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ABSTRACT 
 
The present paper is a short survey of the development of numerical learning from structured 
data, an old problem that was first addressed by the end of the years 1980, and has recently 
undergone exciting developments, both from a theoretical point of view and for applications. 
Traditionally, numerical machine learning deals with unstructured data, in the form of 
vectors: neural networks, graphical models, support vector machines, handle vectors of 
features that are assumed to be relevant for solving the problem at hand (classification or 
regression). It is often the case, however, that data is structured, i.e. is in the form of graphs; 
three examples will be described here: prediction of the properties of molecules, image 
analysis, and natural language processing. The traditional approach consists in handcrafting a 
vector representation of the structured data (features describing the molecules, “bag of words” 
for language processing), and subsequently training a machine to perform the task from that 
representation. By contrast, we describe here a family of approaches (RAAM’s, LRAAM’s, 
recursive or folding networks, graph machines) that are specifically designed to learn from 
structured data. We show that, despite the apparent diversity, two basic principles underlie the 
recent approaches: first, use structured machines to learn structured data; second, learn 
representations instead of handcrafting them; although neither principle is really new, they 
proved very successful for handling structured data, to the point of generating a novel branch 
of numerical machine learning. 
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1 INTRODUCTION 
The importance of learning from structured data was recognized in the earliest phases of the 
development of numerical machine learning. As early as 1988, it was mentioned in [1] that 
“graph recognition can be achieved (by neural networks); this may have an impact in various 
fields where graph recognition is important, such as picture processing, scene analysis, 
description of chemical structures, relational database systems, switching theory, etc.”. 
Not too surprisingly, the development of graph processing by machine learning paralleled the 
development of numerical machine learning. The very first attempts at handling structured 
data aimed at designing associative memories, either dynamic or static, for graphs or 
sequences. Then came the impressive development of numerical machine learning techniques 
(neural networks, graphical models, support vector machines) for regression and 
classification; the techniques and methods that evolved dealt essentially with non-structured 
data, an area of machine learning that is still extremely active and fruitful. It is only in recent 
years that handling structured data for regression and classification resurfaced as a major 
problem, spurred by potential applications, such as computer-aided drug design and image 
processing.  
In the paper, the main approaches that have been considered thus far will be described; it will 
be shown that a basic principle, although not often stated explicitly, arises: design structured 
machines for handling structured data. The theorems that provide sound theoretical 
foundations to the approach will be outlined, and a small selection of applications will be 
described. Finally, open question will be discussed. 

2 PROCESSING SIMPLE AND COMPLEX SEQUENCES BY 
DYNAMIC LEARNING ASSOCIATIVE MEMORIES 

In his seminal paper [2], John Hopfield showed that an assembly of fully connected binary 
elements (McCulloch-Pitts neurons), with symmetrical connections and unit delays, behaved 
as a discrete-time dynamical system whose dynamics exhibited fixed points. Such a system 
can act as an associative memory: at a given time, the state of a network of N neurons is 
described by a N-vector with binary components, which may be regarded as the binary code 
of some information. Under its free dynamics, the network evolves from an initial state to one 
of the fixed points; therefore, it associates the initial state, which may code for an incomplete 
or garbled piece of information, to a fixed point, which may code for the complete, noise-free 
piece of information. Therefore, it may “retrieve” information from an incomplete or partly 
erroneous version thereof. 
In section 2.1, the association between unstructured items (vectors) by dynamic learning 
machines (fully recurrent neural networks) will be described; from there, we will proceed to 
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simple sequences, and to complex sequences. The processing of general graphs will be 
described in section 3. 

2.1 Processing vectors 

The basic element of Hopfield networks, and variants thereof, is the McCulloch-Pitts neuron, 
a simple binary switching element that is governed (in its discrete-time version) by: 
 

   
y k +1( ) = sgn w !x k( ) "#( )  (1) 

where x(k) is the vector of variables at discrete time k (k positive integer), w is a vector of 
parameters (“weights”) and θ is a threshold. 
In the original Hopfield network, all neurons are mutually connected with symmetrical 
connections, so that a network of N such neurons obeys the following state equation: 
 

   
x k +1( ) = sgn Wx k( ) ! "( )  (2) 

where x(k) is the state vector of the network at time k, W is the symmetric (N, N) matrix of 
the parameters of the network, and Θ  is the N-vector of thresholds; unless otherwise 
specified, the thresholds will be taken equal to zero in the following. 
The i-th fixed point of the dynamics of the network is defined as: 
 

  
x

i
k( ) = Wx

i
k( )  (3) 

Therefore, the training of such a machine consists in finding the matrix W that guarantees the 
existence of n fixed points, coding for n pieces of binary information (vectors of dimension N) 
to be stored, defined by relation (3). 
In the original form of the Hopfield model, a biology-inspired training algorithm - Hebb’s 
rule - was applied. Hebb’s rule states that the synaptic strength of a connection between two 
neurons, as modeled here by an element of matrix W, increases if both neurons are active 
simultaneously. That can be roughly modeled by: 

 
   

W =
1

N
XX '  (4) 

where X is the (N, n) matrix whose columns are the components of the desired fixed points xi, 
and X’ denotes the transpose of matrix X. The application of that rule results in an 
approximate storage of the fixed points, provided that the fixed points are approximately 
orthogonal. 
Taking a machine-learning oriented approach, without reference to biology, it was shown in 
[3] that any set of n < N/2 states can be made exactly the fixed points of the dynamics of the 
network, if training is performed by the projection rule, i.e. by computing matrix W as: 
  W = XX

+ , (5) 
where X+ is the pseudo-inverse of X. If the vectors of the desired fixed points are linearly 
independent, the pseudo-inverse matrix is given by: 
 

  
X

+
= X X 'X( )X '  (6) 

where X’ denotes the transpose of matrix X. 
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If the stored fixed points are orthogonal, the projection rule reduces to relation (4), i.e. to 
Hebb’s rule. 
In all the above cases, the dynamics of the machine is driven by a Lyapunov (or energy) 
function, which always decreases during the free evolution of the network: 

 
   

L k( ) = !
1

2
x

T
k( )Wx k( )  (7) 

Therefore, the fixed points are the minima of that energy function. Other local minima 
(“spurious” or “garbage” fixed points) exist. 
The associative memories thus described can also be used for classification purposes: some 
components of vector x are not used for encoding the information to be stored, but they code 
for a label [4]. For instance, a network with N = 266 is designed, where 256 bits are used to 
encode the picture of a handwritten digit, and 10 bits are used as a 1-out-of-10 code. 
Examples of each class of numeral (including the label) are stored as fixed points as described 
above. When an unknown digit must be recognized, the network is forced into its picture, 
with the code left blank; the network is subsequently allowed to evolve freely to one of the 
stored fixed points, whose label field indicates the class of the unknown pattern. 

2.2 Processing simple sequences and cycles 

Sequences can naturally be represented by graphs; each node of the graph is the state of the 
network at a given time, and each edge is a transition between two successive states. By 
simple sequence, we mean a sequence that has the structure of a unary graph, where each 
node has a single outgoing edge. A unary graph may be cyclic, as shown on Figure 1 - see 
also Figure 5 of [5]. 
The task that is considered here is the storage and retrieval of sequences represented by unary 
graphs, which are stored as attractors of the dynamics of the network: when forced initially 
into a state (node of the graph) that is a binary code of a piece of information, the system 
should retrieve one of the nodes of the graph, thereby retrieving the graph itself since all 
transitions (edges of the graph) are stored in the network. Thus, the machine associates one 
item of information (e.g. a line of a poem) to a sequence (e.g. the full poem), and retrieves the 
latter even though the initial information may be garbled to a large extent. 
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Figure 1 

Unary graphs; the final state of the upper graph is a stable state, while the final states of the 
two bottom graphs are cycles 

 
The dynamics of the network obeys relation (2) as in the previous case, but the training 
algorithm is different. Instead of considering the storage of a set of n fixed points defined by 
(3), n transitions (the edges of the graphs) are stored: the matrix of parameters W is sought, 
such that, for each transition i from a given state xi to a given state yi, one has: 
 

   
y

i
= sgn Wx

i( ) . (8) 

Then matrix W is computed as: 
  W = YX

+  (9) 
where Y is the (N, n) matrix whose columns are the target states yi, and X+ is the pseudo-
inverse of matrix X, whose columns are the states xi. By contrast to relation (5), matrix W is 
non-symmetric, a necessary condition for the storage of sequences. 
A further improvement consists in using high-order neural networks, which take into account 
high-order correlations between simultaneous states of activities of the neurons [6], [7]. In a 
Hopfield-type network as described above, the dynamics of neuron m is described by relation 
(2): 

  

x
m

k +1( ) = sgn w
mj

x
j

k( )
j=1

N

!
"

#$
%

&'
 

In a high-order neural network, the latter relation becomes: 

 
  

x
m

k +1( ) = sgn w
mj

x
j

k( )
j=1

N

! + w
m, jl

x
j

k( )x
l

k( )
l=1

j"1

!
j=1

N

!
#

$%
&

'(
 (10) 

thereby taking into account the correlation between the states of neurons j and l in the 
dynamics of neuron m. In a neural network of order 2, the parameters can be written into a (N, 
N(N+1)/2) matrix W, and a vector z can be defined, whose components are the xm (m = 1 to 
N) and the N(N-1)/2 products xjxl (1 ≤ j < l ≤ N). Then a transition from a state zi to a state 
described by vector xi can be written as: 
 

   
x

i
= sgn Wz

i
( )  (11) 

Training consists in computing matrix W such that a set of n such relations are satisfied. 
Matrix W can be computed as: 
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  W = XZ
+  (12) 

where X is the (N, n) matrix whose columns are the vectors xi, and Z+ is the pseudo-inverse of 
the (N(N+1)/2, n) matrix Z whose columns are the vectors zi. 
As in the case of the storage of fixed points of the dynamics, a labeling scheme can be 
implemented, as described in section 2.1. 

2.3 Processing complex sequences 

By complex sequences, we mean sequences that, in contrast to simple sequences, have the 
structure of non-unary graphs: a given node may have several outgoing edges. Examples of 
complex sequences (from [8]) are shown on Figure 2. In order to process such sequences, the 
state of the network at time k+1 must not depend on the state of the network at time k only, 
but also on the state at times k-1, k-2, … k-ν+1. Therefore, the dynamical system is described 
by Nν first-order1 recurrent equations instead of N equations for storing simple sequences. For 
the top graph of Figure 2, one has ν = 2, while, for the bottom graph, one has ν = 4: when the 
system is in the state shown as a grey node, its next state depends not only on its present state, 
but also on the three previous ones. 
 

 

Figure 2 

Two complex sequences (from [8]). Transitions are numbered from 1 to the total length of the 
sequence. Top sequence: ν = 2; bottom sequence: ν = 4 

 

                                                
1 Here, the term “order” means the number of recurrent variables of a recurrent equation, as usual for discrete-time dynamical 
systems; it is not to be confused with the “order” of a “high-order neural network” as defined in section 2.2, where it is the 
degree of the polynomial computed by the neuron prior to thresholding. 
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The processing of such sequences can be performed in several ways; the simplest one, in the 
spirit of the previous section, consists in defining the dynamics of a neuron m by: 

 
  

x
m

k +1( ) = sgn w
mj

1 x
j

k( )
j=1

N

! + w
mj

2

j=1

N

! x
j

k "1( ) + ...+ w
mj

# x
j

k "# +1( )
j=1

N

!
$

%&
'

()
 (13) 

The parameters of the machine can be written into a (N, Nν) matrix, and a vector z can be 
defined as the concatenation of vectors x(k), x(k-1), …, x(k-ν+1). Then a transition from a 
state xi to a state described by vector zi can be written as: 
 

   
x

i
= sgn Wz

i
( )  (14) 

As in the previous sections, training consists in computing the matrix W such that a set of n 
such relations are satisfied. Matrix W can be computed as: 
  W = ZX

+  (15) 
where X is the (N, n) matrix whose columns are the vectors xi, and Z+ is the pseudo-inverse of 
the (Nν, n) matrix Z whose columns are the vectors zi. 
Interestingly, the training of sequences – whether simple or complex – can be performed by 
other machine learning algorithms, such as the Perceptron learning rule [8]. A Perceptron [9] 
is a learning machine that is intended to perform 2-class classification. An item j to be 
classified, described by a vector of features zj, is assigned a label xj = +1 if it belongs to one of 
the classes, say class A, and xj = -1 if it belongs to class B. The Perceptron computes the 
quantity 
 

   
sgn w ! z

j( )  (16) 

where w is the vector of parameters of the Perceptron; item j is correctly classified if the latter 
quantity is equal to xj, i.e. iff 
 

   
x

j
w ! z

j( ) > 0  (17) 

The number of such inequalities is equal to the number of examples. Thus, the problem of 
Perceptron learning is that of finding a vector w that satisfies the set of inequalities (17). If the 
examples are linearly separable, then the Perceptron algorithm is guaranteed to solve the 
problem in finite computation time [9]. 
Reverting to the learning of sequences, relation (14) can be rewritten as: 
 

   
x

i
!Wz

i
> 0  (18) 

Therefore, the problem of storing n sequences in a network of N neurons is equivalent to 
finding N Perceptrons (one Perceptron per neuron), that correctly classify n examples, each of 
which being described by a vector of dimension d = N (in the case of relation (8)), 
d = N(N+1)/2 (in the case of relation (11)), or d = Nν (in the case of relation (14)). Insofar as 
the number of sequences n is smaller than d/2, linear separability of the examples is 
guaranteed by Cover’s theorem [10], so that a solution to (18) can be found by the Perceptron 
algorithm. 
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In all the above cases, the machine was a dynamic system that was left to evolve freely, i.e. 
without any external input. Such inputs can be reinstated in those machines by making use of 
the thresholds that were mentioned in relation (2), which can be viewed as nonzero, constant, 
external inputs. The idea of using the Perceptron algorithm, or the more powerful Support 
Vector Machine algorithm, for designing a machine that is guaranteed to perform a set of 
sequences in response to a given set of constant external inputs was developed recently [11] 
for biological modeling purposes. 

3 PROCESSING GENERAL GRAPHS BY DYNAMIC LEARNING 
MACHINES 

The earliest attempts at processing graphs, other than sequences, with learning machines, 
were motivated by the modeling of the operation of the visual system [12], [13]. The main 
assumption underlying this approach is that the information might be encoded in the brain as a 
connectivity graph, rather than as patterns of neuronal activity. As a consequence, the 
dynamics of the system is governed by a Lyapunov function that, as opposed to relation (7) 
for instance, is a function of the time-varying parameter matrix W(k) rather than a function of 
the neuronal states x(k). Therefore, the associative memory is designed for storing and 
retrieving patterns of connectivity rather than patterns of neuronal activity. The description of 
the details of that theory lies beyond the scope of the present paper. Interestingly however, it 
gave rise to the “elastic matching” technique [14] for shift- and deformation-invariant pattern 
recognition.  
An alternative approach was considered in [15], [1], which is more closely related to the 
learning machines described in section 2. The task is to associate automatically an unknown 
graph to one element of a set of predefined graphs; therefore, it is again an associative 
memory task, as described above, except for the fact that the items to be associated are 
general graphs, instead of being vectors or sequences. 
The machines feature two elements: 

• a preprocessor, which generates graphs that are isomorphic to the unknown graph, for 
instance by performing two-vertex exchanges, 

• an associative memory as described in section 2.1, which codes for the graph and 
retrieves the stored graph that is most similar to the graph resulting from the 
transformation of the original one by the preprocessor. 

The principle of operation takes advantage of the property, mentioned in section 2.1, that the 
dynamics of the associative memory is governed by a Lyapunov function. 
Consider a graph with at most N nodes, and its (N, N) adjacency matrix, where +1 codes for 
the presence of an edge and -1 for the absence of an edge. That matrix can be encoded into a 
Hopfield network having N(N-1)/2 neurons, which can be trained as explained above in order 
to store the graphs that should be retrieved. An unknown graph is also encoded by its 
adjacency matrix G. The graph transformation performed by the preprocessor can be encoded 
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as a permutation matrix T, so that the adjacency matrix of the transformed graph is T’GT, 
which can be encoded in a similar way by the associative memory network. Therefore, the 
whole task can be depicted as an optimization task. In [15], the optimization is performed by 
the simultaneous operation of a Hopfield-Tank optimizer [16] and a Hopfield associative 
memory; the description of the Hopfield-Tank optimizer network is beyond the scope of the 
present paper. In [1], the optimization of the “energy” of the associative memory is performed 
by simulated annealing. If the unknown graph is isomorphic to one of the stored graphs, the 
latter is retrieved by simulated annealing alone since the stored graphs are minima of the 
memory networks; if the unknown graph is not isomorphic to one of the stored graphs, then 
the memory network is forced into a state that codes for the graph found by simulated 
annealing, and it is left to evolve under its own dynamics. Thus, either one of the stored 
graphs is retrieved, or a spurious fixed point is found; in the latter case, the unknown network 
is not recognized as similar to one of the stored ones. 
Figure 3 shows twelve graphs stored in a memory network, and Figure 4 shows how one of 
the stored graphs is retrieved if the unknown graph is isomorphic to one of the stored graphs, 
but with two missing edges. 
A generalization of Hopfield networks, embodying the structure of RAAM’s, will be 
described in section 4.  

4 PROCESSING GRAPHS BY STATIC ASSOCIATIVE MEMORIES: 
RAAM’s AND THEIR VARIANTS 

The first attempts at handling structured data (sequences and graphs) by numerical learning 
machines were performed with dynamic associative memories, as described in the previous 
sections. We now turn to algorithms developed later for handling structured data, by making 
use of static associative memories: RAAM’s (Recursive Auto-Associative Memories) first 
described J. Pollack in [17]. 
A RAAM is essentially a feedforward neural network. Therefore, we first recall basic 
concepts and definitions pertaining to feedforward neural networks. 

4.1 Feedforward neural networks: basic concepts and definitions 

In its simplest setting, a feedforward neural network (also termed “Multilayer Perceptron” or 
MLP) is a weighted sum of parameterized nonlinear functions called “hidden neurons” (see 
for instance [18], [19]); its output is given by: 

 
   

g x( ) = w
N

c
+1,i

f
i

x( )
i=1

N
c

! = w
1
" f x( )  (19) 
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Figure 3 

Twelve graphs stored in the memory network. 
 

 

Figure 4 

a: unknown graph, isomorphic to graph G1 with two edges missing; b: graph found after 
simulated annealing; c: graph G1 is retrieved by the memory network. 

 
where g(.) is the output value of the neural network, f(x) is the Nc-vector of the outputs of the 
hidden neurons, 

  
w

N
c
+1,i

 is the weight of hidden neuron i in the weighted sum that is the output 

value of the network, and x is the N-vector of the variables (“inputs”) of the network; w1 is the 
Nc-vector of the parameters (

  
w

N
c
+1,i

, i = 1 to Nc). Therefore, the network performs a mapping 

of N to . A pictorial representation of that neural network is shown on Figure 5. 
In the following, unless otherwise specified, a “neuron” is a “soft” version of the McCulloch-
Pitts neuron defined by relation (1): 

 
   

f
i

x( ) = tanh w
ij
x

j
= tanh w

i
!x( )

j=1

N

"  (20) 
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Figure 5 

The simplest feedforward neural network. Void circles stand for neurons as described by 
relation (20) for instance. The circle enclosing a Σ sign performs a weighted sum. Squares do 

not perform any computation. 
 
where wi is the N-vector of the parameters pertaining to neuron i. Any s-shaped (“sigmoid”) 
function other than the tanh function can be used as well. We denote by W2 the (Nc, N) matrix 
whose rows are the vectors wi, i = 1, …Nc. 
Therefore, the equation of the simplest feedforward neural network is2: 

 
   

g x( ) = w
N

c
+1,i

tanh w
ij
x

j

j=1

N

!
"

#$
%

&'i=1

N
c

!  (21) 

Thus: 
 

   
g x( ) = w

1
! f W

2
x( )  (22) 

Feedforward neural networks can approximate any sufficiently regular function with arbitrary 
accuracy, provided the number of hidden neurons is appropriate [20], [21]. In practice, 
feedforward neural networks are not used for function approximation, but for data modeling: 
given a finite set of input-output pairs ({xk, yk}, k = 1, …n), called “training set”, a model is 
sought, which provides the best predictions of data that is not present in the training set. In 
most cases, training consists in estimating the parameters of the network by minimizing the 
least squares cost function, i.e. the sum of the squared modeling errors: 

 
   

J w( ) = y
k
! g x

k( )( )
2

k=1

n

"  (23) 

                                                
2 For simplicity, a constant input (called “bias” of the network) to the hidden and output neurons has been omitted in the 

equations and figures. It is nevertheless very important for all practical purposes. 
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where w is the vector of all parameters of the network. Since g is not linear with respect to the 
parameters of matrix W2, the cost function (23) is not quadratic with respect to those 
parameters. Therefore, the usual least squares technique is not appropriate for estimating the 
parameters of the model: one has to resort to nonlinear optimization techniques, which update 
iteratively the parameters of the model until a minimum of the cost function is found. Those 
optimization techniques make use of the value of the gradient of the cost function with respect 
to the parameters. The gradient of the cost function can be computed exactly in a number of 
ways, the most computationally efficient of which being known as backpropagation. Several 
gradient-based optimization methods exist; the simplest - and by far the most inefficient - 
method, is simple gradient descent, whereby the parameters are updated iteratively in 
proportion to the current value of the gradient of the cost function. Second-order, Newton-like 
techniques are much more efficient, slashing computation times by orders of magnitude. Note 
that, in the early neural network literature, backpropagation meant both the computation of the 
gradient of the cost function and the optimization of the latter by simple gradient descent: 
early “connectionists” were not aware of the existence of second-order optimization methods, 
although the latter were widely used, in signal processing for instance. 
Also note that backpropagation is definitely not the only way of computing the gradient of the 
cost function with respect to the parameters. Various other methods were developed for the 
adaptation of recursive filters before neural networks came to existence (recurrent neural 
networks are nonlinear recursive filters). For a discussion of backpropagation versus adaptive 
filtering algorithms, see [22].  
Several straightforward extensions of the simple feedforward neural network exist. First, as 
will frequently be the case in the present paper, neural networks may have several outputs 
instead of just one, computing different functions of the outputs of the same hidden neurons. 
Then the network computes an Ng-vector g(x) whose m-th component is: 

 
   

g
m

x( ) = w
N

c
+m,i

tanh w
ij
x

j

j=1

N

!
"

#$
%

&'i=1

N
c

!  (24) 

and the cost function for training becomes: 

 
   

J w( ) = y
k
! g

m
x

k( )( )
2

k=1

n

"
m=1

N
g

"  (25) 

Thus, the network performs a mapping of N to   !
N

g . The training set is a collection of input-
output pairs ({xk, yk}, k = 1, …n), where xk is the N-vector of variables pertaining to example 
k, and yk is the Ng-vector of outputs pertaining to example k. 
As a further extension, the output(s) may be computed in the same way as the hidden neurons, 
i.e. as nonlinear function(s) of a weighted sum of the outputs of the hidden neurons. If the 
nonlinear function is a tanh, then the output(s) of the neural network is (are) constrained to lie 
in [-1, +1]: 
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g
m

x( ) = tanh w
N

c
+m,i

tanh w
ij
x

j

j=1

N

!
"

#$
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&'i=1

N
c

!
(

)
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*

+

,
-
-

 (26) 

Such is usually the case when neural nets are intended to perform classification tasks. It is 
also the case for RAAM’s as described in the next section. 

4.2 Recursive AutoAssociative Memories 

Recursive Autoassociative memories (RAAM) [17] are intended to provide a compact 
representation of trees. The basic element of the RAAM is essentially an encoder-decoder 
feedforward neural network with Ng = N and Nc < N: the number of outputs is equal to the 
number of variables, and the number of hidden neurons is smaller than the number of 
variables, as shown on Figure 6. In addition, the output neurons are tanh functions of a 
weighted sum of the outputs of the hidden neurons, as in relation (26). 
The network is trained to perform auto-association, i.e. the input-output pairs of the training 
set are of the form ({xk, xk}, k = 1, … n). If the problem has a solution, then, given an input 
vector, the outputs of the hidden neurons may be viewed as a compact code of the inputs, 
from which the input may be reconstructed. After successful training, feeding the network 
with an input vector x generates a vector of real numbers f(x) at the output of the hidden 
neurons; therefore, the layer of hidden neurons acts as an encoder; conversely, if the hidden 
neurons are forced into that state, the original information will be retrieved at the output of the 
network, thereby acting as a decoder. 
 

 

Figure 6 

Encoder-decoder network. Void circles stand for neurons as described by relation (20). 
Squares do not perform any computation. 

 
In the framework of graph processing, RAAM’s have the ability of generating codes for trees. 
Consider, as in [17], the binary tree ((A B) (C D)), as shown on Figure 7, where A, B, C, D are 
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symbols that are coded on b bits, e.g. in a 1-out-of-b code. It is desired to design a learning 
machine, involving one or more encoder-decoder networks as described above, which can 
find, by training, a code for such binary trees. In [17], the author introduces an ad hoc 
dynamics of training: the encoder-decoder pair should first be trained to auto-associate (A B) 
to (A B), resulting in a code C1, then (C D) to (C D), resulting in a code C2, and then trained to 
auto-associate (C1 C2) to (C1 C2), resulting in a code C3. Therefore, a part of the training set 
(C1 and C2) changes during training (the so-called “moving target” problem), an awkward 
situation in which the very convergence of the training procedure is not guaranteed. 

 

A               B      C               D   

Figure 7 

A binary tree 
 
We propose here a different approach, which does not involve any specific dynamics of 
training, and, in addition, raises a general issue: the isomorphism of the structure of the 
machine to be trained with the graph to be encoded. Remember that we are looking for a 
machine that can, with the same set of parameters, find a code C1 for (A B), a code C2 for (C 
D) and a code C3 for (C1 C2). That is performed by the machine shown on Figure 8, a 
feedforward neural network with shared weights [23]: the “connections” are not drawn in 
detail as in Figure 6, but they are shown as gray areas; areas that have the same shade of gray 
depict sets of “connections” that have the same vector of parameters. 
Note that, in that simple setting, the operation of the RAAM for graph encoding requires that 
the size of the hidden layer be equal to the number of bits necessary for encoding a leaf of the 
tree. This is unfortunate because there is no reason why the complexity of the input-output 
mapping, which is reflected in the number of hidden units, should have any relation to the 
number of neurons necessary for encoding or decoding the leaves. This problem may be 
circumvented by using more than one hidden layer in the encoder and/or in the decoder parts, 
thereby allowing for a greater complexity of the mapping. Therefore, in the following figures, 
the shaded areas may represent not just a single layer of parameters, but two layers of 
parameters and a layer of hidden neurons; then areas of the same shade of gray represent 
identical weights and hidden neurons. 
 



15 

 

Figure 8 

Encoding the binary tree shown on Figure 7. Left: structure of the network to be trained; void 
circles stand for neurons as described by relation (20); squares do not perform any 

computation; the topmost layer of connections are necessary for training only; areas with the 
same shade of grey depict identical vectors of parameters (shared weights). Right: graph 

structure of the network; black dots denote encoder-decoder pairs.  
 
Interestingly, the structure of the network reflects the structure of the tree that it is intended to 
encode, as shown on Figure 8. We will see later that this is a general concept: designing a 
learning machine whose structure is similar to that of the graph from which it is intended to 
learn. 
This approach solves the “moving target” problem; however, it does not solve the termination 
problem that standard RAAM’s have: when a code is input to the decoder, there is no way to 
know whether the result is another code, or leaves of the tree. The fact that the codes are real 
numbers and the leaves are binary may not be sufficient if training is not perfect; see [17] for 
a discussion of that problem. 
Note also that the network might be viewed as a recurrent neural network (Figure 9), whose 
equation is: 
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g k( ) = ! g k "1( )( )  (27) 

where g(k) denotes the output vector of the network at discrete time k, and Ψ denotes the 
function computed by the feedforward network shown on Figure 8. If the latter network has 
been trained successfully, then the stored graphs are fixed points of the dynamics of the 
recurrent network. Therefore, the network can be used for graph retrieval, in the spirit of the 
Hopfield networks discussed in section 2, albeit with a completely different training 
algorithm. 

 

Figure 9 

The network of Figure 8 can be viewed as a recurrent network; training results in 
storing the desired trees as fixed points of the dynamics of the network; q-1 is the usual 

backward shift operator. 
 
A RAAM can encode sequences, which may be viewed as special instances of binary graphs. 
Figure 10 shows the network to be trained. Just as in the previous case, the structure of that 
network reflects the structure of the tree for which a representation is sought. 
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Figure 10 

Left: structure of the network to be trained; void circles stand for neurons as described by 
relation (20); squares do not perform any computation; the topmost two layers of connections 

are necessary for training only. Right: graph structure of the network; black dots denote 
encoder-decoder pairs. 
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4.3 Labeling RAAM’s 

RAAM’s are restricted to encoding trees; in order to handle labeled graphs, RAAM’s can be 
modified as follows [24]: each node of the graph is described by a unique label, which is a 
vector of binary variables, and by a set of pointers to its children in the graph, which are 
vectors of real numbers; all nodes have the same number of pointers, which is equal to the 
valence of the graph (the maximum number of outgoing edges). All pointers are encoded by 
the same number of neurons, hence are vectors of the same size. For each node, an encoder is 
fed with the set of variables that code for the label of the node and for the pointers to its 
children in the graph; the hidden units encode the pointer to the node. Thus, the vector of the 
outputs of the decoder contains real numbers (the pointers) that are obtained by training. 
Therefore, the training set is dynamic insofar as it involves elements that are computed during 
training. A similar situation (“moving target”) was described in section 4.2 for RAAM’s. That 
difficulty can be circumvented, as described in that section, by the shared weights technique. 
As an illustration, consider, as in [24], the labeled graph shown on Figure 11. The codes for 
the pointers can be learnt by training the network shown on Figure 12, where Li stands for the 
label of node i, and pi stands for the real-valued vector of the pointer (to be learnt) to node i. 
The fields of void pointers are denoted by nil. Again, as in examples shown in the previous 
section, the structure of the network reflects the structure of the graph to be encoded. 

 

Figure 11 

 
Just as for RAAM’s, the network may be viewed as a recurrent one, and its training may be 
viewed as training the encoded tree as a fixed point of the dynamics of the network. 
Therefore, RAAM’s can be used as content-addressable memories, similarly to Hopfield 
networks [24]. 
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Figure 12 

Encoding the labeled graph of Figure 11; void circles stand for neurons as described by 
relation (20); squares do not perform any computation; the topmost two layers of connections 

are necessary for training only. 
 
LRAAM’s were initially designed for encoding acyclic graphs. We show here that cyclic 
graphs can be encoded too. Consider the cyclic graph shown on Figure 13; for the cycle 
1→2→3→1 to be causal, let us insert a unit time delay in one of its edges, say edge 1→2. 
Then the graph can be encoded by the recurrent network shown on Figure 13. The network is 
in the canonical form of a recurrent neural network [25], with state vector p2 and output 
vector [L4 Nil Nil]T. The symbol Nil can be encoded in any appropriate way. If the necessary 
delay had been assigned to another edge of the cycle, a different, but equivalent, LRAAM 
would have been found. The network can be trained to produce sequences of constant outputs 
[L4 Nil Nil]T in response to sequences of constant inputs [L4 Nil Nil]T. The length of the 
sequences must be chosen appropriately to accommodate the response time of the network; 
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typically, it should be at least as large as the order of the network, i.e. as the number of state 
variables. The training of the recurrent network can be performed according to well-
established techniques, see for instance [26]. 
 

 

Figure 13 

Encoding the cyclic labeled graph shown, with a recurrent neural network. 
 

5 GRAPH REGRESSION AND CLASSIFICATION 
The techniques for handling graphs that were described in the previous section aimed 
essentially at showing that “connectionist” approaches had the ability of handling symbolic 
data, an important question that will not be discussed here; for a thorough discussion of that 
issue, see for instance [27]. In the present section, we discuss a related but somewhat different 
problem, namely, the ability of mapping graphs to vectors, just as conventional numerical 
learning machines map vectors to vectors. In other words, we show that the usual tasks that 
are addressed in conventional numerical machine learning can also be addressed when 
structured information must be handled. We further show that, although the purpose is 
different, the basic idea that is useful for these new developments was potentially present in 
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the early approaches, although often not stated explicitly: the idea of designing a learning 
machine whose structure reflects the structure of the graph from which information is to be 
learnt. 

5.1 Regression and classification with acyclic graphs 

The first step toward that idea was taken in [28], where the purpose was a classification task 
on trees: the authors argued that, since an LRAAM was able to find a vector representation of 
a tree, that representation might be used as input to a classifier, e.g. a neural network. They 
further argued that it was not necessary to first learn the representation, and subsequently use 
it for classification: by training simultaneously the encoder and the classifier, a representation 
of the graph that might not be complete, but still be appropriate for the classification task at 
hand, might evolve. That is actually similar to the principle of “convolutional networks” [29], 
which learn simultaneously the classification task and the picture representation that is useful 
for that task, instead of handcrafting the representation prior to training a classifier. In [28], it 
was further argued that LRAAM’s must be trained in the “moving target” context, whereas 
their classifier can be trained by “backpropagation through structure”; however, we have 
shown, in sections 4.2 and 4.3, that RAAM’s and LRAAM’s can indeed be trained in a 
standard fashion provided the structure of the network is the same as the structure of the tree 
to be encoded (Figure 8), and shared weights are used. Similarly, a classifier from tree-
structured data can be designed by dropping the decoder part, and it can be trained by any 
standard method: computation of the gradient by backpropagation with shared weights, and 
minimization of the least squares cost function by any good gradient method (BFGS, 
Levenberg-Marquardt, conjugate gradient, see for instance [30]). 
Clearly, classification is not the only task that can be performed by such a structure: 
regression can be performed as well, the sole difference being that the output is real-valued 
instead of being binary. Figure 14 shows a machine built along those lines, intended to 
perform classification or regression on data having the tree structure displayed on Figure 7 
and Figure 8. The lower part of the machine, using shared weights, can be computed 
recursively, hence the term “recursive network” used for such networks (also termed “folding 
networks”), but it is basically a feedforward neural network making use of shared weights, 
with a structure that reflects the structure of the data. 
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Figure 14 

A machine for performing regression or classification on data having the tree structure shown 
on the right; the bottom two layers of hidden neurons are the “encoder”, while the third layer 

of hidden neurons and the output neuron perform the classification or regression task. 
 
It may be useful, at this point, to draw a parallel between the present approach and the 
“dynamic semi-physical modeling” approach [31] to process modeling: in the latter case, the 
structure is not present in the data, but it is present in the prior knowledge of the process; 
therefore, a neural model is designed and trained, whose structure reflects the equations 
derived from the physical (or chemical, biological, etc.) knowledge. Thus, whether structure 
is present in the data or in the process, structured learning machines should be designed, with 
a structure that reflects either the structure of the data or the structure of prior process 
knowledge. 

5.2 Regression and classification with cyclic graphs 

Up to this point, we focused on the case of directed acyclic graphs. We now extend the 
approach to cyclic graphs. In section 4.3, we showed that a simple cyclic graph can be 
encoded by a LRAAM by introducing a “delay” in the appropriate edges of the graph cycles, 
and training the LRAAM as a dynamic (recurrent) neural network whose state variables are 
the components of the pointer vector of one of the nodes of the “delayed” edges; in the case of 
classification or regression, the state variables are the outputs of nodes related to the cycles. 
As an illustration, Figure 15 shows a network that can perform classification or regression on 
the cyclic graph shown on Figure 13. For complex graphs with many cycles, finding the 
combination of “delayed” edges that generates the simplest recurrent graph, i.e. the graph that 
has the smallest number of state variables (recurrent connections) may be an intricate task, 
even for relatively small graphs. 
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Figure 15 

A machine that can perform classification or regression with cyclic graphs. In the cycle 
1→2→3, a delay q-1 was assigned to edge 1→2. The notation pi has been kept from the 
LRAAM’s, although they are no longer pointers. Nil may be assigned any value, e.g. 0. 

 
However, it was shown in [25] that any graph with delays can be cast into a canonical form, 
made of an acyclic graph and a minimal number of recurrent connections; it was further 
shown that an optimal solution can be found automatically in polynomial time. Figure 16 
shows an example of a cyclic graph with four cycles and four delays, but actually only 2 state 
vectors (actually, 2nh state variables, where nh is the number of hidden neurons). Other 
optimal encodings can be found for the same graph, but the number of state variables is 
always the same. 
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Figure 16 

A machine that can perform classification or regression with cyclic graphs. Four cycles are 
present in the graph, but two state vectors only are necessary. 

 

5.3 Regression and classification from arbitrary graphs: graph machines 

In many applications, the problem at hand requires training from graphs that are a set of trees. 
Then, since a tree is a universal structure, a single neural network with a tree structure can be 
designed, with appropriate height and fan-out: the examples of the training set differ in their 
labels only. 
If the problem at hand requires training from different kinds of graphs, say trees, non-tree 
acyclic graphs, and cyclic graphs, the problem becomes more complex. One has to train a set 
of machines that have the structure of the graphs from which training must be performed, with 
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shared weights within each machine, as explained above for recursive networks, and across 
the different machines. Such a set of machines is termed graph machine [32]; the number of 
machines may be equal to the number of examples, and, instead of training a single machine 
with several examples, several machines are trained with one example each, which is possible 
since weights are shared across the machines. In addition, provision is made for handling 
cyclic graphs, as will be described in section 6.1. 

5.4 Theoretical foundations of graph regression and classification 

Conventional neural networks are universal approximators: any reasonable function can be 
approximated uniformly by a neural network with one layer of hidden neurons with sigmoidal 
nonlinearity and a linear output neuron [20], [21]. The universal approximation property was 
shown to hold true for recurrent networks in [33], [34]. Then a natural question arises: is there 
any equivalent solid result for the case of structured data? The machines described in the 
above sections have two parts: an encoding part that provides a code for the graph, and a 
classification or regression part, which is a standard machine whose input is the representation 
of the graph. Since the universal approximation property applies to the latter part, the open 
question is that of the representational capability of the encoding part. The question was 
investigated in detail in [35], [36], [37]. The main results are summarized below. 
 
Consider a mapping F(x) of the set of k-ary trees, of height t, with real-valued labels, to  ! . In 
the spirit of PAC-learning [38], we want to find a machine M, as described above, such that 
the probability of finding a tree x, whose image F(x) differs from the machine’s output M(x) 
by more than a given ε, is smaller than a given δ: 

 
  

Pr x M x( ) ! F x( ) > "#
$

%
&
< '  (28) 

The existence of such a machine was proved in [35], [36], [37]; it was also proved that the 
dimension of the codes, i.e. the size of the code vectors p as shown in the above figures, is 
equal to 2, if the labels are symbolic in nature. If the labels are real-valued from a compact 
set, then the existence of a machine such that 
 

 
M x( ) ! F x( ) < "  for all x (29) 

was proved. The dimension of the codes varies exponentially with the height t of the trees. 
The universal approximation property has also been proved for cascade-correlation networks, 
which can be built incrementally [39].  
Similarly to the universal approximation results for non-structured data, the above results are 
essentially existence theorems, which are very important since they provide firm ground on 
which applications can be built safely. However, whether a satisfactory machine can actually 
be found from real data depends strongly on implementation “details” such as the efficiency 
of the optimization algorithm. In addition, the assessment of the generalization ability of the 
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machine thus found must be performed carefully, with statistically sound assessment methods 
[40].  

5.5 Kernel methods for graphs 

In the previous sections, we focused on non-parametric methods such as neural networks. 
Structured data can also be handled by Support Vector Machines or other kernel methods; that 
requires the definition of “graph kernels” that measure the similarity between two graphs. The 
choice of the kernel function, which defines a “distance” between the examples, is an 
important issue. Due to the variety of graph structures, defining a kernel for general graphs 
has proven difficult; therefore, different kernels, for specific kinds of graphs, such as strings 
or trees, have been defined. Those kernels are all based on a vector of features counting the 
subelements (substrings, subtrees or paths) appearing in the graph. 

5.5.1 Fisher kernels for tree-structured data 

Fisher Kernels were first used for the classification of biological sequences [41], but allow as 
well the comparison of trees with different topologies [42], by defining a vector 
representation whose dimension is independent of the size of the tree. We consider a 
Riemannian manifold Mθ defined by a class of parametric models 

  
p

X
x |!( ) , where θ  is the 

vector of parameters of the family. Fisher Kernels are based on Fisher scores, which are the 
gradients of the log likelihood of the observation with respect to the parameters θ: 
 

   
u

x
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"
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X
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Thus, the example x is described by the feature vector ux, which is the direction of maximum 
ascent of the log likelihood of x along the manifold. The kernel of this mapping, which 
measures the similarity of the graphs x and x’, is then: 
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The matrix 
  
I = ! u

x

T
u

x{ } , where E is the expectation value, termed the Fisher information 

matrix, allows the normalization of the kernel. Moreover, this kernel is a valid definite 
positive kernel function.  
In order to compute this kernel, the first step consists in estimating the parameters of the 
model 

  
p

X
x |!( )  (a hidden tree Markov model) from a set of example trees. The Fisher score 

of a tree x is computed from (30), allowing the computation of the Fisher kernel (31) between 
that tree and the example trees. The classification or regression is finally done with a SVM, or 
any kernel-based method. 

5.5.2 String kernels 

The first kernels developed for the handling of structured data were string kernels [43], [44], 
which measure the similarity between two sequences.  
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We consider a sequence 
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set of symbols. The function Φp is defined as: 
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where 
 
!

u

p
x( )  is the number of occurrences of the subsequence u of length p in x. The p-

spectrum kernel between two sequences x and y is then defined by the dot product: 
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In order to compare all the substrings that x and y have in common, the function Φ  that counts 
the substrings of all possible lengths p in x is defined: 
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Thus, x is mapped into a feature space
   

!d
, d = V p

p=1

X

! . 

The string kernel of x and y is then the scalar product: 
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5.5.3 Tree kernels 

In the same way as string kernels, tree kernels measure the similarity between two trees, by 
counting their identical constitutive sub-trees [45], [46]. 
Let us consider two labeled trees T1 and T2, and the possible subtrees Si, 1 ≤ i ≤ n. Comparing 
T1 and T2 consists in counting the common subtrees they share, so that their similarity can be 
measured with their kernel defined by: 
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where Hi(T1) and Hi(T2) are the number of occurrences of the subtree Si in T1 and T2 

respectively.  
A major drawback of this method is that some subtrees are given too much weight: the larger 
a common subtree, the more frequently it appears in the sum.  Some alternatives to this 
definition were proposed to face this problem: they consist in downweighting the product 
Hi(T1) Hi(T2) in proportion to the size of the subtree Hi, so that: 
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5.5.4 Marginalized kernels between graphs 

As opposed to trees, graphs can be cyclic and are not necessarily oriented, so that the number 
of paths in a graph can be infinite, and computing complete kernels, which requires counting 
all the possible paths in a graph, becomes unfeasible in terms of computational time. Several 
approaches have been proposed to address this problem, and find a tradeoff between the 
efficiency of the computed kernel and the complexity of its computation [47], [48]. 
Kernels for structured data are based on the detection of common paths between two graphs. 
Their definition involves “hidden variables” (subgraphs) H: 
 

  

K(G,G ') = P(G | H )P(G ' | H )P(H )
H

!  (38) 

where G and G' are the structured data (graphs) and H is the hidden variable. Generally, 

  P(H | G)  is known instead of   P(G | H ) , so that one computes: 
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where 
  
Z = G, H!" #$ , and KZ(Z, Z’) is the joint kernel between Z and Z', which depends both on 

the hidden and visible variables. This kernel is known as the marginalized kernel. 
As suggested by its expression, the marginalized kernel is the expectation of the joint kernel 
over all the possible values of H and H', that is, all the possible paths H and H' respectively in 
G and G'.  Let us consider the graph G, defined by its vertices Vi, 

  
1! i ! G , with labels vi, 

and its edges Eij, with labels eij. If we assume that the hidden variable H is obtained by a 
random walk of length l on G, it is a sequence of numbers, corresponding to vertices, ranging 
from 1 to 

 
G : 

 H = (h1, h2, …, hl)  (40) 
and the probability of generating this sequence can be computed by making use of: 

• the probability distribution of the starting point: 
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Therefore, the posterior probability of the sequence H = (h1, h2, …, hl) is: 
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pS can be chosen as a uniform distribution, 
  
p

t
(h

i
| h

i!1
)  as a uniform distribution over the 

vertices adjacent to the current vertex hi-1 and pe is a constant. 
The joint kernel between Z = [G, H] and Z’ = [G’, H’] must then be defined. 
Since a random walk defines a sequence of vertices and edge labels: 
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the joint kernel between Z and Z' can be defined from two auxiliary kernels, between the 
sequences of vertices and edges respectively: 
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where the kernels K(v, v’) and K(e, e’), which must be non-negative, can be defined in several 
ways. For example, one can assume that   K(v,v ') = ! (v,v ') , which implies that KZ(Z, Z’) = 0 
as soon as H and H' differ by one vertex. K(v, v’) can also be the Gaussian kernel: 
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Such kernels have the advantage of guaranteeing the convergence of K(G, G’) even though 
the sum is a priori infinite. 
However, the graph kernel thus defined has several drawbacks. First, its computation is time 
consuming. Furthermore, all the sub-paths are given the same importance, whereas in specific 
studies, some paths may be more important than others.  
Once the graph kernels are defined, clustering, regression or classification can be performed 
in feature space, with appropriate tools such as SVMs, Perceptron, Nearest Neighbor or PCA.  
 

6 SELECTED APPLICATIONS 
In the present section, we describe applications of the methods described above for handling 
structured data, in the three most popular areas of applications: prediction of properties of 
molecules, image processing and natural language processing. 

6.1 Prediction of properties or activities of molecules. 

The prediction of the properties or activities of molecules is an important issue in the 
chemical industry, for instance for computer-aided drug design. The major cost of a drug 
results from the fact that only 1 molecule out of 10,000 molecules that are synthesized and 
tested reaches the market. Therefore, it is important to be able to predict the activity of a 
molecule from its chemical structure, so as to avoid the cost of synthesizing molecules that do 
not have the desired property, or which have undesirable effects. Traditional machine learning 
techniques have been successfully used, during the past few years, in QSAR (Quantitative 
Structure-Activity Relations) and QSPR (Quantitative Structure-Property Relations), see for 
instance [49], [50]. Those approaches first require the design and computation of the features 
(also termed descriptors) that are relevant for the prediction of the property of interest; they 
can be of different natures: geometrical, chemical, physical. Since the number of candidate 
features may be quite high, feature selection is mandatory, in order to select the features 
whose effect on the property of interest is larger than measurement noise or inaccuracy. 
An alternative way of performing these tasks consists in considering the molecules as 
structured data, which allows the molecule designer to take advantage of the techniques 
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described in the previous sections. Molecules can be considered as undirected graphs, by 
assigning each atom to a node and each bond to an edge; several approaches can be taken to 
build directed graphs from complex molecules featuring atoms of different natures, multiple 
bonds or cycles for example. 
The prediction of the boiling point of alkanes is becoming a benchmark for comparisons 
between different methods. The data set features 150 molecules with up to 10 carbon atoms. 
These molecules are naturally represented by trees, by associating each carbon-hydrogen 
group to a node, each bond between these groups to an edge. These edges are directed with 
the choice of the first carbon–hydrogen group according to the IUPAC (International Union of 
Pure and Applied Chemistry) nomenclature system as the root of the tree. Since that 
representation follows specific rules, it is unique. Figure 17 is an example of such a 
description: 
 

 

Figure 17 

An alkane and its graph representation 
 
Those methods are also able to handle more complex examples, and can perform tasks such as 
the prediction of the activity of benzodiazepines, but the representation of these molecules 
(see for example the molecule displayed on Figure 18) as directed trees is less obvious, since 
they involve cycles and different kinds of bonds. 

 

Figure 18 

A molecule involving cycles and double bonds 
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However, a major group, which includes the cycles, remains unchanged throughout this 
family of molecules, so that it can be used as a template, which is taken as the root of the tree 
whose branches depict the groups attached to the template.   
The prediction of the property (i.e. boiling point) or activity of interest thus becomes a 
mapping of a set of trees T into ; as described in section 5, that can be performed by 
recursive networks or graph kernels (see for instance [51], [52]). 
As explained above, the task of representing molecules as directed trees can be obvious when 
dealing with basic examples, but can turn out to be difficult when cycles, multiple bonds or 
even aromatic cycles are involved. Graph machines [32] are able to handle such complex 
molecules, and allow their representation as directed acyclic graphs without any loss of 
information. This conversion requires to first consider the molecules as cyclic undirected 
graphs: each atom (other than hydrogen) is a node of the graph, labeled by the nature of the 
corresponding atom, its degree and other possible information (stereoisomery, electrical 
charge…); each bond, multiple or not, is an edge. The information on the multiplicity of the 
bonds is indeed preserved in the degrees of the nodes, as shown on Figure 19:  
 

 

Figure 19 

Labeling each node with its degree preserves the information on the multiplicity of the bonds. 
 
The next step consists in ordering the nodes with specific rules (following for example the 
algorithm proposed in [53]), which allows the model designer to choose a root node for the 
graph, to select and cut as many edges as there are cycles in the graph, and to finally give the 
edges a direction, from the root of the tree to its terminal nodes. Even if the cut edges are no 
longer present in the Directed Acyclic Graph (or DAG) formed in this way, the information 
on their presence is also saved due to the labels of the nodes. Figure 20 shows how a molecule 
with aromatic cycles and heteroatoms can be represented as a DAG. Comparisons between 
graph machines, recursive networks, SVM’s and conventional networks are reported in [32]. 
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Structured data learning techniques have also been successfully used for investigating larger 
molecules, hence large-scale graphs, such as proteins [54]. 
 

 

Figure 20 

A cyclic molecule represented as a DAG. 
 

6.2 Image analysis 

Image analysis can be performed conveniently by first designing a high-level description of 
the image under the form of the graph, namely, a region adjacency graph. An algorithm 
segments the image into basic elements, which are assumed to have similar characteristics, for 
example to be uniformly colored or to have the same textures. Those elements are represented 
as the nodes of a graph, and are given labels encoding their relevant features, such as their 
shapes, sizes, orientations, and colors, in real-valued vectors. Each node is subsequently 
connected to the nodes corresponding to the adjacent elements (according to a pre-defined 
adjacency relationship), with edges that can be labeled, e. g. by the distance between the 
centroids of the regions. Thus, the image is represented as a graph preserving both its 
structural and sub-symbolic information. The undirected graph is then turned into a directed 
graph by choosing a root node and specific rules to order the nodes, and by directing the 
edges in that order [55]. 
The choice of the basic elements associated to the nodes depends on the properties of the 
processed images. For example, the classification of three kinds of images (airplanes, cars and 
weather forecasts) is performed in [56]. Those images are segmented into regions of 
homogeneous features with a region-growing algorithm. The regions are associated to nodes, 
whose labels encode the geometric and low-level (colour, shape) features. Two nodes are 
subsequently connected if the corresponding regions share a border on the image.  The same 
algorithm can be used to represent fingerprints [57]: a node corresponds to a region with 
homogeneous ridge directions, and is labeled with local features (area, orientation) and 
relations with the adjacent regions. 
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Other definitions of elements and adjacency relationships can be required to process different 
kinds of images. For example, in [58], the images to classify are logos, which are mainly 
made of contours, so that their structures representations can easily be extracted with the 
contour tree algorithm. The contours of the shapes in the image are extracted and associated 
to the nodes of a graph, whose labels describe the properties of the contour (area, perimeter, 
or more elaborate features such as the average distance to the centroid along the contour). The 
nodes are then connected with edges following inclusion relationships between the contours. 
The graphs obtained can then be processed either by kernel methods, or by recursive 
networks. 

6.3 Handling natural language problems 

Graph methods are suitable for addressing natural language problems since texts can be 
represented as structured data. These problems include text interpretation, ambiguity 
resolution, or text categorization, and can be encountered when searching for relevant 
information on the web, for instance. Several approaches can be taken: string kernels are used 
in [43], whereas in [59], several graph trees are built for each sentence under consideration.  
The traditional approach (“bag of words”) in text classification consists in converting the text 
into a high-dimensional vector of features, where each value in this vector represents the 
presence or the absence of a feature (for example the frequency of each word in the text), thus 
losing all information on the ordering of the words. Alternatively, texts can be viewed as 
structured data, thereby allowing the use of graph methods. 
The most obvious way of converting a text into a graph is to consider that a text is a sequence 
of strings [43], and to compare two different texts by comparing those sequences. To convert 
a text into a sequence of nodes, each string is considered as a node; in [43], a string is a single 
character, whose label identifies the character. To perform a classification or a clustering on a 
set of texts, kernel methods can be used. The degree of similarity between each pair of texts is 
measured with their string kernel, which is the inner product of their feature vectors as 
described in section 5.5.2, and is the sum, over all common subsequences, of their frequency 
of occurrence weighted by their lengths: 
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Several parameters can be adjusted, such as the maximal length n of the substrings, or the 
length of the possible gap in a non-contiguous substring. Once the string kernels are 
computed, clustering or classification can be carried out with traditional kernel methods. 
Other methods can be used when more intricate problems arise, for example when trying to 
resolve ambiguities of understanding in a text. The “learning preferences” approaches can be 
taken to solve such problems, the task being to select the best representation of a text. That 
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can be achieved by building a separate tree for each possible understanding, and assigning to 
each tree a probability of being the true representation of the text. 
First-pass attachment problems are an example of syntactic ambiguity resolution tasks. They 
consist in assessing the relationships between groups of words, for example finding which 
noun a pronoun refers to in a sentence. A standard example [60] is that of finding out, in the 
sentence, 

“The servant of the actress who was on the balcony died”.  
whether “who” refers to “the servant” or to “the actress”. 
Another problem is that of ranking possible parse or tag trees generated for the same 
sequence, i.e. finding the probabilities for each tree to correspond to the best representation of 
the sequence. Therefore, whereas in the text classification tasks a single tree is assigned to 
each example (text or sequence) and then classified, those problems require building, for each 
example, as many trees as possible interpretations, and assigning to each tree a score 
according to its probability of corresponding to the right representation.  
A sentence is represented by a phrase structure tree, which is incrementally built as the 
sentence is read from left to right. Each new word i is connected to the tree Ti-1 via an 
“anchor” word, which is the attachment word, to form the new tree Ti. The difference between 
the incremental trees Ti-1 and Ti is called the connection path. The nodes of the tree are given 
tags, which can be POS (Part Of Speech) tags, and correspond to the grammatical function of 
the single lexical item the node represents, or non-terminal tags, which characterize phrases. 
For instance, the tree shown on Figure 21 can be built for the above sentence. 
 

 

Figure 21 

A tree representation of a sentence. 
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The labels DET, NN and IN are POS-tag labels, which represent a determinant, a noun and a 
preposition respectively, whereas the labels NP and PP are non-terminal tags for Noun 
Phrases and Preposition Phrases. The attachment ambiguity problem appears when, for a new 
word, several connections (several anchors or connection paths) exist, which leads to the 
construction of several possible trees. For instance, the tree built for the ambiguous sentence 
corresponds to the interpretation for which the pronoun “who” refers to “the actress”, but we 
obtain a different tree if we consider that “who” refers to “the servant”. In order to find out 
which is the most likely to be the correct tree, each candidate tree is presented to a classifier 
that has been trained; in the training set, each example is a pair (Fi, j), where Fi designs a 
forest of possible trees for an example sentence, and j is the index of the correct tree. During 
the training step, the parameters of the regression tool (e.g. the weights of a neural network) 
are adjusted so that the highest probabilities are assigned to the correct trees, and these 
parameters are then used to determine which interpretation of a new sentence is the correct 
one.   
In [59], a first-pass attachment problem and a ranking task are performed. For each sequence 
of the first-pass attachment problem, 120 alternative incremental trees were built on average, 
while the ranking task is carried out on sentences for which an average of 30 alternative parse 
trees is proposed. RNNs and a kernel method were used and both lead to satisfying results. 

7 CONCLUSION 
The processing of structured data with numerical learning machines has been a long-standing 
problem, which attracted interest very early. In this short survey, we have shown that two 
basic ideas, often not explicitly stated, underlie the development of the methods: 

•  when structure is present in the data, a machine can be built, whose structure is the 
image of the structure of the data; recursive networks are essentially feedforward nets 
whose architecture is directly derived from the structure present in the data; that is 
reminiscent of semi-physical modeling, where the architecture of the network is 
derived from the architecture of prior knowledge on the process; 

• the representation of structured data can be learnt instead of being handcrafted; 
learning the representation can be performed simultaneously with the learning of the 
task, whether classification or regression; that is reminiscent of convolutional 
networks. 

Important existence theorems have been proven, giving a strong theoretical foundation to the 
approach. Moreover, we have presented typical successful applications, and more are to 
come. 
There are still exciting problems that have been widely investigated for the learning of 
unstructured data, and should be considered carefully for structured data: 
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• model selection and overfitting detection: as usual in nonlinear black-box modeling, 
the complexity of the model should match the complexity of the data; therefore, the 
problem of the estimation of the generalization error is central in model design; 
although cross-validation extends trivially to structured data, alternative approaches 
should be investigated; 

• feature selection: the nature of the problem to be solved may suggest several different 
sets of labels for the nodes; to the best of our knowledge, the choice of the best 
representation of the data, in terms of node labels, is an open problem; 

• example selection (“active learning”): when faced with very large datasets, finding the 
most informative examples may be a crucial issue; 

• experimental planning: when a small database is available, but additional (possibly 
costly) experiments can be performed, it is important to resort to principled methods 
for choosing the experiments that will be most important for improving the model; this 
issue is conceptually related to the previous one. 
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