(z4) = fθ(z6) = 1/2, fθ(z3) = 

fθ(z5) = 1/2, fθ(z7) = fθ(z8) = 1/2, 
  
y

3
= 1 1 / 2 1 / 2 1 / 2 1 / 2 4 1( )

T

, hence 

FΘ(y3) = 4. 
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Some nonlinear learning tasks 

The above two problems have linear solutions that can be obtained by inspection. In 
general, graph regression or classification problems cannot be solved in the frame-
work of linear models, so that one has to resort to training, as described above. The 
two examples described below are examples of graph machines being trained to learn 
graph properties as in the previous section, but the solutions are not linear. A database 
of 150 randomly generated graphs, featuring 2 to 15 nodes and 0 to 9 cycles, was cre-
ated. Model selection was performed by cross-validation. 

Learning the diameter of a graph: the diameter of a graph is the length of the 
shortest path between its most distant nodes: 

  
D = max

u,v
d(u,v) , (6) 

where d(u, v) is the distance (the length of the shortest path) between nodes u and v. 
In the database under investigation, the index ranges from 1 to 9. That is clearly a 
non-linear property; therefore, the node function was a neural network; model selec-
tion resulted in a neural network with four hidden neurons. The root mean square er-
ror on the training set is 0.36, and the root mean square validation error (10-fold 
cross-validation) is 0.53. Since the index is an integer ranging from 1 to 9, the predic-
tion is excellent given the complexity of the graphs. 

Learning the Wiener index of a graph: the Wiener index of a graph G is the sum of 
the distances between its vertices. That index was first defined by H. Wiener [7], in 
order to investigate the relationships between the structure of chemicals and their 
properties. It is defined as: 

  

W (G) =
1

2
d(u,v)

u,v

! . (7) 

In our database, that index ranges from 1 to 426.  
Model selection by 10-fold cross-validation resulted in a 4-hidden neuron node 

function, leading to a RMS validation error of 7.9. The scatter plot is shown on Fig. 4, 
illustrating the accuracy of the results obtained by training without having to compute 
any feature for describing the graph structure. The problem of feature design and se-
lection, which is central in conventional machine learning with vector machines, is ir-
relevant for graph machines. This is very important for the applications described be-
low. 

Model selection 

Similarly to vector machines, usual model selection techniques such as hold-out, K-
fold cross-validation, leave-one-out, can be applied to recursive networks and to 
graph machines. In the present section, we show how virtual leave-one-out, a power- 
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Fig. 4. Learning the Wiener index of graphs 

ful method for estimating the generalization capability of a vector machine, can be ex-
tended to graph machines. 

Virtual leave-one-out for vector machines: leave-one-out is known to provide an 
unbiased estimation of the generalization error of a model [8]. However, it is very 
demanding in terms of computation time: it involves training N different models, 
where N is the number of examples; each model is trained from N – 1 examples, and 
the modeling error on the left-out example is computed; the estimator of the 
generalization error is 

  

1

N
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i

! i( )
2

i=1

N

" , (8) 

where 
 
R

i

! i  is the modeling error on example i when the latter is left out of the training 
set. 

Virtual leave-one-out is a very effective method for obtaining an approximation of 
the above estimate [9], [10]. It consists in training the candidate model with all exam-
ples, and computing the virtual leave-one-out score as: 
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N

( , (9) 

where Ri is the modeling error on example i when the latter is in the training set. hii is 
the tangent-plane leverage of example i: it is the i-th diagonal element of the hat ma-
trix: 
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H = Z Z

T
Z( )

!1

Z
T . (10) 

Z is the Jacobian matrix of the model, i.e. the matrix whose columns are the values of 
the partial derivative of the model gθ(x) with respect to its parameters, for the exam-
ples of the training set: 

  

z
ij
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!g" x( )
!"

j

#

$
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&

'
(

x=x
i

. (11) 

For models that are linear in their parameters, relation (9) is exact: it is known as 
the PRESS (Predicted REsidual Sum of Squares) statistics. For models that are not 
linear in their parameters, such as neural networks, it is a first-order approximation of 
the estimator. 

Leverages have the following properties: 

  

0 < h
ii
< 1

h
ii

i=1

N

! = q
 (12) 

where q is the number of parameters of the model. Therefore, the leverage of example 
i can be viewed as the proportion of the parameters of the model that is devoted to fit-
ting example i. If hii is on the order of 1, the model has devoted a large fraction of its 
parameters to fitting example i, so that the model is probably strongly overfitted to 
that example. Therefore, virtual leave-one-out is a powerful tool for overfitting detec-
tion and model selection. 

Virtual leave-one-out for graph machines: in the present section, we show how 
virtual leave-one-out can be extended to graph machines. We give a simplified proof 
of the result, which provides a flavor of the full derivation. For simplicity, consider a 
model with a single parameter ! ; moreover, assume that, for all graph machines, the 
node function of the root node is identical to the node function of non-root nodes 
fθ (x). We denote by 

 
y

p

j  the measured value of the property of interest for example j: 

the modeling error on example j is 
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j , where  !
" i  is the parameter computed from the training set from 

which example i has been withdrawn. Therefore, one has: 
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j . (13) 

Assuming that the withdrawal of example i from the training set does not affect the 
parameters of the model to a large extent, a first-order Taylor expansion of the model, 
in parameter space, can be performed: 
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Therefore, one has: 
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The first derivative of the model can similarly be expanded to: 
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As defined above, the least squares cost function (without regularization terms), is 
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which is minimum for θ. Therefore, one has 
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and, similarly 
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where J-i is the cost function after training with the dataset from which i was with-
drawn. Substituting relations (15) and (16) into relation (19) gives: 
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The first term on the right-hand side is equal to zero. Neglecting the second deriva-
tives with respect to the squared first derivatives (the usual Levenberg-Marquardt ap-
proximation), one gets, to first order: 
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Substituting into (15) with j = i, one obtains: 
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The above relation is similar to relation (10), which, for a single-parameter model, re-
duces to: 
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Thus, virtual leave-one-out can provide an estimate of the generalization error of 
graph machines, in much the same way as for conventional vector machines: the ma-

trix whose general term is 
 

z
ij
=
!g

"

i
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j

 plays exactly the same role as the Jacobian ma-

trix Z (of general term 
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) for conventional vector machines. In the 

case of neural networks, it can easily be computed by backpropagating an error equal 
to ½, after the completion of training. 

Graph machines for the prediction of properties and/or activities of 
molecules 

The prediction of the physico-chemical properties and pharmaceutical activities of 
molecules is a critical task in the drug industry for shortening the development times 
and costs. Typically, one synthesized molecule out of 10,000 becomes a commercial 
drug, and the development time of a new drug is approximately 10 years. Therefore, 
predicting the activity of a hitherto non-existent molecule may lead to tremendous 
savings in terms of development time and cost. Hence, over the past few years, 
QSPR/QSAR has become a major field of research in the chemical industry. 
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In a typical QSAR/QSPR scenario, a database of measured properties or activities 
of molecules is available, and it is desired to infer, from those data, the prop-
erty/activity of molecules that have not yet been synthesized. Therefore, machine 
learning is a natural context for solving such problems. Linear, polynomial, neural, 
and SVM regression have been used extensively. For all such techniques, the design 
and the selection of relevant features, for the prediction of a given activity, are a ma-
jor problem. 

In the following, we show that graph machines solve that problem by exempting 
the model designer from finding and computing elaborate features, because the struc-
ture of the molecule is embodied into the learning machine itself. We show that, for 
the problems described here as well as for other problems, graph machines provide 
predictions that are at least as good as (and generally better than) predictions made by 
conventional machine learning, without the need for designing, computing and select-
ing features.  

Encoding the molecules 

Molecules are usually described in databases in a representation called SMILES 
(Simplified Molecular Input Line Entry System), which provides a description of the 
graph structure of the molecule as a character string. In the applications described 
here, the functions 

 
g
!

i  were generated from the SMILES files of the molecules by the 
following procedure: the molecules, described by these files, were converted into la-
beled graphs by the association of each non-hydrogen atom to a node, and each bond 
to an edge. The nodes were also assigned labels describing the atoms they were re-
lated to (e.g. their nature, their degree or stereoisomery …). Then, the adjacency ma-
trices associated to those labeled graphs were generated. In the subsequent step, the 
matrices were cast into a canonical form, by an algorithm that ranks the nodes accord-
ing to criteria such as their degree, the fact that they belong to a cycle… [6]. This ca-
nonical form allowed the choice of the root nodes, and the conversion of the graphs 
into directed acyclic graphs. Fig. 5 illustrates the processing of a molecule from its 
SMILES representation into a directed acyclic graph. 

Graph machines were then built for each graph of the data set; node functions 
were feedforward neural networks with a single layer of hidden neurons whose com-
plexity (i.e. the number of neurons in the hidden layer) was controlled by cross-
validation. The graph machines were then trained, with the shared weight condition, 
using the software package NeuroOne1, which computes the gradient of the cost 
function by backpropagation and minimizes the cost function by the Levenberg-
Marquardt algorithm. 

 

                                                             
1 NeuroOne is a product of Netral S.A. (http://www.netral.com) 
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Fig. 5. Encoding a molecule into a graph machine 

Predicting the Boiling Points of Halogenated Hydrocarbons 

The volatility of halogenated hydrocarbons is an important property, because those 
compounds are widely used in the industry, for example as solvents, anaesthetics, 
blowing agents, and end up in the environment, where they can damage the ozone 
layer or be greenhouse gases. The volatility of a molecule can be assessed by its boil-
ing point, a property measured only for a small proportion of possible halogenated 
hydrocarbons.  

We studied a data set of 543 haloalkanes, whose boiling points were previously 
predicted by Multi Linear Regression (MLR) [11] [12]. This regression required the 
computation of numerous molecular descriptors, including arithmetic descriptors, 
topological indices, geometrical indices, and counts of substructures and fragments. 
The best feature subset was then selected, and generally comprised 6 or 7 descriptors. 
To provide a comparison with the results obtained by this method, we used the same 
training and test sets as Rücker et al. [12]. They feature 507 and 36 haloalkanes re-
spectively, whose boiling points range from -128 °C to 249 °C. 

In order to select the number of neurons required by the complexity of the prob-
lem, we first performed 10-fold cross-validation on the 507 examples of the training 
set. The results suggested the use of neural networks with 4 hidden neurons. 

We then trained the selected graph machines, and predicted the boiling points of 
the test set molecules. The results of this study are shown in Table 1, where they are 
compared to the results obtained by Rücker et al. [12] on the same sets, using a 7-
regressor MLR model. The predictions of the model on the test set are also displayed 
on Fig. 6. 
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Table 1. Prediction of the boiling points of haloalkanes by multi-linear regression and graph 
machines 

 

 MLR (7-descriptor) 4N-GM 

 RMSE (°C) R2 RMSE (°C) R2 

Training 6.607 0.9888 3.92 0.9960 

10-fold CV - - 4.70 0.9942 

Test 7.44 0.9859 5.07 0.9921 

 

 
Fig. 6. Scatter plot for the prediction of the boiling point of 36 haloalkanes 

The above results show that graph machines are able to model the boiling points of 
haloalkanes very well, without requiring the computation of any descriptor. Further-
more, this modeling task illustrates the fact that the design of the learning machine 
from the structure of the molecules avoids the loss of information caused by the selec-
tion of descriptors. Actually, Rücker et al. [12] stress the fact that the prediction of the 
boiling points of fluoroalkanes with their model is not satisfactory, which is presuma-
bly due to the lack of a descriptor taking into account the strong dipole interactions. 
The removal of 7 of these compounds decreased the training error of MLR regression 
by 0.56 °C (from 6.607 to 6.049 °C). By contrast, in the case of graph machines, the 
errors on those examples are not particularly high, and their removal from the data-
base decreased the training error by 0.08 °C only (from 3.92 to 3.84 °C). 
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Predicting the anti-HIV activity of TIBO derivatives 

TIBO (Tetrahydroimidazobenzodiazepinone) derivatives are a family of chemicals 
with a potential anti-HIV activity. They belong to the category of non-nucleoside in-
hibitors, which block the reverse transcriptase of the retrovirus and prevent its dupli-
cation. We studied a data set of 73 of those compounds, whose activity was previ-
ously modeled with several QSAR methods, including conventional neural networks 
[13], multi-linear regression [14], comparative molecular field analysis (CoMFA) 
[15], and the substructural molecular fragments (SMF) method [16]. The latter ap-
proach is based on the representation of the molecules with graphs, which are split 
into fragments, whose contribution to the modeled activity is then computed with lin-
ear or non-linear regression. Those fragments are either atom-bond sequences, or 
"augmented atoms", defined as atoms with their nearest neighbours. 

In order to compare the prediction abilities of graph machines to the performances 
of the SMF method [16], the data set was split into a training and a test set of 66 and 7 
examples respectively, exactly as in [16]. The activity is expressed as log(1/IC50), 
where IC50 is the concentration leading to the inhibition of 50% of the HIV-1 reverse 
transcriptase enzyme. Since some compounds of the set are stereoisomers, a label that 
described the enantiomery (R or S) of the atoms was added when necessary. 

We first performed 6-fold cross-validation on the training set with node functions 
having up to five hidden neurons to select the complexity of the model. Three hidden 
neurons provided the best cross-validation estimate of the generalization. The results 
obtained with this model are reported in Table 2 and on Fig. 7. 

Table 2. Prediction of the activity of TIBO derivatives by different methods 

 
 SMF 3N GM 

 RMSE R2 RMSE R2 

Training set 0.89 0.854 0.28 0.9901 

Test set 0.51 0.943 0.45 0.9255 
 
Since the accuracies of the experimental values are not known, the prediction er-

rors cannot be compared to the measurement errors. However, this study demonstrates 
again that graph machines compare favourably with other methods, without the re-
quirement of computing descriptors. This task also illustrates another advantage of 
graph machines on some other methods: Solov'ev et al. [16] had to remove several 
compounds from their original set because they contained "rare" fragments, whereas 
this problem does not occur with graph machines, insofar as the molecules of the test 
set do not require labels (atom types or degrees for example) that are not present in 
the training set. 

Additional results on the prediction of the toxicity of phenols, the anti-HIV activity 
of HEPT analogues, and the carcinogenicity of molecules, are described in [17]. 
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Fig. 7. Scatter plot of the prediction of the activity of TIBO derivatives 

Graph machines for classification: discriminating aromatic from 
non-aromatic molecules 

All the above examples are regression problems, in which a mapping is performed 
from graphs to real numbers. Graph machines can also perform classification, i.e. 
mappings from graphs to {-1, +1}. As an illustration, we show that discrimination be-
tween aromatic molecules (i.e. molecules that contain an aromatic cycle) and non-
aromatic molecules can be performed. A cycle is aromatic when it fulfils several cri-
teria: it must be planar, and have a set of conjugated π orbitals, thereby creating a de-
localized π molecular orbital system. Furthermore, there must be 4n + 2 electrons in 
this system, where n is an integer. 

A set of 321 molecules was investigated, with various functional groups taken 
from [18]; it was divided into a training and a test set of 274 and 47 examples respec-
tively. The proportion of molecules containing at least one aromatic cycle is shown on 
Fig. 8. 

To select the number of hidden neurons required by this problem, 10-fold cross-
validation was performed on the set of 273 examples. Table 3 reports the percentage 
of correct classification obtained with three and four hidden neurons.  

The cross-validation error with the graph machines with 4 hidden neurons is due to 
a single misclassified example: the pipamperone, shown on Fig. 9. That error can be 
traced to the fact that the main part of the molecule is non-aromatic. 
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Fig. 8. Distribution of the molecules including at least one aromatic cycle in the data sets 

Table 3. 10-fold cross-validation results for the prediction of the aromaticity 

  Correct classification 
(training) 

Correct classification 
(10-fold CV) 

GM 3N 100% 100% 

GM 4N 100% 99.7% 
 

H2N

N

N

F

O

O

 
Fig. 9. Structure of the pipamperone, misclassified with 10-fold cross-validation 

No example from the test set was misclassified by the graph machines with 3 hid-
den neurons, which illustrates the ability of graph machines to efficiently encode the 
structures of the graphs, thus to retain structure-related properties such as aromaticity. 

Conclusions 

A computational method that allows regression and classification on graphs has been 
described. Interestingly, it illustrates two principles that turn out to be very useful for 
solving real-life machine-learning tasks: (i) if a representation of the data for a given 
problem cannot be found “by hand”, it may be advantageous to learn it; (ii) always 
embed as much prior information as possible into the structure of the learning ma-
chine. In agreement with statement (i), a representation of the graph evolves during 
training, as described in [5]; in agreement with statement (ii), the information about 
the structure of the data is embedded in the structure of the graph machine itself. 
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Model selection for recursive networks and graph machines used to be performed 
by conventional cross-validation, hold-out or leave-one-out; we have shown, in the 
present paper, that the powerful technique of virtual leave-one-out extends to recur-
sive networks or graph machines in a relatively straightforward fashion; the full deri-
vation of the results, and illustrations, will be provided in a forthcoming paper. 

Applications of graph machines to computer-aided drug design have been de-
scribed. The major asset of graph machines is their ability to make efficient predic-
tions while exempting the model designer from the design, computation and selection 
of descriptors, which is recognized to be a major burden in QSAR/QSPR tasks. It 
should be noted, however, that, if the graph structure of the molecule is not sufficient 
for accurate prediction, descriptors could indeed be implemented as inputs to graph 
machines, in the form of labels for the nodes. 

Scalability is an issue that should be investigated in a principled way. If the method 
is to be used for scene or text analysis for instance, very large corpuses must be han-
dled. Experimental planning methods, allowing the model designer to use only the 
most informative data, have recently become available for nonlinear models in con-
ventional machine learning. The extension of those techniques to graph machines 
should be investigated. 
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