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We describe graph machines, an alternative approach to traditional machine-
learning-based QSAR, which circumvents the problem of designing, computing 
and selecting molecular descriptors. In that approach, which is similar in spirit to 
recursive networks, molecules are considered as structured data, represented as 
graphs. For each example of the data set, a mathematical function (graph 
machine) is built, whose structure reflects the structure of the molecule under 
consideration; it is the combination of identical parameterized functions, called 
“node functions” (e.g. a feedforward neural network). The parameters of the node 
functions, shared both within and across the graph machines, are adjusted during 
training with the “shared weights” technique. Model selection is then performed 
by traditional cross-validation. Therefore, the designer’s main task consists in 
finding the optimal complexity for the node function. The efficiency of this new 
approach has been demonstrated in many QSAR or QSPR tasks, as well as in 
modeling the activities of complex chemicals (e.g. the toxicity of a family of 
phenols or the anti-HIV activities of HEPT derivatives), generally outperforming 
traditional techniques without requiring the selection and computation of 
descriptors. 
 
Keywords: Graph; Graph machine; Structured data; Machine learning; Phenol 
toxicity; Anti-HIV activity; Carcinogenicity 
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1. Introduction 

In recent years, the development of machine-learning techniques focused mainly on methods 
for learning from vector data. For a given problem, finding a vector representation of the data 
may be straightforward; in order to model a physical process for instance, the variables that 
have an influence on the quantity of interest are usually known from prior knowledge, and, 
after some preprocessing (normalization) they can be grouped into a vector that is input to a 
multilinear model, a polynomial, a kernel machine, a neural network, etc. However, there are 
problems for which the computation of the variables of the model is a difficult and time-
consuming task; such is the case for QSAR/QSPR problems, where relevant variables (called 
descriptors) must be designed and computed. For each activity to be predicted, a set of 
potentially relevant descriptors must be selected from a pool of conventional descriptors, 
and/or designed specifically; appropriate methods for computing those descriptors must be 
found, and descriptor selection must be performed in order to keep only truly relevant 
descriptors. 

Alternatively, one may consider that a wealth of information is present in the graph 
structure of the molecule itself; this spurred the recent development of machine-learning 
methods that learn from graphs instead of learning from vectors. The first part of the present 
paper is devoted to the description of graph machines, which exempt the model designer from 
designing or computing any descriptor. The second part analyzes results obtained for the 
prediction of two activities: the toxicity of phenols and the anti-HIV activity of a family of 
molecules; the results of a classification task on the carcinogenicity of molecules are also 
described. Comparisons with results obtained by other authors on the same databases show 
that graph machines perform at least as well, and generally better, than traditional methods, 
without requiring the design, computation and selection of descriptors. 

2. Graph machines 

The idea of learning from graphs (and generally structured data) can be traced back to the 
early days of machine learning, when Recursive Auto-Associative Memories (RAAMs) were 
designed for providing compact representations of trees [1]. It evolved subsequently to 
Labeled RAAMs, recursive networks, and graph machines (for a review of the development 
of numerical machine-learning from structured data, see [2]).  

2.1. Definition 

Graph regression (resp. graph classification) consists in performing a mapping between a set 
G of graphs and a set of real (resp. binary) numbers. 
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2.1.1. Acyclic graphs 

For each acyclic graph Gi of G, a function gi   !n
! !  (“graph machine”) is constructed as a 

combination of identical parameterized functions (node functions), in such a way that gi has 
the same structure as graph Gi. Function gi is intended (i) to encode the structure of the graph 
[3], and (ii) to provide a prediction of the quantity of interest, e.g. a property or an activity of 
the molecule, from its graph structure. If the node functions are neural networks, the gi’s are 
termed, in some cases, recursive neural networks [4]. 

As an example, Figure 1 shows a set of three graphs; the functions are obtained by 
replacing each node by a parameterized node function fθ, where θ  is the vector of parameters 
of the function; the function FΘ that replaces the root node may be different from the function 
implemented at the non-root nodes: 
Graph G1:
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− x1, x2, x3, x4 are optional label vectors of size X1, which convey information about the 
nodes. If no specific information is necessary to perform the task at hand, one has X1 = 0; 
therefore, the value of 
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− z1, z2, z3 are of size D1+1; denoting by dk the in-degree of node k, and defining 
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: in this example, M1 = 3, hence D1 ≥ 3; those 

vectors are constructed as follows: for all nodes, the first component z0 is equal to 1; for 
node k, of in-degree dk, components 2 to dk+1 of zk are the values of fθ computed by the 
parent nodes of node k; if dk < Mk, components dk+2 to M1+1 are equal to zero; if X1 ≠ 0, 
components M1+2 to M1+1+X1 are the components of vector xk. 
In QSAR/QSPR problems for instance, the information conveyed by the labels may be the 

chemical nature of the atom present at each node in the graph of the molecule. It may also be 
molecular descriptors, but it has been shown in [5] that molecular descriptors can be learnt by 
graph machines, so that inputting descriptors to graph machines is often redundant. 

 

 
Figure 1 

Three directed acyclic graphs 
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In the present example, if no information about the nodes is necessary (X1 = 0), one has: 

D1 = 3, 
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Graph G2:
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where vectors x1 to x7 and z1 to z6 are constructed similarly to those of graph G1, with M2 = 2. 
If no label is necessary (X2 = 0), one has: 
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Graph G3: 
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where vectors x1 to x10 and z1 to z9 are constructed as explained above, with M3 = 2. 
If the three graphs are to be used as a training set, as described in section 2.2, the three 

graph machines have the same node functions, so that the number of variables of the node 
functions is 

  
D = max

i

D
i
,  i = 1 to 3 . 

2.1.2. Cyclic graphs 

Graph machines handle cyclic graphs and parallel edges, so that, for QSAR/QSPR 
applications, cycles and multiple bonds can be handled. To that effect, the initial graph is 
preprocessed by deleting a number of edges equal to the number of cycles, and all parallel 
edges but one, and by assigning to each node a label that is equal to its degree, thereby 
retaining the information about the original graph structure. Finally, a root node is chosen and 
the edges are assigned orientations, according to an algorithm described in [6]. 

2.2. The training of graph machines 

Graph machines are trained in the usual framework of empirical risk minimization. A cost 
function J(Θ ,θ) is defined, and its minimum with respect to the parameters is sought, given 
the available training data. The cost function takes into account the discrepancy between the 
predictions of the models and the observations present in the training set, and may include 
regularization terms, e.g. 
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where N is the size of the training set, yi is the value of the i-th observation of the quantity to 
be modeled, and λ1 and λ2 are suitably chosen regularization constants. 
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Since the parameter vectors θ  and Θ  must be identical within each function gi and across 
all those functions, one must resort to the so-called shared weight trick; the k-th component of 
the gradient of the cost function can be written as: 

 !J
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#  (2) 

where Ji is the contribution of example i to the cost function. We denote by 
 
n
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occurrences of parameter θk in acyclic graph Gi; if the root is assigned the same parameterized 
function as the other nodes, then 
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Relation (4) is subsequently used for minimizing cost function (1) by any suitable gradient 
descent algorithm (Levenberg-Marquardt, BFGS, conjugate gradient, …). 

If functions fθ and FΘ are neural networks, the usual backpropagation algorithm may be 
conveniently used for computing the gradient, otherwise one resorts to numerical estimations 
thereof. 

2.3. Two didactic examples 

In order to clarify the method, we consider here two toy examples. First, assume that one 
wishes to learn, from examples, the number of nodes of a graph. Assume that the training set 
consists of the three graphs shown on Figure 1; then the desired mapping is: G1→4; G2→7; 

G3→10. The node function fθ is sought in the family of affine functions 
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FΘ is taken identical to fθ. Since no specific information about the nodes is required X1 = X 2 = 
X3 = 0. Since the node functions are the same for all graphs of the training set, we take 

  
D = max

i

D
i
= 3 , and the xk’s are non-existent. Since all edges are equivalent, one has θ1 = θ2 

= θ3 = θ. Therefore, there are actually 2 independent parameters. 
The obvious solution is θ0 = θ = 1. For graph G1 for instance, one has: 
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Similarly, consider learning, from examples, the number of edges in a graph. Assume that, 
in addition to the previous 3 graphs, the training set contains example G4, as shown on 
Figure 2. Graph G4 is cyclic, so that it must first be preprocessed, e.g. by deleting the edge 
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between nodes 1 and 2; since it is mandatory, given the task at hand, to retain the information 
about the edges of the original graph, the degree of each node in the original graph is input as 
a label, i.e. Xk = 1 for all nodes k of all graphs of the training set: we take 

  
D = 1+ max

i

M
i
= 4 , and, for each node k of each graph, xk is a scalar, equal to the degree of 

node k. No additional information is necessary, so that one has, for the nodes of G4: 
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Figure 2 

A cyclic graph 
 

If a solution is sought within the family of affine functions 
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the obvious solution is θ0 = 0, θ1 = θ2 = θ3 = θ = 1, θ4 = ½. This gives, for graph G4 for 
instance: 
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In the absence of any obvious solution, the training procedure described in section 2.2 
should be used. 

2.4. Model selection 

Similarly to vector machines, usual model selection techniques such as hold-out, K-fold cross-
validation, leave-one-out, virtual leave-one-out [7], bagging, can be applied to recursive 
networks and to graph machines. In the following applications to QSAR, hold-out and cross-
validation were used. 
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3. Graph machines for QSAR 

In the following, we describe applications where graph machines were applied to the 
prediction of activities. For comparison purposes, the databases were identical to those 
investigated previously by other authors. 

3.1. Encoding the molecules 

In the applications described here, the node functions fθ are feedforward neural networks with 
a single hidden layer. The functions 

 
g
!

i  are generated from the SMILES files of the molecules 

by the following procedure: the molecules, described by these files, are converted into 
labelled graphs by the association of each non-hydrogen atom to a node, and each bond to an 
edge. The nodes are also assigned labels describing the atoms they are related to. The 
heteroatoms are encoded in a one-out-of-N code: if the molecules of the database feature N 
different types of heteroatoms, each node has N labels, each of which codes for one type of 
heteroatom. The label corresponding to the heteroatom present at the node is equal to one, 
while all others are equal to zero; if the node is a carbon atom, all labels are equal to zero. In 
addition, other labels encode the degree of the node (also in a one-out-of-n code), when the 
database includes molecules with multiple bonds or cycles, and its stereoisomery if necessary. 
The presence of hydrogen atoms is not encoded. 
Then, the adjacency matrices associated to these labelled graphs are generated. In the 
subsequent step, the matrices are cast into a canonical form, by an algorithm that ranks the 
nodes according to criteria such as their degree, the fact that they belong to a cycle, the nature 
of the atom… [6]. Essentially, this algorithm chooses the root node of the acyclic graph to be 
constructed, and deletes the edges that are most distant from the root node. Figure 3 illustrates 
the processing of a molecule from its SMILES representation into a directed acyclic graph. 

Graph machines are then built for each graph of the data set, by replacing each node of the 
graph by a feedforward neural network, whose complexity (i.e. the number of neurons in the 
hidden layer) is controlled by cross-validation. The graph machines are then trained, with the 
shared weight condition, using the software package NeuroOne1, which computes the 
gradient of the cost function by backpropagation and minimizes the cost function by the 
Levenberg-Marquardt algorithm. 
 

                                                
1 NeuroOne is a product of Netral S.A. (http://www.netral.com) 
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Figure 3 

Encoding a molecule into a graph machine 
 

For comparison purposes, the databases investigated in the following sections were those used 
previously by other researchers, so that the proportions of the different heteroatoms or 
stereoisomery in the training and test sets were not to be chosen freely. As usual in machine 
learning techniques, the database should represent as well as possible the types of molecules 
under investigation. In standard learning machines, influential examples can be detected by 
their leverages [8]; the generalization of leverages to graph machines is described in [7], and 
will be demonstrated in detail in a forthcoming article. 

3.2. Predicting the toxicity of phenols 

Phenol derivatives are widely used in the industry and in agriculture, for their activities as 
biocides or antiseptics. However, many of them also have a toxic activity and are considered 
as dangerous pollutants.  

Several QSAR investigations tried to model this activity in the past. In particular, the 
toxicity of a family of phenols to an aquatic organism, the ciliate Tetrahymena pyriformis, 
was modelled with methods such as Multi Linear Regression (MLR), Radial Basis Function 
Neural Networks (RBFNN) and Support Vector Machines (SVM) [9, 10]. This toxicity arises 
from several modes of action, which can be categorized, according to structural criteria, into 
four groups: weak acid respiratory uncouplers, pro-electrophiles, soft electrophiles and polar 
narcotics [11]. In order to model the toxicity of phenols, two approaches can be taken [12]: 
the most straightforward consists in predicting the toxicity without taking into account the 
mechanism of action of the studied compound. However, the prediction may be inaccurate 
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since a single model may not fit correctly the four different mechanisms. Therefore we chose 
the alternative approach, and focused on one particular category, the polar narcotics. The 
studied data set features 153 phenol derivatives whose toxicity is expressed as log(1/IG50), 
where IG50 is the concentration in mM causing 50% inhibition of growth, after 40 hours, to T. 
pyriformis.  

To provide a comparison with results obtained with the other methods, we used the same 
training and test sets, featuring 131 and 22 examples respectively, as in the referenced studies 
[9]. All predictions are based on computed descriptors such as the hydrophobicity, the acidity 
constant, the frontier orbital energies and the hydrogen bond donor/acceptor counts. 
 Graph machines were built for each example of the whole set; the node functions fθ were 
implemented by feedforward neural networks with a single hidden layer, and the complexity 
was selected by 6-fold cross-validation. The best results were obtained with 3 hidden neurons, 
overfitting appearing with more complex models, as shown on Table 1.  
 
Table 1. Model selection for the prediction of the toxicity of phenols : RMS prediction error; 

figures between parentheses are the ratio of the RMS error to the variation range of 

log(1/IG50) in the database. 

Model complexity 6-fold cross-validation RMSE 
GM-3N 0.27 (6.7 %) 
GM-4N 0.30 (7.5 %) 
GM-5N 0.34 (8.5 %) 

 
The results on the test set are shown on Figure 4 (GM with 3 hidden neurons) and Table 2, 

where they are compared to those of other methods. The quality of the fitting is estimated by 
the Root Mean Square Error (RMSE) and by the ratio of the RMSE to the variation range of 
the predicted quantities in the database. For comparison purposes, the RMS error when 
training on the whole data set was computed (last column), although its statistical significance 
is not clear. 

The results show that graph machines provide the best results on the test set, without 
requiring the computation and the selection of descriptors, as opposed to alternative methods. 
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Table 2. Prediction of the toxicity of phenols by different methods. RMS prediction error; 

figures between parentheses are the ratio of the RMS error to the variation range of 

log(1/IG50) in the database. 

Method [6, 7] Training set Test set Whole set 

GM 3N 0.19  0.27 0.21 

MLR 0.30 0.46 0.33 

RBFNN 0.19 0.29 0.21 

SVM 0.22 0.36 0.24 

 

 
Figure 4 

Scatter plot for the prediction of the toxicity of phenols by graph machines 

3.3. Predicting anti-HIV activity (HEPT Data Set) 

The HIV-1 virus is a retrovirus, i.e. a RNA virus that needs an enzyme, the reverse 
transcriptase (RT), to transcribe its single-stranded RNA genome into single-stranded DNA. 
A DNA double helix, able to integrate into host cell chromosomes, can then be formed. 
Therefore this enzyme is necessary for the virus to replicate, and inhibitors of reverse 
transcriptase are potential therapeutic agents in the battle against HIV. For example, the well-
known anti-AIDS drug, AZT, targets this enzyme: it belongs to the class of nucleoside reverse 
transcriptase inhibitors (NRTI), which cause chain termination of the polymerase reaction. 
However, these compounds are often associated to undesirable side effects. Another class of 
molecules, non-nucleoside reverse transcriptase inhibitors (NNRTI), which include for 
example HEPT or TIBO derivatives, also inhibits the replication of the virus, but has low side 
effects. 
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The anti-HIV activity of HEPT (1-[2-Hydroxyethoxy)methyl]-6-(phenylthio)-thymines) 
analogues was studied with several QSAR methods, including 3D methods - e.g. Comparative 
Molecular Field/Surface Analysis (CoMFA/CoMSA) [13-16]. 

To compare the performances of graph machines to those of methods based on molecular 
surface calculation, we studied a data set of 107 HEPT derivatives whose activity was 
modelled previously by 4D-QSAR [16]. This method is based on molecular dynamics 
simulations, which investigate the conformational space of molecular objects, and find the 
likelihood of a formation of a common 3D pattern for the series of molecules. The anti-HIV 
activity is expressed as log(1/EC50), EC50 being the molar concentration of drug required to 
achieve 50% protection of MT-4 cells against the cytopathic effects of HIV-1 virus. The 
experimental inaccuracy in EC50 varies from 1.1 to 45%, which corresponds to an error in 
log(1/EC50) from 0.004 to 0.20. Unfortunately, no estimation of the uncertainty of each 
individual measurement is available. 

The data set was divided twice into a training and a test set of respectively 80 and 27 
compounds, identical to the sets studied with 4D-QSAR. The first test set gathers the 
molecules for which the only available information is an upper limit of their activities. 
Therefore the results obtained on this set are not very relevant, and the second partition was 
used to assess the generalisation abilities of the models.  

Table 3 shows the results obtained on the two test sets by graph machines built with node 
functions featuring two, three and four hidden neurons. They are compared to the 
performances of 4D-QSAR using Partial Least Squares (PLS) and self-organising neural 
networks (SOM). Figure 5 shows the scatter plot of the results obtained on test set 2 by a 
graph machine with 3 hidden neurons. 

These results show that graph machines outperform 4D-QSAR methods on the prediction 
of the anti-HIV activity of HEPT derivatives on both sets. Moreover, 4D-QSAR requires the 
optimisation of the geometry of each molecule, the sampling of one thousand conformations, 
and the computation of 4D descriptors, whereas Graph Machines only use the SMILES of 
each molecule. 

To further assess the performances of GM, we compared their ability to predict the same 
activity to the results obtained with a method based on substructural molecular fragments 
(SMF) [13]: each molecular graph is split into fragments, whose contribution to the modelled 
activity is computed. The original data set features 84 molecules, and contains no compound 
for which only the upper limit of log(1/EC50) was known. The generalisation capabilities were 
tested on two different sets, named Test set 3 and Test set 4, of 8 examples.  
Graph Machines with 2, 3 and 4 hidden neurons were built and trained on the two training 
sets. The error (RMSE) on the corresponding test sets are reported in Table 4, and compared 
to the errors obtained with SMF models. 
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Table 3. Prediction of anti-HIV activities by different methods. RMS prediction error; figures 

between parentheses are the ratio of the RMS error to the variation range of log(1/EC50) in the 

database. 

Method [13] Test set 1 Test set 2 
PLS 4D-QSAR 1.41 0.79 
SOM 4D-QSAR 1.39 0.67 

GM 2N 1.17 0.62 
GM 3N 1.15 0.51 
GM 4N 0.98 0.54 

 

 
Figure 5 

Scatter plot of the prediction of anti-HIV properties by graph machines 
 

Table 4. Prediction of anti-HIV activities by different methods. RMS prediction error; figures 

between parentheses are the ratio of the RMS error to the variation range of log(1/EC50) in the 

database. 

Method [10] Test set 3 Test set 4 
SMF 0.41 0.37 

GM 2N 0.39 0.36 
GM 3N 0.27 0.31 
GM 4N 0.30 0.36 

 
In both test sets, Graph Machines with three hidden neurons lead to the best prediction of 

the activity. In view of the small number of examples in the training set, the higher error 
obtained with four hidden neurons is a symptom of overfitting. These results are comparable 
to the errors obtained on Test set 2, which confirms the good performances of GMs on this 
QSAR task.  
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The prediction of the anti-HIV activity of HEPT derivatives highlights several 
specificities of graph machines. Firstly, as opposed to 4D-QSAR, but also to traditional 
methods such as MLR, PLS [14] or conventional neural networks [15], they do not require the 
computation of any descriptor, nor the optimisation of the molecular geometry. Furthermore, 
several molecules had to be removed from the set studied with the SMF method because of 
the presence of unique fragments, which was not necessary for graph machines. Finally, the 
models provided by graph machines were satisfactory, since the errors obtained on the test 
sets, even if higher than the experimental error, compared favourably with the errors obtained 
with other QSAR methods. As mentioned above, it would be crucially important to know 
reliable estimates of the experimental error in order to make a more accurate and relevant 
assessment of the accuracy of the predictions.  

3.4. Predicting carcinogenicity 

Other methods were developed to build QSPR/QSAR models without the use of descriptors, 
by exploiting the structures of the molecules themselves [17, 18]. These methods, based on 
the computation of graph kernels, consist in considering the molecules as labelled graphs, and 
computing a kernel function between them to measure their similarities. The graph is 
generally decomposed into substructures, and the count of these substructures forms a feature 
vector, from which the kernel function can be computed. In that context, the main issue is to 
choose the most efficient way to decompose the graphs. To that effect, several types of 
kernels can be defined. For example, 1D kernels are based on the SMILES representation of 
the molecules and the substructures are sequences of letters, whereas 2D kernels require the 
definition of labelled paths, i.e. successions of vertices and edges. Molecules can otherwise be 
described by the spatial coordinates of each atom. They are then assigned a set a histogram, 
one histogram per pair of atom labels representing the distances between all pairs of such 
atoms. Similarities between molecules are then measured via the similarities between their 
histograms, leading to the computation of the 3D kernel. 

We compared graph machines to graph kernels on a classification task. The studied 
chemical compounds come from the Predictive Toxicology Challenge (PTC) dataset [19], 
which consists of several hundred molecules. Their carcinogenicity to Male Mice, Female 
Mice, Male Rats and Female Rats is known. The classification of compounds into 
carcinogenic and non-carcinogenic to female rats was performed.  

Table 5 reports the results of 9-fold cross-validation of graph machines, which are 
compared to the best results described in [20], obtained by graph kernel classification 
methods. 
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Table 5. Classification accuracy for the carcinogenicity of chemical compounds of the PTC 

dataset on female rats. 

Method [17] Accuracy (%) 

1D 67.0 (LOO) 
Graph Kernels 

2D 66.9 (LOO) 
Graph Machines (4 hidden neurons) 71.0 (9 f-CV) 

4. Conclusions 

The present paper describes QSAR/QSPR applications of a promising machine-learning 
technique for learning from structured data. It exempts the model designer from the design, 
computation and selection of descriptors, which are currently a major burden in QSAR 
applications. The method consists essentially in building a parameterized function that is 
intended (i) to encode the graph of the molecule, (ii) to provide a prediction of the quantity of 
interest. The parameters are estimated by training from examples, i.e. by minimizing a 
suitable cost function that expresses the discrepancy between the measurements and the 
corresponding predictions. Model selection is performed by usual methods such as hold-out, 
cross-validation or leave-one-out. 

Several applications of graph machines to QSAR/QSPR are described. In the cases 
reported here, as well as in several others, graph machines outperform conventional methods, 
albeit sometimes slightly, with the additional advantage that they do not require molecular 
descriptors. However, if the graph structure is not sufficient for predicting the property, 
descriptors may be used as additional inputs to the graph machine; this was not deemed 
necessary for the problems described here. Nevertheless, the fact that the vast majority of 
databases do not indicate the accuracy of the reported measurements is a major problem for 
assessing the accuracy of the predictions. 

Scalability issues must be further investigated in the future; the maximum data set size 
investigated thus far is 1200 molecules, without serious computation time problems. 
Experimental planning for graph-machine based models is also an open problem at present.  
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