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Abstract- GSM trace mobile measurements are used to study 
indoor handset localization in an urban apartment setting. 
Nearest-neighbor, Support Vector Machine (SVM), and 
Gaussian Process classifiers are compared. A linear SVM is 
found to provide mean room-level classification efficiency near 
100%, but only when the full set of GSM carriers is used. To our 
knowledge, this is the first study to use fingerprints containing 
all GSM carriers, and the first to suggest that GSM could be 
useful for very high-performance indoor localization.  

 

I. INTRODUCTION 

The introduction of the E911 (United States) and E112 
(Europe) emergency services initiatives has spurred 
considerable interest in Location Based Services (LBS) for 
cellular telephone networks [1]. Although integrated GPS 
receivers can provide very accurate positioning information, 
few handsets are so equipped, and GPS performs poorly in 
indoor and urban canyon environments. For these reasons, the 
study of radio network based localization techniques is also a 
very active area. 

In the database correlation method [2], a mobile is 
localized by comparing a recent Received Signal Strength 
(RSS) measurement to a position-labelled database of such 
measurements called fingerprints. GSM localization schemes 
often rely on regularly emitted Network Measurement 
Reports (NMR) containing the RSS and Base Station Identity 
Code (BSIC) of the serving cell and six strongest neighboring 
cells. These 7-component vectors allows localization 
precision of several tens of meters in outdoor environments 
(see for example [3,4]). 

Most radio-based indoor localization studies have involved 
WiFi networks, where workplace “corridor waveguide” 
scenarios are addressed, and performance, though interesting, 
needs to be improved [5-7]. A novel approach using the 
household power lines as an antenna appears in [8]. The idea 
of using GSM or CDMA networks for localization in indoor, 
and particularly domestic, environments is still rather new 
(see, for example, [9] and [10]). The working hypothesis here 
is that the RSS of the external base stations should be strongly 
correlated with a mobile’s indoor position, due to the varying 
absorption of electromagnetic energy by different building 
materials and the exact placement of doors, windows, etc. 
There has also been evidence that going beyond the standard 

7-carrier NMR fingerprint is advantageous for indoor GSM 
localization [9]. 

In this article, we present tests of indoor GSM localization 
using scans containing large numbers of carriers – up to the 
full GSM band. We show that in an urban apartment setting, 
the room in which a handset is located can be identified with 
an efficiency approaching 100%, but only when the full set of 
GSM carriers is included. To our knowledge, this is the first 
study using fingerprints containing all of the carriers in the 
GSM band, as well as the first to achieve very good 
performance on indoor GSM localization. 

The data sets used in our study are detailed in section II, 
while a discussion of pre-processing and a description of the 
classifiers tested are given in section III. Results are presented 
in Tables I and II and discussed in section IV, while a 
conclusion and some perspectives are outlined in the final 
section. 

 
 

Figure 1. Schematic of apartment layout. 

 



II. DATA SETS 

Scans of the full available set of 498 GSM carriers were 
taken twice a day for one month in 5 rooms of a 5th (top) 
floor apartment in Paris, France, using the TEMS [11] trace 
mobile system. Both the RSS and the BSIC, where readable, 
were recorded for each carrier. A schematic of the apartment 
layout is given in figure 1. Acquisitions could in principle be 
made anywhere within a room; however, in practice, scans 
were typically recorded only in those areas where a laptop 
and cellphone could be conveniently placed and accessed. 
 

III. DATA ANALYSIS 

A. Pre-processing 
 
Ten carriers found always to contain no energy were 

removed from the study. As the BSICs of the remaining 488 
proved to be unreadable in many cases, a decision was made 
to exclude BSICs from the subsequent analysis, despite the 
possibility of confusing carriers at the same frequency in 
separate cellular motifs. The data set contained a total of 241 
scans – approximately 48 scans per class, where a class is 
defined simply as the index of the room within the apartment, 
as indicated in figure 1. In order to obtain an assessment of 
the statistical significance of our classification results, cross 
validation was performed using ten independent randomly 
selected splits of the data, each containing 169 training 
examples and 72 validation examples. In any given split, the 
training and validation examples were randomly distributed 
in time over the one-month acquisition period. 

 
B. Dimensionality Reduction and Fingerprint Types 

 
The small size of our dataset – a reflection of the difficult 

and time consuming nature of obtaining labelled scan data – 
and its high dimensionality (488 carriers) limit the complexity 
of classifiers which can be effectively tested. To address this 
problem, signal strength based carrier selection was first 
carried out to define the 4 fingerprint types given below. 
Further dimensionality reduction on any fingerprint type can 
be obtained by applying Principal Component Analysis 
(PCA).  

Three vectors are used to define the fingerprints:  
 
 
 
 
 

 
 
where 1 is the indicator function, and 

j
denotes the mean 

over the index j. The first, , contains the indices of the 7 
strongest carriers, i, in example j. The vector is composed 

of the indices of all carriers which were among the strongest 
7 in at least one element of the training set; it contains 
between 36 and 40 of these “good” carriers, depending upon 
the random split. The last vector, , is made up of the 
indices of the 35 carriers which were the strongest, on 
average, over the training set. The fingerprints are then 
defined as follows:    

7
jg

7G

35G

 
    1. Current Top 7 
These 7 carrier fingerprints, , were meant to mimic 
“top 7” NMRs, which were not available in our scans. 
Validation set fingerprints may contain fewer than 7 elements 
in the case of carriers which did not appear in the training set. 
For classifiers requiring fixed labelling of input vectors, such 
as KNN and SVM, the 7 

( )7
jRSS g

( )jRSS g  values are filled in at the 
corresponding positions in a vector of length 7G , the rest of 
whose elements are set to zero. 

 
    2. Top 7 with Memory 
These fingerprints, defined as , include the values of 
all 36-40 “good” carriers, and are thus “wider” than the 
Current Top 7. 

( 7GRSS )

 
    3. 35 Best Overall 
Another way of assessing the “goodness” of a carrier is its 
average RSS value over the whole training set. The 35 Best 
Overall fingerprint, of length 35, is defined as ( )35GRSS . 

 
    4. All 488 
All active carriers RSS values are included (no selection). 
 
C. Classifiers 

 
Three types of classifier were tested: 

 
    1. Support Vector Machines (SVM) 
A 2-class SVM [12] determines the separating surface which 
maximises the distance (called the “margin”) between this 
surface and the data points appearing on either side of it. The 
SVM may be linear, operating directly upon the data, or map 
the data first to a higher-dimensional space via a non-linear 
transformation before finding the maximum margin surface. 
The SVM decision rule is obtained by taking the sign of 
 

f x( )= α i yi K si , x( )+ b
i=1

Ns

∑( ) ( )

( ) ( ) ,1,G

gG

1,g

,,

,,

⎭
⎬
⎫

⎩
⎨
⎧

≤==

=
⎭
⎬
⎫

⎩
⎨
⎧

≤==

∑

∑

<

<

344881

64881

35

77

7

k
jjkRSSjjiRSS

j
j

k
jkRSSjiRSSj

i

i

K

U

K  
 

where x is the RSS vector to be localized, Ns is the number of 
support vectors si (training vectors residing on the optimal 
separating surface), yi = ±1 is the class label of the vector si, 
K(.) is the selected kernel, and b and the αi are parameters 
determined during the search for the optimal separating 
surface. It is known that for large, well behaved data sets, the 
SVM rule approximates the Bayes decision rule.  



For a linear SVM the kernel function is simply 

   i i . A standard Gaussian kernel was adopted in 
our tests of non-linear SVMs,  
K s ,x( )= s ⋅x

 
 

where the variance σ2, as well as a regularization parameter 
that controls the complexity of the separating surface [12], are 
optimized in the cross-validation stage. For m classes, it is 
traditional (conventional recipe [13]) to construct m binary, 
one-vs-rest classifiers, and identify the output class as that of 
the classifier with the largest output value, before 
thresholding. This procedure is illustrated for our case of m = 
5 in figure 2. The Spider SVM modelling package [14] was 
used in all our analyses. 

 
    2. K-Nearest Neighbor (K-NN) 
The K-NN classifier first ranks all training vectors according 
to their Euclidean distances, in RSS-space, from the test 
vector to be localized. The predicted class of the test vector is 
then taken to be the class which is most represented in the K 
“nearest” vectors according to the defined metric. The 
parameter K is chosen empirically to optimize performance. 
When the single best neighbor is used, we have K=1 and the 
classifier is denoted 1-NN.  
 
    3. Gaussian Process (GP) 
As with K-NN, GP begins by comparing the test RSS vector 
to be localised to each vector in the training set. The 
probability P1 that the two compared vectors correspond to 
measurements taken at (nearly) the same geographical 
position is assumed to be Gaussian in the Euclidean RSS 
distance between the two vectors, with a fixed variance σ2, 
determined empirically. If a carrier appears in one of the 
compared vectors but not in the other, GP assumes that the 
missing value was below the threshold for reception in the 
deficient vector. A penalty term probability Pp is then 
introduced, in which the missing RSS value is filled in by an 
estimate of the reception threshold taken to be the smallest 
RSS in the vector missing the carrier. The overall GP 
probability P is given by the product of P1 and Pp.   

More precisely, let A and B be the sets of indices of 
carriers contained in a training set vector and a test set vector, 
respectively. We define the set of common carriers as 
C=A∩B, and the train and test non-common carrier sets as 
D=A-C and E=B-C, respectively. We then have   
 

 
 
 
 
 
 

where  denotes the signal strength of the iA
iRSS th carrier of 

set A, and the order of each radical normalizes the probability 
to the number of carriers in the corresponding term. GP is in 
fact the only classifier tested which is able to handle missing 
carriers in a natural way. When input vectors are of fixed 
length – a requirement for SVM and KNN – and all variables 
are represented, GP becomes equivalent to a 1-NN classifier. 
As a caveat, since we do not use the BSIC information, in 
some cases carriers with the same index could belong to 
different cellular motifs, which may degrade the performance 
of GP.   

   
K si , x( )= e− si−x

2
σ 2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Architecture combining five one-vs-rest SVM classifiers to predict 

the class of an RSS vector from one of the carrier sets. 
 
 

IV. RESULTS 

We define localization performance as the overall correct 
classification rate. Table I shows that the performance of all 
classifiers tested improves as more carriers are added to the 
fingerprint, but that very good performance – for example our 
best result of 97.8% in the case of the linear SVM –  is only 
obtained on the All 488 carrier fingerprint. The implication is 
that indoor position can indeed be deduced from the RSS of 
GSM cell towers, but that commonly used 7-carrier NMRs 
and even “wide” fingerprints are insufficient – high 
performance requires fingerprints of very high 
dimensionality. Further support for this conclusion is given 
by Table II, in which the confusion matrices for the linear 
SVM classifier on 35 Best Overall and All 488 fingerprints 
are presented. It is again clear that the ability to sharply 
discriminate between rooms comes only with the inclusion of  
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TABLE I 

 
Fingerprint Type  

 
Classifier 

Current Top 7 
(≤7 carriers)1

 Top 7/Memory 
(36-40 carriers) 

35 Best Overall 
(35 carriers) 

All 488 
(488 carriers) 

Linear SVM          71.3 ± 7.2           84.6 ± 3.6          90.4 ± 3.5          97.8 ± 1.5 
w/o PCA          72.2 ± 3.6           89.2 ± 2.9          93.2 ± 3.4 – 2Gauss. SVM 
w/PCA3

          71.8 ± 3.2           85.6 ± 5.3          92.0 ± 3.0                 96.4 ± 1.5         
Kbest  K-NN 5    59.3 ± 3.5 26 85.1 ± 3.0 20     93.3 ± 2.1 20 94.9 ± 1.9 

1-NN          58.1 ± 5.2           74.7 ± 3.7          86.0 ± 2.9          87.2 ± 2.8 
GP (σ = 5 dB)          78.8 ± 3.7 – 4

 
    Percentage of correct radio fingerprint classifications on the 4 carrier sets described in the text. Figures quoted are averages and standard deviations over 
10 randomly selected validation sets. All classifiers achieve their best performance when all 488 carriers are included. The most effective classifier for this 
case is the linear SVM. 
 

    1SVM and K-NN can have < 7 carriers if some did not show up in the training set. 
    2Small training set size precludes training a Gaussian SVM due to Cover’s theorem [13]. 
    3Best result, first 4 principal components. PCA is used exclusively in this line of the table. 
    4Gaussian process is equivalent to 1-NN for fixed input vector length. 

 
 
 
 
 
 

TABLE II 
 

True Class Confusion 
Matrix 35 Best Overall All 488 

Pred. Class 1 2 3 4 5 1 2 3 4 5 
1 95 5.3   3.3 100  0.7   
2 1.4 93.3 3.6    100    
3 0.7 1.3 77.9 11.4    91.4 1.4 1.3 
4   16.4 87.9 0.7   5.7 98.6  
5 2.9  2.1 0.7 96 

 

  2.2  98.7 
 
    Confusion Matrices for 35 Best Overall and All 488 carrier sets, using a Linear SVM classifier. Figures quoted are in percent. Using the full number of 
carriers tightens up the diagonal to give individual room classification efficiencies near 100%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



the full GSM carrier set. The deviation of our global result 
from 100% is in fact dominated by the confusion between 
class 3 and class 4, which appears to be the most difficult 
case. A non-linear SVM might provide better results, but our 
limited training set size precludes training such a classifier on 
the All 488 dataset due to Cover’s theorem [15], which states 
that a training set is always linearly separable when the 
number of input variables exceeds the number of examples. 
In any case, the ability to achieve good performance on a 
small training set is an interesting result in itself, as it 
suggests that large, difficult to obtain sets of labelled data 
might not be necessary in a final application. 

 

V. CONCLUSIONS AND PERSPECTIVES 

We believe this to be the first instance of including the full 
set of GSM carriers in an RSS fingerprint for a localization 
study. Although confirmation at additional sites will clearly 
be required, our results here suggest that high-performance 
room-level localization is possible through the use of such 
fingerprints. It is also interesting to note that our result 
appears to be robust against time dependent effects, such as 
network modifications, propagation channel changes, 
meteorological effects, etc., since our dataset was acquired 
over a period of one month.  

Performances might be further improved by including the 
BSIC information on those carriers for which it is readable, 
using more sophisticated classification techniques, or 
extending the fingerprints to include other locally available 
information.  

For larger indoor areas, a regression approach based on x-y 
position may be more appropriate than the room-by-room 
classification used here. It will also be interesting to examine 
semi-supervised  learning algorithms in order to address the 
problem of the difficulty of obtaining labelled training data 
[7,16]. 

A subsequent article, implementing one-vs-one classifiers, 
as well as other improvements, is currently in preparation. In 
order to obtain a more statistically significant performance 
assessment, the acquisition of a new, larger data set is also in 
progress. 
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