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Abstract

“Jacobian Conditioning Analysis for Model Validation” by Rivals and Personnaz is a

comment on Monari and Dreyfus (2002). In the present reply, we disprove their claims. We

point to flawed reasoning in the theoretical comments, and to errors and inconsistencies in the

numerical examples. Our replies are substantiated by seven counter-examples, inspired from

real data, which show that (i) the comments on the accuracy of the computation of the

leverages are unsupported, and that (ii) following the approach they advocate leads to

discarding valid models, or validating overfitted models.
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1. INTRODUCTION

“Jacobian Conditioning Analysis for Model Validation” by Rivals and Personnaz (this issue)

is a detailed comment on Monari and Dreyfus (2002), from the second sentence of their

abstract to the last paragraph of their text. The authors claim that we “followed” a previous,

controversial (Larsen et al., 2001) paper of theirs (Rivals et al., 2000). In this reply, we

disprove all their claims. We point to flawed reasoning in their theoretical comments, and to

errors and inconsistencies in the numerical examples. Our replies to the comments are

substantiated by seven counter-examples, which show that (i) their comments on the accuracy

of the computation of the leverages are unsupported, and that (ii) following their approach

leads to making wrong decisions: discarding valid models, or validating overfitted models.

The present paper is organized as follows: in the first section, we disprove the comments in

“Jacobian Conditioning Analysis for Model Validation” on the accuracy of the computation

of the leverages. In the second section, we show that their comments on model validation are

erroneous, and we provide several counter-examples in which decisions made on the basis of

the condition-number selection criterion advocated by the authors are wrong. We conclude by

summarizing the arguments that disprove all three conclusions of Rivals and Personnaz’s

comments.
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2. REPLY TO THE COMMENTS ON THE ACCURACY OF THE COMPUTATION

OF THE LEVERAGES

Section 1 of “Jacobian Conditioning Analysis for Model Validation” is entitled “On the

jacobian matrix of a nonlinear model”. The authors first recall theoretical results, and they

recall the validation method advocated in (Rivals et al., 2000). That part will be replied to in

section 3 of this article.

Section 2 of “Jacobian Conditioning Analysis for Model Validation” is entitled “Comment for

the proposition of (Monari and Dreyfus, 2002)”. The authors claim that relation (A.4) of our

paper (relation (15) of their comment) is not accurate enough for the purpose of model

validation, and that a more classical computation method should be used instead. In order to

substantiate their claims, they exhibit a small handcrafted numerical example (section 3.1 of

their paper): we show below that it is irrelevant to model selection, and that it is inconsistent

with the claims made by the authors in the previous section of their paper. They show that the

traditional method can compute the leverages with an accuracy of 10-16; however, we show in

the following that (i) the authors fail to provide evidence that such accuracy is relevant in the

context of nonlinear model selection, and that (ii) they fail to provide evidence that our

method does not meet the actual accuracy requirements in that context.

The recommended approach to a problem in numerical analysis consists in asking two

questions: (1) what numerical accuracy should be achieved in order to get insight into the

problem at hand? (2) how can the above accuracy be achieved? Obviously, that approach

should be used in discussing the accuracy of the computation of the leverages for model

selection. In (Monari et al. 2002), we discussed nonlinear model selection in the context of

machine learning; the computation of the leverages of the observations is one of the

ingredients of the original validation method that we describe. Therefore, question (1), which

is not asked in “Jacobian Conditioning Analysis for Model Validation”, is: for the purpose of

model selection, what is the desired accuracy for the computation of the leverages of models

obtained by training from examples? The answer to that question is straightforward: the

accuracy should be of the magnitude of the “noise” on the leverages. Since training is

generally performed by iterative optimization of a cost function, it is stopped when the two

models obtained in two successive iterations are considered “identical”. Therefore, the

numerical “noise” on the leverages is the difference between the values of the leverages of

two models that are considered "identical". Two models are considered identical if some
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criterion is met, e.g. if the variation of the cost function is smaller than a prescribed value, or

if the variation of the magnitudes of the parameter vector is smaller than a prescribed value, or

similar criteria. Rivals and Personnaz do not address the question of estimating the numerical

noise on the leverages; they claim that the accuracy should be on the order of 10-16, without

providing any evidence that such accuracy is relevant to the problem at hand. Therefore, their

criticisms are unsupported in the context of machine learning.

Conversely, we describe, in section 3, examples of nonlinear model selection: neural networks

were trained from examples by minimizing the least squares cost function with the

Levenberg-Marquardt algorithm. Training was terminated when the magnitude of the relative

variation of the cost function between two iterations of the algorithm became smaller than

10-10, which is an extremely conservative stopping criterion (a typical stopping criterion would

be a relative difference of 10-5 or even more). The root mean square of the variations of the

leverages was computed as:

   

∆h(k) =
1

N
hii(k + 1) – hii(k)

2

∑
i = 1

N

where hii(k) is the leverage of observation i at iteration k of the training algorithm, and N is the

number of examples. Iterations k and k+1 were chosen such that the relative variation of the

cost function was smaller that 10-10. The values of ∆ h were consistently found to be

substantially larger than 10-10: clearly, there is no point in computing the leverages with an

accuracy of 10-16, while the “noise” on the leverages is actually larger by more than six orders

of magnitude, even in unusually conservative conditions. Furthermore, the discrepancy

between the leverages computed by the traditional method (advocated in the comment) and by

our method was smaller than 10-12: it is smaller, by several orders of magnitude, than the noise

on the leverages, hence is not significant.

Actually, in most real-life applications, training will be terminated much earlier; therefore, the

root-mean-square difference between the leverages of two models that are considered

equivalent will be larger by still many more orders of magnitude.

In order to substantiate their claims, Rivals and Personnaz provide a handcrafted numerical

example whose results are shown on Table 1 of their paper. In the following, we show that

those results are inconsistent with the authors’ claims in “Jacobian Conditioning Analysis”,

and irrelevant to model selection. The authors consider a jacobian matrix with two columns:

the elements of one of them are equal to one, and the second column vector is equal to the



Neural Computation, vol. 16, pp. 419 – 443 ( 2004)

5

sum of the first column vector and of a “small” vector which is a normally distributed random

vector multiplied by a scalar ranging from 10-6 to 10-15. Most results presented in that table are

inconsistent and irrelevant, for the following reasons:

1. Rivals and Personnaz fail to state that most models used to derive the numerical

results presented in that table are actually discarded by the selection criterion that they

advocate: out of 10,000 random realizations of the jacobian matrix, all models with a

= 10–12 and a = 10-15 are discarded for having a condition number larger than 10+8;

9,988 models out of 10,000 with a = 10-8 are discarded for the same reason;

conversely, all models with a = 10-6 are accepted; therefore, the only results of table 1

that are relevant to model selection, according to the selection criterion advocated by

the authors, are the results pertaining to a = 10-6 (first row of the table); the other

results are irrelevant, since there is no point in discussing the accuracy of the

computation of leverages for models that are discarded by the selection criterion

advocated by the authors. Moreover, the results reported in the first row show that our

method computes the leverages with an accuracy of 10—10, which is on the order of the

noise on the leverages, as shown above.

2. The structure of the jacobian matrix indicates that the model has two parameters θ0

and θ1, and is of the form

y(x) = θ0 + f (x, θ1), with 
∂f

∂θ1

=1+ ε x,θ1( )

where the values of ε(x, θ1) can be modeled as realizations of a random variable equal

to a normal variable multiplied by a factor of 10-6 to 10-15. Therefore, the model is of

the form

y((x) = θ0 + θ1 + γ (x, θ1) with 
∂γ
∂θ1

= ε x,θ1( ) .

No modeler would ever design a model with such a functional form: an obvious re-

parameterization of the model consists in defining a new parameter θ2 = θ0 + θ1, so

that the first column is still made of 1’s (derivative of y with respect to θ2) and the

second column is made of the values of ε(x, θ1), modeled as small random Gaussian

variables; thus the jacobian matrix is much better conditioned. If the same experiment

is performed as in table 1, after re-parameterization: (i) for a = 10-6, the difference

between the number of parameters and the sum of the leverages computed by our

method becomes 2. 10-16, so that the traditional method is not more accurate than ours;

(ii) for a  = 10-8, about 25% of the models are accepted by the selection criterion
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advocated by Rivals and Personnaz, and, as above, the accuracy of the computation of

the leverages by our method is on the order of 10-16, i.e. is comparable to that of the

traditional method.

Therefore, the example displayed in Table 1 of “Jacobian Conditioning Analysis” is

handcrafted to prove that the traditional method of computing the leverages is more accurate

than ours in that specific case; however, that case is irrelevant to model selection because (1)

there is no point in computing accurately the leverages of models that, according to the

selection criterion advocated in the same paper, would actually be discarded, and because (2)

no knowledgeable modeler would design a model having a jacobian matrix of that form.

To summarize, in “Jacobian Conditioning Analysis”, Rivals and Personnaz do not provide

any evidence that an accuracy of 10-16 for the computation of the leverages is desirable in the

context of machine learning, nor do they provide any evidence that our method does not

achieve the accuracy that is required in realistic conditions. Therefore, the claim that the

traditional method is superior to ours in the machine learning context is unsupported.

In the next sections, additional counter-examples further support the above conclusions.

Furthermore, it should be noted that the issue of numerical accuracy was far from central in

our paper, relation A4 being presented in an appendix. Therefore, we did not find it necessary

to elaborate on that question, since it can be answered in a straightforward fashion, as shown

above.

3. REPLY TO THE COMMENTS ON MODEL VALIDATION

In the previous section, we showed that the second conclusion stated in section 4 of “Jacobian

Conditioning Analysis” is unsupported. In the present section, we disprove the other two

conclusions of their comment, together with claims made in (Rivals et al., 2000). We show

that, contrary to the statement of the authors, we did not follow the approach advocated in that

paper, since it is not correct from a numerical analysis point of view, and leads to making

wrong decisions for model validation.
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3.1. Reply to section 1.1 of (Rivals et al., 2003)

The use of the jacobian matrix (relations (2) and (3) of (Rivals et al., 2003)) for the analysis of

the identifiability of nonlinear models is classical in statistics. It can be traced back to 1956.

Relation 1.4 of (Rivals et al., 2003) describes one of several standard confidence interval

estimates for nonlinear models. It can be found in textbooks on nonlinear regression (see for

instance (Seber et al., 1989)). In view of the contents of section 3.2 of the present reply, it is

relevant to note that many other confidence interval estimation methods for nonlinear models

can be found in the literature (Tibshirani, 1996).

Relation 1.5 of “Jacobian Conditioning Analysis” is an unfounded claim. The authors claim

that, in (Rivals et al., 2000), they established an upper bound of the leave-one-out error.

Nothing of that kind can be found in that paper, in which, following (Hansen et al., 1996) and

(Sorensen et al., 1996), they derived an approximation of the leave-one-out error under the

assumption of the validity of a first-order Taylor approximation, in parameter space, of the

output of the model. We provided a more rigorous proof in (Monari, 1999) and in (Monari et

al., 2000).

Appendix 1 is standard textbook material.

3.2. Reply to section 1.2 of “Jacobian Conditioning Analysis”

The contents of section 1.2 of “Jacobian Conditioning Analysis”, entitled "Numerical

considerations", is erroneous in two respects:

1. Model selection aims at finding the statistical model that generalizes best, among

different candidate models. Poor generalization may be due either to poor training,

which is very easy to detect, or to overfitting. Overfitting occurs when the model has

too many adjustable parameters in view of the complexity of the problem. Therefore,

model selection and model validation aim at detecting, and discarding, models that are

likely to exhibit overfitting. It has long been known in statistics that a preliminary

screening can be performed by ascertaining that the jacobian matrix of the model has

full rank. Rivals and Personnaz dismiss that method and state that "the notion of the

rank of Z is not usable in order to take the decision to discard a model". They claim

that the criterion should be "whether or not the inverse of ZT�Z needed for the

estimation of a confidence interval can be estimated accurately". That shift of focus to

a completely different issue is a scientific reasoning flaw: the fact that the confidence

intervals advocated by the authors cannot be computed "accurately" (see next

paragraph for a discussion of that issue) for a given model does not mean that the
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model should be discarded: it means that the confidence interval estimation method

should be discarded. Another confidence interval estimate should be used instead, that

does not rely on matrix inversion (e.g. bootstrap methods). Thus, the comments on our

approach to model validation are unfounded, and the discussion of model selection

presented in (Rivals et al., 2000) is essentially irrelevant. That will be further

substantiated by six counter-examples in section 3.4.

2. Rivals and Personnaz state that "a decision [of discarding a model] should be taken on

the basis of whether or not the inverse of ZT�Z needed for the estimation of a

confidence interval can be estimated accurately". We have just shown that statement

to be erroneous; nevertheless, let us discuss that statement from a numerical point of

view. Rivals and Personnaz claim that the confidence intervals should be estimated

accurately, but they do not explain what “accurately” means. More specifically, they

do not ask the relevant question: "how accurately should the confidence interval be

estimated in order to get insight into the problem of model validation?". A part of the

answer is the following: since the estimation of the confidence interval is derived from

a first-order Taylor expansion of the output of the model, in parameter space, around a

minimum of the cost function, there is no point in computing the confidence interval,

hence the inverse of ZT�Z, with a numerical accuracy that is better than the accuracy of

the Taylor development. Despite the fact that many authors investigated that issue (see

for instance (Bates and Watts, 1998)), Rivals and Personnaz claim that the condition

number of the jacobian matrix should be smaller than 108, irrespective of the problem

and of the model1. That cannot be true, since (i) the inaccuracy due to the first-order

Taylor expansion may be much higher than the numerical accuracy required by that

criterion, and since (ii) the accuracy of the Taylor expansion is problem-dependent.

Therefore, that “universal” condition-number selection criterion can be expected to

lead to discarding perfectly valid models, as shown below with simple counter-

examples.

To summarize our reply to the theoretical part of the comments concerning model validation:

                                                  
1 The same statement was made recently by the same authors on the same subject in (Rivals et

al., 2003b), reporting results obtained in 2000.
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1. from a basic point a view, there is a flaw in the scientific reasoning on which those

comments are based: instead of discarding models that do not generalize well, the

selection method that Rivals and Personnaz advocate discards models for which the

authors’ favorite confidence interval estimation method fails; actually, the authors

should blame their confidence interval estimates for not being accurate, instead of

blaming the model for not lending itself to their confidence interval estimation

method;

2. from a numerical point of view, their selection criterion does not take into account the

accuracy of the approximations on which the estimation of the confidence intervals is

based, so that the criterion may be much more stringent than actually required.

The first misconception may lead to accepting models that are invalid; the second may lead to

rejecting models that are valid. Both situations will be exemplified below by seven counter-

examples.

3.3. Reply to the numerical example

As a further criticism to our article, section 3.2 of “Jacobian Conditioning Analysis”, entitled

“Neural modeling”, considers the simplest example that was presented in our article, namely,

the neural modeling of a sinx / x function with added noise. They consider, just as we did,

models with one to four neurons. They discuss that problem in much more detail than we did,

and they come to the conclusion that 2-neuron architectures are appropriate, which is exactly

the conclusion stated in our paper. Therefore, their example can hardly be considered as

supporting their criticisms.

Moreover, their numerical example contains errors and inconsistencies:

1. Table 2 of “Jacobian Conditioning Analysis” displays numerical results related to that

example. In that table as well as in the rest of the paper, the authors use notations that

are different from the notations of the paper they are commenting upon, which makes

things confusing to the non-specialist reader. Moreover, they do not provide any

definition of the quantities that they use. The quantity dubbed ALOOS seems to be the

square of the estimated leave-one-out score denoted by Ep in our paper. The quantity

called MSTE is the square of the training root mean square error TMSE of our paper.
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The quantity termed MSPE is the square of the validation root mean square error

denoted by VMSE in our paper. Those quantities are defined as:

  

TMSE =
1
N

Ri
2∑

i = 1

N

, MSTE = TMSE2, 

  

Ep =
1
N

Ri

1 – hii

2

∑
i = 1

N

,

ALOOS = Ep
2, 

  

VMSE =
1

NV
Ri

2∑
i = 1

NV

, MSPE = VMSE2,

where Ri is the modeling error on example i of the relevant set, hii is the leverage of

example i, N is the number of examples in the training set, and NV is the number of

examples in the validation set.

The last line of the table reports a MSTE of 1.9 10-3 and an ALOOS of 5.3 10-7. That

cannot be true: since 0 < hii < 1, each term of the sum in E p is larger than the

corresponding term in TMSE, so that one has Ep > TMSE, or, equivalently, ALOOS >

MSTE. Therefore, the result reported for 4 hidden neurons is wrong by at least four

orders of magnitude.

2. As mentioned above, the authors of (Rivals et al., 2003) agree with us that a 2-hidden-

neuron architecture is the most appropriate for the problem under investigation.

Although our paper does not discuss the models with 3 hidden neurons, they claim that

our method would have accepted models with three hidden neurons, whereas they

dismiss that architecture. That is worth investigating. For architectures with 3 hidden

neurons, we performed 100 trainings with different initial values of the parameters, in

the conditions that Rivals and Personnaz describe. That generates a relatively small

number of significantly different models. Taking advantage of the fact that the “true”

regression function f is known, the mean square distance D between the model and the

true regression function was computed as:

  

D =
1

ND
f xk – g xk

2

∑
k = 1

ND

where ND = 5,000 (drawn from a uniform distribution), f(x) = sinc [10(x + 1)/π], and

g(x) is the output of the model. D is the best estimate of the theoretical risk, i.e. of the

generalization ability of the model. Table 1 shows the MSPE, the distance D, the



Neural Computation, vol. 16, pp. 419 – 443 ( 2004)

11

condition number K of the jacobian matrix, and the number of occurrences of the cost

function minimum.

Minimum 1 Minimum 2

MSPE D2 K MSPE D2 K

2.9 10-3 1.2 10-3 2 to 7 10+9 3.8 10-3 1.6 10-3 4.0 10+6

16 67

Minimum 3 Other minima

MSPE D2 K MSPE D2 K

4.3 10-3 2.1 10-3 10+16 to

10+17

> 8 10-3 > 5 10-3 > 10+8

12 5

Table 1
The best model (model with the smallest D, which also has the smallest MSPE) is

discarded by the condition-number selection criterion advocated in (Rivals et al.,

2003). It is also worth noting that models that correspond to the same minimum of the

cost function have widely varying condition numbers, even though the MSPE’s agree

to four decimal places.

Other examples of similar situations, where the condition-number selection criterion

rejects valid models, are exhibited below.

3. The authors of (Rivals et al., 2003) claim that they generated a training set by adding

noise to the function sinc [10(x + 1)]. From a cursory look at Figures 1 and 2 of their

paper, it is clear that such is not the case. It seems that, actually, sinc [10(x + 1)/π] was

implemented.

To summarize: in order to prove that their selection method is superior to ours, Rivals and

Personnaz investigated one of the examples presented in our paper. Their conclusion is

exactly the same as ours, so that their example cannot be considered as evidence of the

superiority of their approach. Moreover, we showed that their example contains a result that is

erroneous by at least four orders of magnitude; in addition, their validation method leads to

discarding valid models, for reasons that were explained above, in section 3.2.
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3.4. Additional counter-examples

The following counter-examples disprove the claim that the stated limit on the condition

number of the jacobian matrix is an appropriate screening criterion, which invalidates the first

conclusion in “Jacobian Conditioning Analysis”, and a large part of the contents of (Rivals et

al., 2000). The counter-examples show additionally that, as we have already demonstrated, the

accuracy of the computation of the leverages is not critical for model selection; that

invalidates the second point of the conclusion of the comment, as well as another part of

(Rivals et al., 2000).

The problem that we address here is inspired from real data: the quantity to be modeled is a

thermodynamic parameter (the liquidus temperature) of industrial glasses, as a function of the

oxide contents of the latter. The estimation of the liquidus temperature is important for glass

manufacturing processes; a detailed description of the application can be found in (Dreyfus et

al., 2003). Figure 1 shows the simplest instance of real data on that problem. It is interesting

because the singular points actually have a physical meaning, related to phase transitions.

That application prompted us to investigate the modeling of data generated from function

y = sin x + cos x         (1)

which is plotted on Figure 2.
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Figure 1
Liquidus temperature vs. lithium oxide concentration.
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Figure 2
Academic example inspired from Figure 1.

In the present section, we exhibit three pairs of counter-examples: in each pair, one counter-

example shows the condition-number selection criterion discarding a valid model, and the

other counter-example shows that criterion validating a model that is overfitted.

Note that, in all the following, the values of the leverages computed by our method and by the

traditional method advocated in “Jacobian Conditioning Analysis” are in excellent agreement

(e.g. agree within nine decimal places for counter-example 1 and eleven decimal places for

counter-example 2). Therefore, those examples do not provide any support to the claim that

the traditional method is superior to ours in the machine learning context.

In all the following, neural network training was performed by the Levenberg-Marquardt

algorithm. For a given number of hidden neurons, 100 trainings were performed with different

parameter initializations. 7,000 equally spaced examples were generated as a validation set.

Experiments were performed under Matlab on a standard PC. Distance D (defined in section

3.3) was also computed from 7,000 equally spaced points.

Following the notations of our paper (Monari et al. 2002), we denote by TMSE the root mean

square error on the training set (as defined in section 3.3), and by VMSE the equivalent

quantity computed on the validation set of 7,000 examples (an excellent estimate of the

generalization error).
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Before discussing the counter-examples, it may be useful to emphasize the main point of

(Monari et al., 2002): we claim that overfitting can be efficiently monitored by checking the

distribution of the leverages (hence the title of our paper "Local overfitting control via

leverages"). The leverages obey the following relations:

   0 ≤ hii ≤ 1 ∀i,

  
hi i∑

i = 1

N

= q .

Since the sum of the leverages is equal to the number of parameters q, the leverage of

example i can be interpreted as the fraction of the degrees of freedom of the model that is

devoted to fitting the model to observation i. Therefore, ideally, all examples should have

essentially the same leverages, equal to q/N: if one or several points have leverages close to 1,

the model has devoted a large fraction of its degrees of freedom to fitting those points, hence

may have fitted the noise on those examples very accurately. In other words, the more peaked

the distribution of the leverages around q/N, the less prone to overfitting the model. Rivals

and Personnaz were unaware of that point in their previous papers, as evidenced by the fact

that they never used the word leverage prior to “Jacobian Conditioning Analysis”.

In order to give a quantitative assessment of the “distance” of the model to a model where all

leverages are equal to q /N , we defined (Monari et al., 2002) the parameter

   
µ =

1
N

N
q

h ii∑
i = 1

N

: the closer µ to 1, the more peaked the distribution of the leverages

around its mean q/N; µ = 1 if all leverages are equal to q/N. Hence, the closer µ to 1, the less

overfitted the model.

Alternatively, one may use the normalized standard deviation σn of the leverages, defined as:

   
σn =

N

q N – q
h ii–

q
N

2

∑
i = 1

N

.

σn = 0 if all leverages are equal to q/N, and σn = 1 in the worst case of overfitting, where q

leverages are equal to 1 and (N-q) leverages are equal to zero. Hence, the smaller σn, the less

prone to overfitting the model. Both quantities are computed in the following counter-

examples.
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3.4.1. Counter-examples 1 and 2

In a first set of experiments, 35 equally spaced points were generated from relation (1) to

serve as a training set. Uniform noise was added, with standard deviation 0.1

Figure 3 shows the generating function, the training data and the output of a model with 5

hidden neurons, together with the values of the leverages. The relevant figures for that model

are summarized in the first row of Table 2.

TMSE VMSE µ σn Distance

D

K Leverages

> 0.95

Counter-example 1 0.078 0.117 0.984 0.38 0.062 1.5 109 3

Counter-example 2 0.066 0.123 0.979 0.56 0.072 2.9 106 11

Table 2
TMSE, VMSE, µ, σn and D as defined in the text; K: condition number of the jacobian matrix; last

column: number of leverages that are larger than 0.95

Its condition number exceeds the limit stated in “Jacobian Conditioning Analysis” by more

than one order of magnitude, so that it should be discarded according to those comments.

Actually it is a valid model: its generalization error is small since its VMSE, computed from

7,000 examples, is slightly larger than the standard deviation of the noise, and the distance D

is even smaller. µ is close to 1 and σn is far from 1. Finally, the leverage values computed by

the traditional method and by ours (relation A.4 of (Monari et al., 2002)) are in excellent

agreement: the root mean square of the differences between the leverages computed by our

method and by the traditional method is on the order of 3.7 10-10.

The three points with high leverages are located at the boundaries of the input range, as

expected. The W-shape of the leverage graph indicates that the points located in the vicinity

of the main minimum are influential, as expected.

Thus, counter-example 1 is an example of the condition-number selection criterion stated in

“Jacobian Conditioning Analysis” discarding a valid model.
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Figure 3
Counter-example 1: the condition-number selection criterion discards a valid model.

Counter-example 2 (Figure 4) is a model with 7 hidden neurons, trained in the same

conditions and with the same data as counter-example 1. The characteristics of the model are

shown on the second row of Table 2. The root mean square of the differences between the

leverages computed by our method and by the traditional method advocated by Rivals and

Personnaz is on the order of 1.7 10-12.
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Figure 4
Counter-example 2: the condition-number selection criterion fails to detect overfitting.

The condition number of the jacobian matrix of the model is way below the limit stated by

Rivals and Personnaz. Hence, according to their comment, the model should be accepted.

However, it is clear, from Figure 4, that the model is strongly overfitted. That is further

substantiated by three facts

1. the validation error VMSE is twice as large as the training error TMSE,

2. 11 leverages (almost 1 out of 3) are larger than 0.95, and that 13 of them are larger

than 0.90. The high leverages are located between x = 1 and x = 2, where overfitting is

clearly apparent on Figure 4, and also at the boundaries of the input range, as usual;

3. µ is substantially smaller than 1, or, equivalently, the standard deviation of the

leverages σn is larger than that of counter-example 1.
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The selection method that Rivals and Personnaz advocate nevertheless fails to detect that

gross overfitting. As usual, computing the leverages by the traditional method and by relation

A.4 of our paper does not make any significant difference.

The difference between the two models is also clear from Figure 5, which shows the

histograms of the leverages for the model that is discarded by the condition-number selection

criterion (top figure) and for the model that is accepted by that criterion (bottom figure). As

explained above, the distribution of the leverages should be as peaked as possible around q/N.

Clearly, the leverage distribution for the model accepted by the suggested condition-number

selection criterion is extremely far from complying with that condition, having a very large

number of leverages that are close to 1.

To summarize, counter-example 2 shows an example of the condition-number selection

criterion failing to discard an overfitted model.
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Figure 5
Leverage distributions of counter-example 1 (top) and counter-example 2 (bottom).
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3.4.2. Counter-examples 3 and 4

The second set of experiments was performed as follows. 100 neural networks were first

trained with a large number of points (350) generated by the regression function (1), without

added noise. Then the values of the parameters of those models were used as initial values for

a re-training with only 35 points with added noise. Since the latter training starts with initial

parameters of excellent models, it may be expected that the resulting models are the best

models that one can hope to obtain, given the limited number of points and the noise in the

training set.

Figure 6 shows a good model with 5 hidden neurons, whose characteristics are reported in the

first row of Table 3. Despite its performance, the model is rejected by the condition-number

selection criterion, since its condition number is larger, by one order of magnitude, than the

rejection limit specified its authors.

TMSE VMSE µ σn Distance

D

K Leverages

> 0.95

Counter-example 3 0.078 0.12 0.99 0.36 0.063 109 2

Counter-example 4 0.068 0.13 0.95 0.62 0.079 1.7 107 7

Table 3
TMSE, VMSE, µ, σn and D as defined in the text; K: condition number of the jacobian matrix; last

column: number of leverages that are larger than 0.95

Figure 7 shows the behavior of a model that also has five hidden neurons; its characteristics

are summarized in the second row of Table 3. That model is much worse than counter-

example 3: its VMSE is higher while its TMSE is smaller (a clear sign of overfitting), the

distance between the model and the regression function is higher, and 20% of the leverages

are larger than 0.95. µ is substantially smaller than for counter-example 3, and σn is almost

twice as large as that of counter-example 3. Nevertheless, the condition number is one order

of magnitude below the rejection limit, so that the condition-number selection criterion fails

to detect that gross overfitting. Furthermore, the leverages computed by the traditional

method, and by our method, agree within 10-11.
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Figure 6
Counter-example 3: the condition-number selection criterion discards a valid model.

3.4.3. Counter-examples 5 and 6

In a final set of numerical experiments, the training set was constructed with a larger number

of examples in the vicinity of the singular points, the total number of points being kept

constant, equal to 35. Training was performed with random parameter initialization, as in

counter-examples 1 and 2.
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Figure 7
Counter-example 4: the condition-number selection criterion fails to discard an overfitted model.

Figure 8 shows the behavior of a model with 5 hidden neurons, whose characteristics are

summarized in Table 4. As expected, no overfitting occurs in the vicinity of the minima of the

function, but, since the total number of points was kept constant, leverages become higher

between the minima. Nevertheless, this is a very reasonable model given the training data. It

is discarded by the condition-number selection criterion, since its condition number is larger

than the rejection limit by six orders of magnitude.
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Figure 8
Counter-example 5: the condition-number selection criterion discards a valid model.

TMSE VMSE µ σn Distance

D

K Leverages

> 0.95

Counter-example 5 0.082 0.12 0.97 0.47 0.069 4.2 1014 1

Counter-example 6 0.068 0.14 0.95 0.62 0.091 1.3 105 6

Table 4
TMSE, VMSE, µ, σn and D as defined in the text; K: condition number of the jacobian matrix; last

column: number of leverages that are larger than 0.95

By contrast, Figure 9 shows a model with 5 hidden neurons, whose characteristics are

summarized in the second row of Table 4. This is again an overfitted model, whose distance
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to the regression function, and VMSE, are much poorer than those of counter-example 5;

nevertheless, it is accepted by the condition-number selection criterion.
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Figure 9
Counter-example 6: the condition-number selection criterion fails to discard an overfitted model.

3.5. The relevance of the condition-number selection criterion to overfitting

In the previous section, we showed several examples of the condition-number selection

criterion accepting overfitted models or discarding valid models. The above counter-examples

are just a selection among many more similar counter-examples, so that it is natural to wonder

how frequently such situations will occur. More specifically, one can ask the following

question: what is the probability that the parameters of a network with one input and five

hidden neurons can be estimated reliably from 35 equally spaced points (counter-examples 1,

2, 3 and 4)? In order to gain some insight into that question, the following numerical
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experiment was performed: 10,000 different neural networks with one input and five hidden

neurons were generated, with random parameters, uniformly distributed with variance 10. For

each model, the leverages of 35 equally spaced points between –1 and +1, and the normalized

standard deviation σn of their distribution, were computed. The condition number K of the

jacobian matrix was also computed.

Figure 10 shows σn as a function of K: each network is shown as a dot; dots lying on the x-

axis are networks whose jacobian matrix is rank deficient. For models whose jacobian matrix

has full rank, no trend can be found in that graph: thus, the condition number has essentially

nothing to do with the distribution of the leverages, hence is essentially irrelevant to

overfitting. Any model located to the right of the vertical line would be discarded by the

condition-number selection criterion, despite the fact that some of them have excellent

leverage distributions, hence are functions whose parameters can legitimately be estimated

from data pertaining to 35 equally spaced points. Actually, the “best” network (network with

the most peaked leverage distribution, i.e. with smallest σn) is discarded, whereas several poor

networks (with large values of σn), including the network with the largest σn, are accepted.

Similarly, no clear trend can be found in the graph of σn vs. K when data is more abundant.
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Figure 10
Normalized standard deviation of the distribution of the leverages of 35 equally spaced points, and

jacobian matrix condition number, for 1,000 neural networks with five hidden neurons.
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4. CONCLUSION

"Jacobian Conditioning Analysis for Model Validation" is a comment on our paper (Monari et

al. 2002). In the present reply, we disproved all comments made in “Jacobian Conditioning

Analysis”.

The first conclusion of Rivals and Personnaz states that the condition number of the jacobian

matrix of the model should be used as a criterion for model validation: a model with a

condition number larger than 10+8 should be discarded; the same statement was made in

(Rivals et al., 2000). We proved that statement wrong in two respects:

1. the models that are discarded by that criterion are models for which a particular type

of confidence intervals, obtained by a specific estimation method, cannot be computed

accurately; this does not mean that the model should be discarded: it means that the

confidence interval estimation method should be discarded; that misconception may

lead to discarding valid models.

2. Rivals and Personnaz’s comment on the accuracy required to compute the confidence

intervals; those comments are erroneous, because the authors overlook the fact that the

confidence intervals stem from a first-order Taylor expansion of the model output:

therefore, there is no point in computing the confidence intervals with an accuracy that

is better than the accuracy of that first-order approximation. Therefore, the accuracy

requested for the computation of the confidence interval is completely problem-

dependent: the "universal" criterion exhibited by the authors cannot be valid.

In addition to disproving, on theoretical grounds, the comments made by Rivals and

Personnaz, we presented six counter-examples: three of them are instances of the authors’

selection criterion discarding valid models; the other three are instances of the authors’

criterion accepting overfitted models. In short, the condition-number selection criterion,

advocated in the first conclusion of Rivals and Personnaz is at best useless, and very

frequently leads to making wrong decisions. The claim that we "followed" that approach is

unsupported.

In the second paragraph of their conclusion, Rivals and Personnaz state that the numerical

method for computing the leverages, which was indicated in an appendix of our paper

(Monari et al. 2002), is not accurate enough. We proved that their statement is unsupported.

They claim that their method can reach an accuracy of 10-16; however, they do not provide any

example, in the context of machine learning, where such accuracy is required, i.e. where the
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“noise” on the estimation of the leverages is on the order of 10-16. Conversely, we provided

examples where the difference between the leverages of two models that are obtained at two

successive iterations after convergence of the training algorithm, i.e. between two models that

are considered "identical", exceeds 10-16 by several orders of magnitude. Therefore, the

accuracy of the method advocated by Rivals and Personnaz is irrelevant in such situations,

and the latter did not provide any example where it might be relevant. In addition to

disproving their point theoretically, we have shown that, even in the very example that Rivals

and Personnaz proffered, the differences between the leverages computed by the traditional

method and those computed by our method are negligibly small.

In order to substantiate their claims, Rivals and Personnaz study the numerical example that

we investigated in (Monari et al., 2002). They come exactly to the conclusion that was

reached in our paper, so that their example cannot be considered a convincing counter-

example. However, they reach that conclusion by faulty reasoning and computing. We

pointed to inconsistencies in their presentation, and we provided a proof that one of their

numerical results is wrong by at least four orders of magnitude.

The third paragraph of the conclusion of “Jacobian Conditioning Analysis” is: “For

candidates whose condition number is small enough, and for which the leverages have been

computed as accurately as possible according to (12), one may check additionally if none of

the leverage values is close to one, as already proposed in (Rivals and Personnaz, 1998)”.

That statement is not acceptable for three reasons:

1. we showed that Rivals and Personnaz provide no evidence that using (12) is

necessary, or that our method for the computation of the leverages is

inappropriate for model validation;

2. we showed that models with a “small enough” condition number, i.e. a condition

number below the limit stated by Rivals and Personnaz, may have several

leverages close to 1, and, hence, exhibit strong overfitting (counter-examples 2,

4 and 6), and that, conversely, models with high condition numbers may have

reasonable leverages, hence be acceptable (counter-examples 1, 3 and 5);

3. Rivals and Personnaz did not state in (Rivals et al., 1998) that leverages should

be checked for values close to 1. They made a different suggestion: checking

that the sum of the leverages is equal to the number of parameters, and that all

leverages are smaller than 1. Actually, they did not realize the significance of

leverages close to 1 before reading our paper (Monari et al., 2002), as evidenced
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by the fact that the very word leverage is used neither in (Rivals et al., 1998),

nor in (Rivals et al., 2000).

By contrast, the last sentence of the conclusion of “Jacobian Conditioning Analysis”

(“Leverage values close to, but not necessarily larger than one are indeed the symptom of

overfitted examples, or of isolated examples at the border of the input domain delimited by

the training set”) is unquestionable: it is actually the very central idea of our work (Monari et

al., 2002).

To summarize, in this article, we disprove all comments of Rivals and Personnaz in “Jacobian

Conditioning Analysis” on our previous article (Monari et al., 2002)2. Additionally, our

replies invalidate a substantial part of the contents of other papers by the same authors on the

same subject.
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