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Oxidative stress is implicated in the development of a wide range of chronic human diseases,
ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative stress
results from a complex cascade of biochemical reactions, its quantitative prediction remains
incomplete. Here, we describe a machine-learning approach to the prediction of levels of oxidative
stress in human subjects. From a database of biochemical analyses of oxidative stress biomarkers
in blood, plasma and urine, non-linear models have been designed, with a statistical methodology
that includes variable selection, model training and model selection. Our data demonstrate that,
despite a large inter- and intra-individual variability, levels of biomarkers of oxidative damage in
biological fluids can be predicted quantitatively from measured concentrations of a limited number
of exogenous and endogenous antioxidants.
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Introduction

Epidemiological studies have revealed a close correlation
between elevation in oxidative stress, attenuation of
antioxidant defence systems and development of a wide
range of chronic human pathologies, including athero-
sclerosis, neurodegenerative diseases, cancer, inflammatory

Correspondence to: Anatol Kontush, INSERM Unité 551, Pavillon
Benjamin Delessert, Hopital de la Pitié, 83 boulevard de I'Hopital, 75651
Paris Cedex 13, France. Tel: +33 1 42177976, Fax: +33 1 45828198;
E-mail kontush@chups.jussieu.fr

Received 18 July 2008, revised manuscript accepted 4 November 2008

© W. S. Maney and Son Ltd 2009
DOI 10.1179/135100009X392449

diseases and diabetes.'* Conversely, elevated levels of
antioxidants are frequently associated with reduced
prevalence of these diseases.'* Finally, it is relevant that
oxidative stress plays a key role in the aging process.’ The
clinical relevance of oxidative stress is further emphasised
by the predominantly negative findings in recent large-
scale studies of the relationship between antioxidant
supplementation and incidence of cardiovascular disease
and cancer.*'?> Given the assumption that antioxidant
supplementation may be beneficial primarily in subjects
with elevated levels of oxidative stress, the inability of
dietary antioxidants to reduce the incidence of
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cardiovascular disease and cancer in such individuals
can be related to the lack of knowledge of baseline
levels of oxidative stress in the respective cohorts.!313
The absence of such data may have resulted in
antioxidant supplementation in subjects displaying
normal levels of oxidative stress, and who would not
be predicted to display further benefit. These findings
demonstrate that knowledge of the oxidative status of
a given individual might represent a key element in
prevention of the progression of chronic human
pathologies. At a cellular level, oxidative stress has its
origin in a spectrum of oxidative systems, the most
prominent of which are NADPH oxidase,
myeloperoxidase, xanthine oxidase, lipoxygenase,
nitric oxide synthase, cytochrome P450, the mito-
chondrial electron transport chain, ceruloplasmin and
transferrin. Oxidative damage to biomolecules
represents a major consequence of oxidative stress,
resulting in the accumulation of oxidatively-modified
proteins, lipids, carbohydrates and nucleic acids."!¢!
Such oxidatively-modified biomolecules typically
display impaired functionality, thereby providing a
mechanistic explanation for the pathological role of
oxidative stress; levels of oxidized biomolecules are,
therefore, considered as biomarkers of oxidative damage
and represent highly relevant biomarkers of oxidative
stress. 1617 Oxidative stress can equally be assessed by a
less direct approach involving determination of levels
and/or activities of exogenous (e.g. vitamin C, vitamin
E, carotenoids) or endogenous (e.g. glutathione, thiols,
uric acid) antioxidants and/or antioxidative systems
which protect functional biomolecules from oxidation.!
Diverse forms of oxidative insult that occur in vivo result
in distinct profiles of biomarkers of oxidative stress. The
diversity of oxidative species implies that the choice of
biomarkers that can be universally applied to
characterise systemic oxidative stress in a living
organism constitutes a major challenge. Comprehensive
comparative studies addressing this issue have recently
been initiated by the US NIEHS in an animal model of
oxidative stress.'®!° Biomarkers of oxidative stress are,
however, characterised by strong cluster interdepend-
ence reflecting, for example, related protective pathways
(i.e. protection of vitamin E by vitamin C, and
protection of biomolecules by vitamin E); such inter-
relationships  facilitate  identification of  robust
biomarkers and suggest the possibility of mutual
prediction of biomarker levels. In order to assess the
profile of biomarkers of oxidative stress in a French
population, the first Clinical Centre for Oxidative Stress
in Paris was launched in 2002. More than 10 established
biomarkers of oxidative stress were measured, including
plasma, whole blood or urine levels of exogenous and
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endogenous antioxidants and biomarkers of oxidative
damage. In the present investigation, advantage has
been taken of a database of biochemical blood and
urine analyses of individuals in a range of health
conditions from healthy to strongly pathological. We
have evaluated the feasibility of predicting levels of
biomarkers of oxidative damage from measured levels
of exogenous and endogenous antioxidants. We now
describe the clinical database and protocols for
measurement of biomarkers of oxidative stress, our
approach to machine learning methods and finally the
predictive power of our models.

Subjects and methods

Clinical database: contents and protocols

Subjects

The Clinical Centre for Oxidative Stress opened in
Paris, France, in December 2002; by the end of 2005,
profiles of biomarkers of oxidative stress were
available in plasmas from 731 subjects (250 males, 481
females). Clinical and biological parameters were also
measured in each subject. In 150 subjects, a second
assessment of systemic oxidative stress followed
within 4-6 months after the first visit. The majority of
subjects presented clinically confirmed diagnoses as
follows: cardiovascular disease (n = 136), psychiatric
disease (depressive syndrome and anxious disorders; n
= 98), neurodegenerative disease (Alzheimer’s disease,
Parkinson’s disease and multiple sclerosis; n = 61)
rheumatic disease (n = 34), infectious disease (HIV and
hepatitis C; n = 28), cancer (n = 24) and endo-
crinological disease (thyroid dysfunction; n = 20). In 74
subjects, the simultaneous presence of multiple (two or
more) pathologies was diagnosed; these subjects were
considered as polypathic and excluded from statistical
analyses. Subjects (z = 127) who contacted our Centre in
the absence of any known symptoms and who were free
of a clinical diagnosis were considered as healthy
controls. The remainder of the subjects (n = 129)
presented relatively rare pathological conditions (7 < 20
for each specific disease) and were, therefore, excluded
from statistical analyses.

Blood samples

Venous blood (20 ml) was taken from each subject
after an overnight fast and immediately centrifuged at
3000 rpm for 10 min. EDTA and heparin plasma were
isolated and immediately frozen at —-80°C until
analysis. Urine was collected on the same visit and
used for biomarker analyses within 24 h.
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Biomarkers of oxidative stress

The typical profile of biomarkers of oxidative stress
included measurements of plasma, whole blood or
urine levels of substances of exogenous origin
(vitamin C, vitamin E, B-carotene, selenium, zinc,
copper), of endogenous antioxidants (reduced and
oxidized glutathione, thiols, uric acid) and of
biomarkers of oxidative damage (oxLDL, antibodies
against oxLDL, lipid hydroperoxides, 8-OHdQG).

Determination of vitamin C

Vitamin C was spectrophotometrically measured in
plasma stabilized with 10% metaphosphoric acid as
the reduction of 2,6-dichlorophenolindophenol using
a Perkin Elmer Lambda 40 spectrophotometer.?

Determination of vitamin E and f—carotene

Vitamin E and (-carotene were simultaneously
determined by HPLC (Alliance Waters, USA) coupled
to a diode array detector (PDA 2996, Waters, USA).?!
Plasma levels of vitamin E were normalized to total
cholesterol, which was determined by a standard
colorimetric kit containing cholesterol oxidase.

Determination of selenium, zinc and copper

Plasma levels of selenium, zinc and copper were
measured using inductively coupled plasma-mass
spectroscopy.?

Determination of reduced and oxidized glutathione
Reduced (GSH) and oxidized (GSSG) glutathione
were measured in whole blood using a Bioxytech
GSH/GSSG-412TM kit (OxisResearch, Portland,
OR, USA). Initially developed by Tietze,?® this
method employs Ellman’s reagent (5,5'-dithiobis-2-
nitrobenzoic acid, DTNB) which reacts with GSH to
form a product spectrophotometrically detectable at
412 nm. The thiol-scavenging reagent, 1-methyl-2-
vinylpyridinium trifluoromethanesulfonate, was used
to prevent oxidation of GSH to GSSG during sample
processing. GSSG was calculated as the difference
between total glutathione (determined after reduction
of GSSG to GSH by glutathione reductase and
NADPH) and GSH.

Determination of glutathione peroxidase (GPx) activity
GPx activity was measured in freshly isolated
erythrocytes in the presence of reduced glutathione,
NADPH, sodium azide, and glutathione reductase as
a decrease in NADPH absorbance at 340 nm.

Determination of total thiols and uric acid
Total plasma sulfhydryl groups were determined
spectrophotometrically at 412 nm after their reaction

with DTNB.?* Plasma urate was measured using a
commercially available analytical test (Kodak
Ektachem DT Slides, Eastman Kodak Company,
Rochester, UK).

Determination of oxLDL

Levels of oxLDL were measured using a competitive
enzyme-linked immunosorbent assay (ELISA) kit
supplied by Immunodiagnostik (Germany; inter- and
intra-assay coefficients of variation, 6.2% and 7.0%,
respectively). Briefly, oxLDL from the sample
competes with a fixed amount of oxLLDL bound to the
microtiter well for the binding of the specific biotin-
labelled antibodies. After a washing step that removed
unreacted sample components, the biotin-labelled
antibody bound to the well was detected by HRP-
conjugated streptavidin. After a second incubation
and an additional washing step, the bound conjugate
was detected by reaction with TMB. The reaction was
stopped by adding acid to produce a colorimetric end-
point that was detected spectrophotometrically.

Determination of antibodies against oxLDL

The titre of IgG antibodies against oxLDL was
assessed with a commercial enzymatic immunoassay
(Biomedica Gruppe, Vienna, Austria) using Cu?*-
oxidized LDL as an antigen (inter- and intra-assay
coefficients of variation, 10.5%).

Determination of lipid peroxides

Lipid peroxides were assessed in plasma using an
Oxystat spectrophotometric kit (Biomedica), which
employs peroxide hydrolysis, by a peroxidase followed
by reaction with TMB as a substrate, with detection at
450 nm.

Determination of 8-hydroxy-2'-deoxyguanosine
Competitive ELISA was used for the quantitative
measurement of the oxidative DNA adduct 8-OHdG
in fresh urine samples (Japan Institute for the Control
of Aging, Japan). The concentration of 8OHdG was
normalised to urine levels of creatinine (expressed as
ng/mg creatinine).

Statistical machine learning

Introduction to statistical machine learning

Statistical machine learning encompasses a variety of
mathematical and statistical techniques that aim at
reproducing the learning abilities exhibited by humans
or animals. In that context, a ‘machine’ should not be
interpreted to represent a physical object, but rather a
set of algorithms and procedures that are implemented
on a computer. The mathematical foundations of
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statistical machine learning are described by Vapnik.?
In the present article, we focus on the application of
machine learning to the design of predictive models in
the form of non-linear, parameterized functions. In
other words, functions are postulated, that are
expected to: (i) ‘explain’, in a statistical sense, the
existing observations; and (ii) generalize to hitherto
unknown situations (i.e. predict the outcome of future
measurements). For present purposes, the postulated
functions are neural networks, as described below.
Training is the algorithmic procedure whereby the
parameters of the postulated function are adjusted in
order to fit the measurements present in a database
termed a ‘training set’. The training procedure used in
the present study is described cursorily below. Finding
the appropriate complexity for the model, given the
available data, is a central task in statistical machine
learning. The complexity of a model is defined
specifically by its Vapnik—Cervonenkis dimension,
which is generally an increasing function of the
number of adjustable parameters of the model. If a
model is insufficiently complex, it is unable to learn
the training data: it has a high bias (i.e. the distance
between the model and the ‘true’ regression function is
large), but its variance (ie. its sensitivity to the
idiosyncrasies of the available training data) is low;
conversely, if the model is too complex, it exhibits low
bias (i.e. it adjusts very accurately to the training data
or ‘overfits’ the data) but high variance (i.e. it depends
strongly on the details of the training data, therefore
on the noise present in it). Since the generalization
error involves the sum of the bias (which decreases as
complexity increases) and of the variance (which
increases as complexity increases), there exists a
complexity for which the generalization error is
minimum. Therefore, models of increasing complexity
are designed, their prediction error is assessed, and the
model with optimal complexity is selected. The model
selection method used in the present study is described
later. Variable selection is also a key issue in statistical
machine learning. The purpose of variable selection is
to detect candidate variables that are not relevant for
the task at hand; more specifically, the variables whose
influence on the quantity to be modelled is smaller
than the noise in the measurement of that quantity
should be discarded. In most present-day models, the
number of adjustable parameters is an increasing
function of the number of variables in the model;
therefore, the presence of irrelevant variables results in
unnecessary model complexity, thereby increasing the
probability of overfitting. The variable selection
method used in the present study is described below.
In traditional regression, a knowledge-based model of
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the process of interest is derived from first principles,
and the parameters of the model have a physical
(biological, chemical, etc.) significance, so that it is
useful to estimate confidence intervals for the values
of the parameters found by regression. In machine
learning, there is no such thing as a ‘true’ model, so
that, in most cases, the parameters have no specific
physical (biological, chemical, etc.) meaning: the focus
is on the prediction itself, so that it is essential to
estimate confidence intervals for the predictions. The
specific confidence interval used in the present study is
defined later.

Postulated functions
In the present study, the postulated functions are
neural networks (for introductory textbooks, see
Bishop? and Dreyfus?). A neuron is a non-linear,
bounded, parameterized function. The neural
networks used in the present study are linear
combinations of so-called ‘hidden’ neurons; such
neural networks are termed ‘feed-forward neural
networks” or ‘multilayer Perceptrons’. More
specifically, in the present study, a neuron is an s-
shaped (‘sigmoid’) function of a linear combination of
its variables. The neuron computes the value of f
defined as:

f=tanh (0 X x) Eq. 1
where 0 is the vector of parameters (or ‘synaptic
weights’) of the neuron, and x is the vector of
variables, with an additional component, termed
‘bias’, which is equal to unity; therefore, if N is the
number of variables, the size of x is N+1.

A ‘feed-forward neural network’ g(x) is a linear
combination of N, ‘hidden’ neurons f, (i =1 to N,) and
of a constant equal to 1. We denote by @, the vector of
parameters of the linear combination (of size N,+1),
by ®, the (N+1, N,) matrix whose columns are the
parameters of the ‘hidden’ neurons, and by f the vector
(of size N,+1) of functions computed by the hidden
neurons, with an additional component equal to 1.
Then the ‘neural’ model is:

g(x) =0, - f(0,x) Eq.2

Feed-forward neural networks are frequently
described pictorially as shown on Figure 1. Such neural
networks are universal approximators: any continuous,
differentiable function can be approximated, with
arbitrary accuracy, by a neural network of the type
described above, provided the number of its hidden
neurons is large enough. Therefore, the complexity of a
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Figure 1 A feed-forward neural network with N variables
and N, hidden neurons

neural network is determined by the number of hidden
neurons N, or, alternatively, by the number of
parameters (N+2)N,+1.

Neural networks are parsimonious: it is clear from
Equation 2 that the model g(x) is non-linear with
respect to the parameters of matrix ©,, while a
polynomial model, for instance, is linear with respect
to all its parameters. In other words, a polynomial is a
linear combination of monomials, whose shapes are
fixed, while a neural network is a linear combination
of functions whose shapes are adjusted during
training; that additional flexibility decreases the
requirement in terms of number of parameters. The
number of parameters of a neural network varies
linearly with the number of variables N, while the
number of parameters of a polynomial increases as N
where d is the degree of the polynomial; therefore,
neural networks are less prone to overfitting than
polynomial models and, more generally, than linear-
in-their-parameters models, with the notable exception
of Support Vector Machines, which have a built-in
regularization mechanism. In order to demonstrate
the feasibility of the predictions, using neural
networks was deemed to be the most expedient way at
the present stage of the investigation. A more detailed
discussion of the pros and cons of the various
machines lies beyond the scope of the present paper.

Training
Training was performed by minimizing the least
squares cost function:

J(8,0,) = :E,(yk— g(x))? Eq.3

where g(x,) is the predicted value of the quantity of
interest, for example k. The minimization of J was
performed by the Levenberg-Marquardt algorithm.
Being a second-order gradient optimization method, it
requires the value of the gradient of the cost function
with respect to the parameters, which was computed
by the popular backpropagation algorithm (see, for
example, Dreyfus?).

Model selection

As wusual in the structural risk minimization
framework,” models of increasing complexity were
designed, and, for each complexity, the corresponding
generalization ability was estimated. This can be
achieved by various methods, including hold-out,
cross-validation, leave-one-out and virtual leave-one-
out. The latter method was used in the present study. It
consists of estimating the generalization error of the
model after training as:

E=v15(2Y

1 T
P n i=1 1-h

Eq. 4
where 7 is the number of training examples, r, is the
modeling error on observation 7 and /, is the leverage
of observation i. The latter is the i-th diagonal element
of matrix:

H=ZZZ)'Z"

where Z is the Jacobian matrix, whose element z, is
given by z, = (ag(x)/aef)x:xl_. Equation 4 is exactly
equal to the leave-one-out estimation of the
generalization error if the model is linear in its
parameters (in that case £ is called the PRESS —
Predicted REsidual Sum of Squares — statistic), and it
is approximate for non-linear models such as neural
networks.?

Variable selection

Variable selection was performed by the random probe
method, as described by Stoppiglia er al? The
principle of the method is the following: dummy
candidate variables (‘probes’) are generated randomly,
and appended to the set of ‘true’ candidate variables.
All variables are ranked in order of decreasing
relevance by the Gram-Schmitt orthogonalization
method,* so that the relevance index of a candidate
variable is its rank in that ranked list. The probe
variables are obviously irrelevant, and the probability
distribution function of their rank can be estimated.
The rejection threshold is chosen such that the
probability of selecting a variable that ranks below a
probe variable (i.e. the probability of selecting a
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variable although it is probably irrelevant), has a
predetermined value. More details on the random
probe method, and alternative variable selection
methods, can be found in Stoppiglia et al.? and
Guyon et al.’!

Estimation of confidence intervals for the prediction

Several approximate confidence intervals for the
predictions of non-linear models have been proposed
in the past.* In the present investigation, confidence
intervals that involve the leverages (defined above)
were used: the confidence interval for the prediction
obtained for the vector of variables x, with confidence
level a, is given by:

R A VAV AR / Eq.5
where 7 is a Student variable with n—p degrees of
freedom, s is an estimate of the variance of the
prediction error, and z = dg(x)/90. The quantity under
the square root sign is computed exactly as the
leverages of the examples of the training set.

Software tools

The results described below were obtained with
NeuroOne™ v.6 (a trademark of NETRAL S.A.
<http://www.netral.com>), which implements the
procedures described above for model training,
variable selection, model selection and confidence
interval estimation.!

Results

The results described in the present section illustrate vari-
ous aspects of the predictive capabilities of the approach.

Prediction of glutathione concentrations
In order to unravel the relationship between the
metabolism of glutathione and the concentrations of

Table 1 Variable selection for the prediction of glutathione
levels in database |

Candidate variables Probability for the candidate
variable to be more relevant

than a probe variable

Selenium 0.97
Protein thiol 0.97
Cu/Zn ratio 0.92
Vitamin E 0.83
Vitamin E/vitamin C ratio 0.72
Oxidized DNA 0.69
Vitamin C 0.49
Oxidized LDL 0.42

The top six variables were selected.
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Figure 2 Prediction of the glutathione level (database I). (A)
Scatter plot for a model with 3 hidden neurons
(estimated generalization error 157 pmol/l). (B)
Scatter plot for a model with 6 hidden neurons
(estimated generalization error 24 umol/l). Solid
lines: linear regression lines of predictions versus
observations

vitamins, trace elements, and proteins, the prediction
of glutathione (GSH) was attempted. Table 1 shows
the top of the ranked list of candidate variables, and
the probability for each of them to be more relevant
than a probe variable. The last two candidate variables
were discarded by the random probe method (see
above), leaving six selected variables. For simplicity, we
first report results obtained on a small database of 57
patients (database I). In order to illustrate the
influence of model complexity on prediction accuracy,
Figure 2A shows the scatter plot (predicted value
versus measured value) obtained on a training set by a
model having three hidden neurons, and Figure 2B
shows the scatter plot obtained with a more complex
model (6 hidden neurons), trained on the same data.
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Figure 3 Prediction of glutathione levels on a test set
(database 1). Figures are the numbers of the
corresponding records in the database

The predictions of a model of intermediate
complexity (4 hidden neurons) are shown in Figure 6.
The estimated leave-one-out score for the three-
hidden-neuron model is equal to 157 umol/l, while it is
equal to 24 umol/l for the six-hidden-neuron model.
The improvement, resulting from a controlled increase
of the complexity of the model, is clearly apparent.
The model with six hidden neurons, whose training
results were most promising, was tested on fresh data
(test set), ie. on a set of examples that were used
neither for training nor for variable and model
selection. The results are shown in Figure 3. Clearly,
most test examples are predicted as accurately as the
training examples, with some exceptions:

1. Examples for which the measured glutathione con-
centration is lower than 750 umol/l. Such examples
lie below the concentration range in which training
was performed (see Fig. 2): the prediction of these
points cannot be expected to be accurate.

2. A few outliers. The figures printed by those points
are the record numbers in the database; they are
consecutive records, which gives strong suspicion
of artefacts such as poor settings of the
measurement apparatus on the day the analyses
were performed, or data logging errors.

The estimations of the confidence intervals (Fig. 4)
confirm that the predictions of those points should be
granted low confidence: all predictions are assigned a
small confidence interval, while the outliers have large
confidence intervals. The importance of variable
selection is illustrated in Figures 5 and 6. They show
the scatter plots obtained for the prediction of
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Figure 4 Confidence intervals for the prediction of
glutathione concentrations (database 1) by a model
with 6 hidden neurons

glutathione concentration of the same training
examples by models having the same number of
hidden neurons, and, respectively, the three and six top
variables of the ranked list (Table 1). As expected, the
selection of relevant variables improves the quality of
the prediction to a large extent. The above examples,
obtained on a relatively small database, were intended
to provide a striking illustration of the ability of the
proposed approach to predict the glutathione con-
centration with satisfactory accuracy. The examples
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Figure 5 Prediction of glutathione concentration (database I)
from 3 variables by a model with 4 hidden neurons.
Estimated generalization error 175 pmol/l. Solid line:
linear regression of the predicted values versus
measured values
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Figure 6 Prediction of glutathione concentration (database
) from 6 variables by a model with 4 hidden
neurons. Estimated generalization error 153 pmol/l

described below show the predictive ability of models
based on a larger database (database II), with larger
inter-individual variability.

Prediction of glutathione and oxidized glutathione from
exogenous antioxidants

In order to evaluate the relationship between vitamins,
trace elements and proteins, glutathione concentration

1400
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00 B0 Too BOO ano 1000 1100 1200 1300 1400

Measured GEH level (umol/l)

Figure 7 Prediction of glutathione concentration from exo-
genous antioxidants (database I, 208 examples).
Dots, training set; gray squares, test set. Solid line,
linear regression of predicted values versus
measured values
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and the log ratio of glutathione to oxidized glutathione
were predicted from the following selected
concentrations (ranked in order of decreasing
relevance): ratio Cu/Zn (93%), selenium (89%), protein
thiol (89%), vitamin E (82%), ratio of vitamin C to
vitamin E (63%). As indicated previously, the numbers
in parentheses are the probability for the selected
variable to be more relevant than a probe variable. Table
2 summarizes the selected variables of the models whose
predictions are reported here and below. Figures 7 and 8
show that both quantities can be predicted with
satisfactory accuracy. The estimated generalization
errors are 174 umol/l and 0.46 log units, respectively.

Prediction of robust biomarkers of oxidative stress: ratio
8-OH-dG/creatinine and oxidized LDL

The proposed approach allows the prediction of two
robust biomarkers of oxidative stress: the ratios of the
concentration of 8-OH-dG  (8-hydroxy-2'-deoxy-
guanosine) to the concentration of creatinine, and the
concentration of oxidized LDL (low density lipo-
proteins). The results are shown in Figures 9 and 10. For
the 8-OH-dG/creatinine concentration ratio, the selected
variables (Table 2) were the Cu/Zn concentration ratio
(98%), the glutathione to oxidized glutathione
concentration ratio (98%), and the concentrations of
vitamin E (90%), selenium (84%), vitamin C (75%) and
protein thiol (57%). The estimated generalization error
was 8.9. For the prediction of oxidized LDL, the log of
the concentration (umol/l) was predicted, because of the
large range of measured concentrations. The selected
variables were protein thiol (99%), vitamin E (99%),

Predicted ratio (GSH/GSSG)
2

]
T

1 I 1I0 I I!O’ ' ';G‘
Measured ratio (GSH/GSSG)

Figure 8 Prediction of the ratio of the concentration of
glutathione to the concentration of oxidized gluta-
thione, from exogenous antioxidants (database II,
208 examples). Dots, training set; gray squares,
test set. Solid line, linear regression of predicted
values versus measured values
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Table 2 Variable selection for the predictions performed on database Il

Predicted quantity

Glutathione Glutathione to oxidized 8-OH-dG to Oxidized LDL

Candidate variable concentration glutathione creatinine concentration concentration
concentration ratio ratio

Cu/Zn ratio 0.93 0.93 0.98 0.81
Protein thiol 0.89 0.89 0.57 0.99
Selenium 0.89 0.89 0.84 0.89
Vitamin C NS NS 0.75 0.98
Vitamin E 0.82 0.82 0.90 NS
Vitamin E/vitamin C ratio 0.63 0.63 NS 0.99
Glutathione/oxidized glutathione NS NS 0.98 0.94
Glutathione NS NS NS 0.81

Numbers are the probability for the candidate variable to be more relevant than a probe variable. NS, not selected.

vitamin C (98%), GSSG (94%), selenium (89%), GSH
(81%), and Cu/Zn concentration ratio. The estimated
generalization error was 0.22 log units.

Discussion

For the first time, this study has validated the
feasibility of predicting concentrations of biomarkers
of oxidative stress based on measurements of
exogenous and endogenous antioxidants in plasma
and urine from a large clinical and biological database
derived from patients presenting a wide range of
clinical disorders involving chronic inflammation and
oxidative stress. Distinct profiles of biomarkers of
oxidative stress can be described depending on the
nature of the oxidative insult. We addressed the
question of the choice of pertinent oxidative stress
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Figure 9 Prediction of the concentration ratio of 8-OH-dG to
creatinine (database Il, 131 examples). Dots,
training set; gray squares, test set. Solid line,
linear regression of predicted values versus
measured values

biomarkers in the context of chronic inflammatory
disease, and our data highlight three clusters of
biomarkers: exogenous (vitamins E and C, copper,
zinc, selenium, thiols) and endogenous (GSH and
GSSG) biomarkers of antioxidant status, and
terminal biomarkers of oxidative damage (oxidized
LDL and 8-OHdG). Importantly, as oxidised
biomolecules are typically replaced by their native
counterparts so as to diminish the impact of oxidative
damage in vivo, circulating levels of biomarkers of
oxidative damage are often difficult to measure,
largely as a result of their low levels and of the high
analytical sensitivity required. The innovative
application of a machine-learning approach to the
prediction of oxidative stress allows us for the first
time to predict abnormalities in biomarkers of one
group, primarily those in terminal biomarkers of
oxidative damage, relative to biomarker abnormalities

Predicted oxidized LDL level
(log scale)
3

10 1 bl
Measured oxidized LDL level
(log scale)

Figure 10 Prediction of the concentration of oxidized LDL
(database Il, 197 examples). Dots, training set;
gray squares, test set. Solid line, linear regression
of predicted values versus measured values
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of another group. The biomarkers of oxidative
damage assayed in this study (i.e. circulating oxidized
LDL as a marker of lipid peroxidation, and urine
80HdG/creatinine as a marker of DNA oxidation)
could be predicted by the biomarkers of antioxidant
status, especially Cu/Zn concentration ratio,
GSH/GSSG ratio, and concentrations of vitamins E
and C and selenium. Levels of endogenous
antioxidants, such as glutathione, could thus be
predicted on the basis of levels of exogenous
antioxidants (antioxidative vitamins and some trace
elements), and preferentially using concentrations of
selenium, total thiols, copper/zinc ratio, vitamin E
concentration, and finally the vitamin C/vitamin E
ratio (Figs 2 and 3). The predictive power of this
approach progressively diminishes, however, when the
number of biomarkers decreases from 6 to 3 (Figs 5
and 6), thereby implying that a minimal number of
associated biomarkers is required for the reliable
prediction of oxidative stress (Fig. 7). Another
biomarker related to plasma levels of endogenous
antioxidants, the GSH/GSSG ratio, could equally be
predicted under similar conditions, with the exception
of the order of predictive power of other biomarkers
(order of relevance: the copper/zinc ratio,
concentrations of selenium, thiols, vitamin E, and
finally the vitamin C/vitamin E ratio). The possibility
of predicting biomarkers of oxidative damage assayed
in this study by biomarkers of antioxidant status
indicates that the pertinence level attained leads to a
more appropriate choice of oxidative stress
biomarkers, and the predictive power allows reduction
in the number of biomarkers to be evaluated, thereby
resulting in greater technical and economical
feasibility. Indeed, the appropriate choice of
biomarkers is essential for an informative and
pertinent diagnostic approach. This choice constitutes
a critical feature of clinical studies involving
antioxidant supplementation as it provides key
information on the efficacy of the therapeutic
response. The absence of data on baseline levels of
oxidative stress may have resulted in antioxidant
supplementation in subjects displaying normal levels
of oxidative stress biomarkers, and who would not be
predicted to display further benefit. The direct
relationship between the efficacy of antioxidant
supplementation and baseline levels of oxidative stress
has been recently demonstrated.> The inability of
dietary antioxidants to reduce the incidence of
cardiovascular disease or cancer could thus result
from the lack of knowledge of baseline levels of
oxidative stress in the populations studied.'>!* Our
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approach, which involves extensive characterisation of
the level of oxidative stress in a given subject using a
set of relevant biomarkers whose interrelationships
are well understood and can be mathematically
predicted, may open new horizons in the routine
assessment of oxidative stress in a clinical setting. It is
important to mention that our studies reveal the
critical role of methodological tools including model
selection, variable selection, and confidence interval
estimation. From the machine learning point of view,
the main open question is the following: are the
present results optimal or can they be improved, for
example, by using different learning machines, or by
implementing regularization as in support vector
machines, or by designing ‘committees of machines’?
That question can be answered if, and only if, an
estimate of the experimental error is available: if the
uncertainty of the prediction is of the order of
magnitude of the uncertainty in the measurement, no
improvement can be expected. If the experimental
uncertainty is substantially lower than the prediction
error, however, then the results can be improved. The
present informative findings on the prediction of
levels of oxidative damage biomarkers using the
measured levels of exogenous and endogenous
antioxidants in a French population reveal that it is
worthwhile pursuing this study on a large set of
biological samples derived from patient populations of
distinct ethnicity, life-style and diet. The patient
populations which will be targeted should include a
wide spectrum of chronic diseases involving chronic
inflammation and oxidative stress in order to allow
further evaluation of the present innovative approach.
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