PARALLEL ANNEALING
BY MULTIPLE TRIALS:
AN EXPERIMENTAL
STUDY ON A
TRANSPUTER NETWORK

P. Roussel-Ragot and Gérard Dreyfus

7.1 SUMMARY OF PREVIOUS APPROACHES TO PARALLEL
SIMULATED ANNEALING

In an optimization problem one tries to find the best possible state, or
configuration, of a system according to a given cost function, which is
often referred to as the energy. The simulated annealing algorithm is a
variant of an iterative improvement method: Starting with an initial
state, the algorithm generates a sequence of attempted perturbations,
usually termed elementary moves. The moves improving the cost
function to be minimized are accepted (as they are in classical
methods), and the moves increasing the energy are accepted with a
probability that depends on the value of a control parameter, the
temperature. The value of the temperature is decreased stepwise; the
length of each temperature step is controlled by rules that will be

Simulated Annealing: Parallelization Techniques, Edited by Robert Azencott
ISBN 0-471-53231-2 Copyright © 1992 by John Wiley & Sons

91

92 PARALLEL ANNEALING: TRANSPUTER NETWORK

described below. The implementation of simulated annealing on a
multiprocessor is not straightforward because of the sequential nature
of the method. Simulated annealing is commonly described as a
sequence of homogeneous Markov chains: Each computation step of a
chain starts only when the previous step is completed. This is the
condition for the whole process to lead to a unique feasible configura-
tion.

If an optimal solution is desired, one can perform several anneal-
ings independently on different processors. If the initial configurations
and /or the sequences of perturbations are independent, it is possible
to choose the best configuration among the final configurations. This
condition leads to a better configuration than the sequential algorithm
with the same computation duration. But, if the computation duration
must be significantly shorter, using the parallel algorithm, than with
the sequential algorithm this solution is not valid. Two kinds of
parallelism can then be used:

1. A parallelism in the evaluation of each move. The computation
of a given step of the Markov chain depends only on the
configuration of the system before the step and is performed
without further interaction with the other steps. Therefore each
move evaluation can be parallelized inasmuch as the computa-
tions of the variation of the cost function and of the acceptance
criterion can be made parallel. This kind of parallelism, which is
strongly problem dependent, will not be discussed here.

2. A global parallelism on the Markov chain level. Global paral-
Jelism can obviously be combined with the first kind of paral-
lelism, if necessary.

Several attempts to parallelize the simulated annealing algorithm
were reported in the literature. The differences lie in the way in which
the problem is implemented in parallel, and the main issues are ¢))
the convergence conditions of the parallel algorithm and (2) the
dependence of the parallelism on the problem to be solved.

One class of these parallel methods relies on the geometric proper-
ties of the problem to be optimized: In a placement problem, for
example, the blocks are distributed among the processors, so that
neighbors are gathered together on the same processor at the end of
the optimization. This approach was suggested, in particular, by
Casotto, Romeo, and Sangiovanni-Vincentelli (1987), Casotto and
Sangiovanni-Vincentelli (1987), and Mallela and Grover (1988) in

SUMMARY OF PREVIOUS APPROACHES TO PARALLEL SIMULATED ANNEALING 93

order to reduce the number of cells to be placed in each subproblem.
The placement of the cells in each cluster involves a reduced search
space, thus a reduced computation time, with each cluster being
evaluated in parallel if desired.

The approach proposed by Darema, Kirkpatrick, and Norton (1987)
can be included in this first class because it implies the same kind of
deviation from the calculation of the energy: Each processor evaluates
one perturbation of the Markov chain under the condition that two
processors are not allowed to move the same cells simultaneously.
Therefore there is no conflict between processors, and the final
configuration is always a valid one. Whenever a perturbation is ac-
cepted, the configuration of the cells is updated, regardless of the
moves being computed. This method introduces a chaos in the calcu-
lation of the energy, since each processor has only the knowledge of
the configuration of the system before the parallel perturbations are
performed and these perturbations may interact. At low temperature,
when the acceptance ratio is low, this does not introduce a large bias
compared to the sequential method. At higher temperature the behav-
ior of the parallel method deviates significantly from that of the
sequential method.

In the second class of parallel implementations of the simulated
annealing algorithm, several perturbations are evaluated in parallel,
but only one among the accepted moves is taken into account in the
new configuration of the system. This approach was used by Kravitz
and Rutenbar (1986), Rutenbar and Kravitz (1986), and Aarts et al.
(1986), but the behavior of these methods deviates significantly from
the -sequential one, since all the rejected moves are counted as steps
toward the equilibrium at a given temperature. Aarts et al. (1986)
used at high temperature different processors to work on different
short Markov chains. In this case when the temperature is changed,
one of the final configurations is used as the initial configuration of
the next temperature step. As the temperature decreases, fewer
Markov subchains are evaluated in parallel, while more processors are
used for the generation of each subchain. At low temperature all the
processors evaluate a single Markov chain. It is clear that the behavior
of this method at high temperature is very different from the behavior
of the sequential algorithm.

We propose a method that is different from the approaches of the
second class because the steps in the Markov chain are counted in
such a way that the number of steps at a given temperature is actually
the same as in the sequential mode.

94 PARALLEL ANNEALING: TRANSPUTER NETWORK

These different methods were implemented on different machines:

1. Darema, Kirkpatrick, and Norton (1987) performed the mea-
surements in a parallel emulation environment, allowing simula-
tion of a shared memory multiprocessor system with up to 64
Processors.

2. Aarts et al. (1986) used a parallel machine consisting of 15
Motorola 68000 processors with local memory and a shared
8Mbyte memory.

3. We used a transputer network, with a master processor commu-
nicating with all the working processors.

The transputers allow easy hardware and software implementations of
parallel architectures. Each transputer can communicate with four
neighbors through four high-speed serial links; one link is used for
communications between two transputers only, so that the implemen-
tation of any parallel architecture does not require any bus protocol.
Instructions for communications are provided in the language and no
data can be lost since these communications are synchronized. Time-
sharing is implemented on each transputer, so that waiting time for
communications may be used for other calculations.

We have implemented on a transputer network several simulated
annealing algorithms: a standard sequential algorithm that gives us
the basis for comparisons, a parallel algorithm that exhibits the same
convergence properties as the sequential algorithm, and a chaotic
parallel algorithm as proposed by Darema, Kirkpatrick, and Norton
(1987).

7.2 A PROBLEM-INDEPENDENT PARALLEL IMPLEMENTATION
OF SIMULATED ANNEALING

In this section we describe the principle of the parallel implementa-
tion of simulated annealing. We first explain and justify the principle
of the parallelization. We subsequently propose a statistical model of
this stochastic parallel computation.

7.2.1 General Considerations

We first define the acceptance rate x(T) as the ratio of the number of
accepted moves to the number of attempted moves, averaged over a
given temperature. One of the salient features of simulated annealing
is the decrease of x(T) with temperature. This is due to two facts:

A PROBLEM-INDEPENDENT PARALLEL IMPLEMENTATION OF SIMULATED ANNEALING g5

First, the system approaches a minimum, and it is unlikely that a move
decreases the energy. Secondly, the value of exp(—AE /T) becomes
very small, so the probability of accepting a move that increases the
energy vanishes. Most parallel simulated annealing methods take
advantage of this fact: In the low temperature regime, when the
acceptance rate y is small, one can use a number of processor such
that K < 1/x. Thus at most one move will be accepted while K
moves are evaluated. As a result the computation time in the parallel
mode can be expected to be smaller than the computation time in the
sequential mode by a factor of the order of K.

However, the computation time is not the only performance crite-
rion. One wants of course to obtain a valid solution, and perhaps the
optimal one (or one of the optimal ones). Therefore the convergence
of the algorithm is of central importance. Several theoretical studies
of the sequential algorithm have been published (Aarts and van
Laarhoven 1985; Geman and Geman 1984), but the theory is much
less developed for parallel simulated annealing. However, recent
studies (Trouvé, private communication) show that some paralleliza-
tion schemes may hamper greatly the convergence of the algorithm
and even make it impossible in some cases. Therefore it is desirable to
design a parallel scheme that is guaranteed to comply with the
convergence conditions of the sequential algorithm so that one can
capitalize on the accumulated knowledge related to sequential simu-
lated algorithm.

In the following discussion, we suggest a parallel simulated anneal-
ing scheme that (1) is problem independent and (2) has the same
convergence properties as the sequential algorithm.

7.2.2 Principle

As stated earlier, we use K processors in parallel, each of them
evaluating one move. Each processor has its own memory. We want to
design a parallel scheme that is equivalent to the sequential one as far
as convergence is concerned. The fundamental parameter is the
acceptance (or the rejection) rate since it defines the quality of the
quasi-equilibrium configuration. We want the parallel scheme to
achieve the same acceptance rate as required by the sequential
scheme, thus guaranteeing the same convergence behavior.
Two regimes will be considered:

1. A low temperature regime. If x(7) < 1/K, less than one move
out of K will be accepted. Thus in this scheme each processor

96 PARALLEL ANNEALING: TRANSPUTER NETWORK

attempts moves asynchronously, in parallel, until one of them
accepts a move; when an accepted move is found, the processors
are synchronized, their memories are updated with the new
configuration, and the next evaluation step takes place.

2. A high temperature regime. If x(T) > 1/K, each processor is
allowed to evaluate one move only and waits until all the other
processors complete their evaluation. Then one of the accepted
moves is chosen at random, the processor memories are updated
with the new configuration, and the next evaluation step takes
place. We choose one of the accepted moves at random, instead
of choosing the first accepted move, because the computation
time of a single move can vary substantially; choosing the first
move would greatly favor the short computations (e.g., moves of
weakly connected blocks, or downhill moves that do not require
the computation of the exponential).

In addition to the above mentioned K “slave” processors, the
scheme requires one “master” processor that monitors the annealing
schedule, chooses the accepted move in the high temperature regime,
updates the memory of each processor, and keeps track of statistics.

7.2.3 WNodels

We use the standard annealing schedule whereby the temperature is
decreased stepwise according to 7,,, = aT,, where T, is the nth
temperature and a may range from 0.9 to 0.99. We denote by

L,, the maximum number of accepted moves at a given tempera-
ture,

L,, the maximum number of attempts at a given temperature,

7,, the average computation time necessary to evaluate one move in
the sequential mode.

The temperature is decreased either when the number of accepted
moves at the current temperature reaches L, or when the number of
attempted moves at the current temperature reaches L, whichever
limit is reached first. Note that 7,, the average computation time to
evaluate one move in the sequential mode, is not exactly the same as
that in parallel because the master processor can take care of the
necessary statistics while the slave processors evaluate the moves.

A PROBLEM-INDEPENDENT PARALLEL IMPLEMENTATION OF SIMULATED ANNEALING 97

Therefore 7, is an upper limit of the average computation time for
one move in the parallel implementation.

Model of the High Temperature Mode In the high temperature
mode each processor evaluates one move, and all processors are
synchronized at the end of each evaluation. We denote by 7, the
average overhead due to communications with the K slaves and their
synchronization. Therefore the average time necessary for the K
processors to perform one evaluation is 74 + 7,.

Since the length of the Markov chain depends on the number of
accepted moves and /or on the number of attempted moves, we first
have to evaluate these quantities. Assume that, after one parallel
evaluation of K moves, r moves out of K are rejected; K — r moves
are found acceptable, but only one of them will be actually accepted
in the Markov chain, the other ones being discarded. In the serial
mode the ratio of the number of accepted moves to the number of
attempted moves would be (K — r)/K; however, in the parallel mode
only one move is accepted. Therefore, if we want to preserve the
convergence behavior of the serial algorithm (Catoni and Trouvé,
1989), we must consider that the effective number of attempted moves
n* is such that

K+1

% o
TTK-r+1

When no move is accepted, then n* = K. This is a good estimate of
the effective number of attempted moves since, on the average, the
ratio of the number of accepted moves to the effective number of
attempted moves is equal to the sequential acceptance rate:

i

(1 =0 K+ 5, K0 -0 @ v+ D

1K=1(K)Xi(1 -x)*

..—_‘X_

We now evaluate the total effective number of attempted moves N*
and the total number of accepted moves taken into account, N*, once
N parallel evaluations of K moves have been performed. The proba-
bility that » moves out of K are rejected is equal to

(%) —xx*

98 PARALLEL ANNEALING: TRANSPUTER NETWORK

the probability that all K moves are rejected is (1 — x)X. Therefore
the average effective number of attempts is given by

K K+1
Ky —i
N*=N[(1—X)KK+Z(i)X(1~X)K T 1
i=1

3

or equivalently

1-(1-x"
—

N*=N
The limit of L, attempted moves is reached after a number N, of

parallel evaluations of K moves, which is given by

X
L—————.
“1-(1-x)"

t

The number N* of accepted moves taken into account is equal to the
number of parallel evaluations of K moves leading to at least one
acceptable move; hence

NF=N[1-(1-x"]

The limit of L, accepted moves is reached after a number N, of
parallel evaluations of K moves, which is given by

N Le
“ -1 =)<

Therefore in the high temperature mode the number of parallel
evaluations at a given temperature is

N, = min(N,, N,).
The corresponding computation time is

t, =N,(ro+ 7).

A PROBLEM-INDEPENDENT PARALLEL IMPLEMENTATION OF SIMULATED ANNEALING 99

In the serial mode the computation time is

L
t,=7,— if the L, limit is reached first,
t,=r1,L, ifthe L, limit is reached first.

Therefore, whichever limit L, or L, is reached first,

i =-—-————)—(—————(1+fi). (7.1)

o1--0

Note that lim(z,/1,) = 1 + 7,/7, when x — 1 and that lim(z, /) =
(1 + 7,/79)/K when xy — 0.

At high temperature the efficiency is low; at low temperature the
computation time is roughly divided by the number of processors, as
expected, if the overhead time 7, is small compared to 7,. The
average value of 7, is known from the serial implementation of the
simulated annealing algorithm. The determination of 7, is not
straightforward and depends on the problem. If 7, is constant, 7, may
be approximated by K times the communication time: If the K
parallel computations end at the same time, K successive communica-
tions will be required for the master to know all the results and restart
the slaves.

Model of the Low Temperature fMMode In the low temperature
mode each processor evaluates moves independently until one move is
accepted. At the end of each individual evaluation, the processors
send their results to the master. If no move was accepted by any
processor since the previous communication, another move is at-
tempted. If one move was accepted, the memories of the slave
processors are updated, and the processors are synchronized. In this
mode all the rejected moves are counted as steps toward equilibrium.

To model the behavior of this low temperature mode, it is necessary
to evaluate the number of moves required for one move to be
accepted. This can be done in two ways. Aarts et al. (1986) evalu-
ate the number of parallel calculations required. Their estimation
leads to a number of parallel calculations equal, on the average, to
1/(1 — (1 — x)X). Since it is easier to estimate the time characteris-
tics of individual moves from the sequential results, we find it prefer-
able to evaluate the number of such moves. One configuration is
accepted on the average when 1/y moves are evaluated. The process

100 PARALLEL ANNEALING: TRANSPUTER NETWORK

has then performed 1/x steps toward equilibrium in the serial mode.
Since we want to obtain a feasible configuration of the system, if
another move is accepted by one of the K — 1 other processors, we do
not take it into account. When the processors are synchronized,
1/x + K — 1 moves have been evaluated, but we count only 1/x +
(K — 1)1 — x) steps in the Markov chain since we discard all the
accepted moves but one.

If 7, is the time required to obtain one accepted move in parallel,
we can model the behavior of the low temperature mode as follows:

1. When L, is reached first, t, = L,7,, and ¢, = L,7o/x, thus

~

Tm
L o=x= (7.2)
ts To

2. When L, is reached first,

t o= L.
P (K- -x) "

(7.3)

and ¢, = L7, thus

t, 1 Tom

i, 1/x+ (K- -x) 7

Note that for K =1, one has 7, = r,/x so that 7, =1, as
expected.

Here again, the average value of 7, is known, but the determination
of 7, is not an easy task and depends on the problem. If 7, is
constant and if 1/x is much larger than K, the value of 7, can be
approximated by (7, + 7.)/Kx, 7. being the time required by one
slave to communicate its result to the master. This approximation
would not be valid for small values of 1/x. If the first accepted move
is, on the average, the second attempted move, it would mean that the
first and the third moves may be accepted with nonzero probability. If
the first move is accepted, 7, is equal to 7, + K7_; if the second or
the third move is accepted, 7,,, = 27, + 27., assuming that K7, < 7,
since the synchronization occurs when all the active processors have
achieved their computations. Thus the estimated value of 7,, would be
erroneous because 7,, — T,; = 7o + (2 — K)7, may be large com-

m

RESULTS 101

pared to 7,,. If 1/x is much larger than K, 7, + (2 — K)7, is small
compared to 7,/K x. Moreover, since the low temperature regime will
be used only if 1/x > K (i.e., at low temperature or for a small
number of processors), this approximation is valid.

7.3 RESULTS

7.3.1 A Simple Placement Probiem

We tested our parallel methods and models on a simple placement
problem. It consists of a two-dimensional array of b? chips arranged
on a square grid. In the ground state configuration of the system, each
chip is connected to its nearest neighbours by two-terminal connec-
tions. The elementary move is the exchange of two chips chosen at
random; the cost function is equal to the total length of the wires. Its
minimum value is equal to 2b(b — 1). The parameters of the standard
sequential annealing schedule are the following:

1. The initial configuration is chosen at random.

2. The initial temperature is chosen so that the acceptance rate is
larger than 0.9.

3. The temperature is modified when 5b?*(b? — 1) moves have been
evaluated or when b%(b? — 1) /2 moves have been accepted.

4. The cooling parameter « is equal to 0.9.

5. The simulated annealing process is stopped when the tempera-
ture reaches the value 0.2 or when no move is accepted at a
given temperature.

This annealing schedule was not intended to be optimal. We only
wanted to evaluate the performances of the parallel algorithm as
compared to those of the serial algorithm, subject to the same condi-
tions. Experiments were performed with 25, 49, and 81 chips on three
and six transputers. We present the most relevant results here, ob-
tained on 81 chips in two cases: the communication time is small
compared to the computation time, and the communication and
computation times are of the same order of magnitude.

7.3.2 Numerical Resulis

Both temperature modes were investigated independently on a com-
plete annealing, although they are not intended to be actually used on
the whole temperature range. We compared the behavior of the high

102 PARALLEL ANNEALING: TRANSPUTER NETWORK

800

\,
8

Energy value
14
8
i

300 g
100 - v T T T I v T v
0 10 20 30 40 S0
Temperature
(a)

35

30 =
e 4
2
®
5
=
g
8
s
3
E
=
z

T M 1 M 1 ¥ i
340 540 740 940

Energy value

(&)

Figure 7.1 (a) Energy at the end of a temperature step for the sequential mode
(squares) and the high temperature (dots) and low temperature (crosses) modes.
(b) Energy distribution of the initial configurations (right-hand peak), and energy
distributions of the configurations after annealing (left-hand peaks).

and low temperature modes to the behavior of the sequential mode,
on 100 different initial configurations. Figure 7.1a is a plot of the
average final energy of each temperature step as a function of temper-
ature. In the figure it can be seen that the high temperature mode
behaves similarly to the sequential mode, whereas the low tempera-
ture mode decreases the energy quickly for high temperature values.
This is due to the fact that in the low temperature mode, the first
accepted move is taken into account for updating the system. Since we
used T414 transputers without floating-point computations, the com-
putation of the exponential is long as compared to the execution of a

RESULTS 103

simple instruction. Thus the first accepted move often happens to be a
move that decreases the energy. At low temperature the annealing
curve is the same for the three modes. This allows us to switch from
high to low temperature mode when the low temperature mode
becomes more efficient, still complying with the quality of convergence
of the sequential algorithm. The final and initial energy distributions

A
'] %aaaaaaaas &8 &

0 T Y T v T T ¥ 1
0 i0 20 30 40 50
Temperature

(b)

Figure 7.2 Average duration of a temperature step. Resuits were obtained in the
sequential mode (squares), high temperature mode (dots), and low temperature
mode (crosses): Temperature decreased when L, moves have been attempted
(upper three curves); temperature decreased when L, moves have been accepted
(lower three curves). (a) Overhead time much smaller than computation time;
measurements performed with three T414 transputers. {b) Overhead time of the
same order of magnitude as computation time; measurements performed with
three T414 transputers. (c) Overhead time of the same order of magnitude as
computation time; measurements performed with six T800 transputers.

40
S tiiviiasungunninl
5 %G nunuucan?qu E;
=2 Lo + +
= 1 O ."++# +
8 R
w o Lt
5 20 - Foas
o o ,H.
i
? -
g
< 10 4 %
1 "mgmﬂﬂﬂﬂﬂll BB B B +
0 ¥ T M i v § v L] M 1
o] 10 20 30 40 50
Temperature
(a)
7
6 - "’.' s+t 4
3 +
3 5‘?&%5 E+++
£ > tog & UDL’JUDUBLL
g 4 = o .‘ ++++
= a.; &
E _._‘#+
o 3
&
B
>
<

104 PARALLEL ANNEALING: TRANSPUTER NETWORK

PErrmoooooooo 0 0 8 0 80

o
a

+

Average duration (sec)
(M
1

- IR +
11 . ++4=++++ +
'*"'mwuﬁiiﬁé & B8 b d & i
0 v T v T v T v T 1
o] 10 20 30 40 50

Temperature

(c)
Figure 7.2 (Continued)

are shown in Figure 7.1b. No significant difference between the three
modes can be observed because of the nature of the problem we
investigated; a difference should appear when using finely tuned
annealing schedules, since the low temperature mode exhibits signifi-
cant deviation at high temperature.

The computation times, averaged on 10 experiments, for each
temperature step of the annealing process for the sequential and the
parallel algorithms, are shown in Figure 7.2. On all diagrams the
upper three curves are the average duration of a temperature step
measured if the temperature is decreased when L, moves have been
attempted. The lower three curves are the average duration of a
temperature step if the temperature is decreased when L, moves
have been accepted. As expected, the duration of a temperature step
in the sequential mode is virtually constant in the first case and
increases sharply at low temperature in the second case. We find that
the acceleration is poor at high temperature. The time required for
the parallel algorithms is even higher than the time required for the
sequential algorithm when the communication and synchronization
time is close to the computation time (Figure 7.2b and c¢). At low
temperature the duration is almost divided by the number of proces-
sors. It can be seen in Figure 7.2¢ that the average duration of a
temperature step, when the limit L, is used, is small at high tempera-
ture for the low temperature mode. This is due to the fact that in this
mode, as mentioned before, the energy decreases quickly at high
temperature. Thus the acceptance rate decreases as well, and the

RESULTS 105

number of rejected moves is high. Moreover all the rejected moves are
counted as steps toward equilibrium, and the limit L, is then reached
sooner. When the L, limit is used, the overall annealing time is
divided by 2 with three processors when the communication time is
large, and by 2.5 when it is small. This value depends strongly on the
annealing schedule: If more time is spent at low temperature, as is

1.5
] &
1.1 1 N
. 1 =
S 09 _ua
1 &
B
0.7 ,‘,bﬁ
] 9¥g
0.5 +
g2 Fﬁ
03 T v ' v T v v v
0.0 0.2 0.4 0.6 0.8 1.0
Acceptance rate
{e)
1.5
1.3 5 .fﬁ X
.] ¥
. x
‘ B
K ® %
X 0.9 s .
= E' oX
0.7" +! e ° *
4 iuu . e &
« X
05 M.,
1«
0.3 wr— T T T v T T Y
0.0 0.2 0.4 0.6 0.8 1.0

Acceptance rate
(&)

Figure 7.3 Ratio of the duration of a temperature step in the parallel mode to the
duration of a temperature step in the sequential mode. Measurements were
performed with three transputers, with overhead of the same order of magnitude as
computation time: measurements results (squares), results computed from the
model when the L, limit is used (crosses), measurements results (black squares),
results computed from the model when the L, limit is used (crisscrosses). {a) High
temperature mode. (b) Low temperature mode.

106 PARALLEL ANNEALING: TRANSPUTER NETWORK

25

pa .

#
T 204
=]
2 - g
E +
3 1.5 9 .
H B

+
g - o
o .D;+
< 1.0 5 -.D Eaﬁﬂa%
mm
0.5 v T v T ¥ T - i
0.0 0.2 0.4 0.6 0.8 1.0

Acceptarnce rate

Figure 7.4 Average duration of a temperature step. Results were obtained in the
high (squares) and low (crosses) temperature modes and the chaotic parallel mode
(dots) proposed by Darema, Kirkpatrick, and Norton (1987); temperature de-
creased as L, moves were accepted.

frequently the case in real optimization problems, the overall speedup
factor will be higher.

Figure 7.3 exhibits very good agreement between the measurements
performed in the parallel temperature mode and the estimated values
of t,/t, when the L, limit is reached first (relations 1 and 2), and
when the L, limit is reached first (relations 1 and 3). The acceleration
is higher when the L, limit is used in the low temperature mode. But
since each temperature step is much longer than in the case of the L,
limit, it is definitively worthwhile to use the L, limit when it is
reached first. To compute the estimates from the model, we evaluated
T, + 7, as the average duration of a temperature step divided by the
number of parallel evaluations, and 7,, as the average duration of a
temperature step divided by the number of accepted moves. The
average value of y(T) was estimated from the sequential results.

The computation times, when the L, limit is reached first, averaged
on 10 experiments for each temperature step of the annealing process
for the parallel algorithms and for the chaotic parallel algorithm
proposed by Darema, Kirkpatrick, and Norton (1987) are shown on
Figure 7.4. It appears that the chaotic method is more efficient at high
temperature when the L, limit is used, which is due to the fact that
several moves are accepted when one parallel evaluation is per-
formed. At low temperature its efficiency is lower than the efficiency
of the low temperature mode because few moves are accepted and
time is wasted trying to draw different pairs of blocks. It can be noted
that this method does not build a Markov chain because more than

ACKNOWLEDGMENTS 107

one modification is taken into account for each step. With the simpli-
fied placement problem the quality of convergence is the same as with
the sequential algorithm, but the theoretical proofs of convergence
cannot be used unchanged.

7.4 CONCLUSION

We have proposed a problem-independent paraliel implementation of
the simulated annealing algorithm that guarantees the same quality of
convergence as the sequential algorithm. The parallel algorithm con-
sists of two modes: One is intended to be used at high temperatures
(at least one move is accepted when K moves are evaluated) and the
other one is to be used at low temperatures (at most one move is
accepted). Statistical models of both modes have been derived and
compared to experiments on a simple placement problem, imple-
mented on a network of Transputers. The architecture of the system
consists of a “master” processor linked to K “slave” processors.
These models are expressed as functions of the acceptance rate, which
enables an estimation of the acceleration for any optimization prob-
lem. They take into account the fact that depending on the implemen-
tation of the sequential algorithm, the length of the Markov chain for
each temperature step can be taken either equal to a given number of
accepted moves or equal to a given number of attempted moves. The
condition for switching from the high temperature mode to the low
temperature mode depends on the number of processors used and on
the length of the Markov chain. Further improvements in this tech-
nique might be achieved if the processors are allowed to proceed
asynchronously, that is, if they are not synchronized each time a move
is accepted. The chaotic parallel method proposed by Darema,
Kirkpatrick, and Norton (1987) is compared to the high and low
temperature modes. It exhibits better performance mostly at high
temperature but introduces a significant difference from the sequen-
tial algorithm, which can lead to unpredictable results on different
optimization problems.

ACKNOWLEDGMENTS

The authors are very grateful to A. Trouvé and O. Catoni (see
 Chatper 9 in this volume) for their critical comments on the derivation
of the effective number of moves.

108 PARALLEL ANNEALING: TRANSPUTER NETWORK
REFERENCES

Aarts, E. H. L., and P. J. M. van Laarhoven. Statistical cooling: A general
approach to combmatorlal optimization problems. Philips J. Res. 40 (1985):
193-226.

Aarts, E. H. L., F. M. J. de Bont, J. H. A. Habers, and P. J. M. van
Laarhoven. Parallel implementations of the statistical cooling algorithm.
Integration VLSI J. 4 (1986): 209-238.

Casotto, A., and A. Sangiovanni-Vincentelli. Placement of standard cells
using simulated annealing on the connection machine. Proc. IEEE Int.
Conf. Computer Design, 1987, pp. 350-353.

Casotto, A., F. Romeo, and A. Sangiovanni-Vincentelli. A parallel simulated
annealing algorithm for the placement of macro-cells. IEEE Trans. CAD
CAD-6, 5 (1987): 838-847.

Catoni, O., and A. Trouvé. Parallel annealing by multiple trials: a mathemati-
cal study. Chapter 9 in this volume.

Darema, F., S. Kirkpatrick, and V. A. Norton. Parallel algorithms for chip
placement by simulated annealing. IBM J. Res. Develop. 31, 3 (1987):
391-402.

Geman, S., and D. Geman. Stochastic relaxation, Gibbs distribution, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6
(1984): 721-741.

Kirkpatrick, S., C. Gelatt, Jr., and M. Vecchi. Optimization by simulated
annealing. Science 220 (1983): 671-680.

Kravitz, S., and R. Rutenbar. Multiprocessor-based placement by simulated
annealing. Proc. 23th ACM /IEEE Design Automation Conf., 1986.

Lam, J., and J.-M. Delosme. Performance of a new annealing schedule. Proc.
25th AMC /IEEE Design Automation Conf., 1988, pp. 306-311.

Mallela, S., and L. Grover. Clustering based simulated annealing for stan-
dard cell placement. Proc. 25th ACM/IEEE Design Automation Conf.,
1988, pp. 312-317.

Otten, R., and L. van Ginneken. Stop criteria in simulated annealing. Proc.
IEEE Int. Conf. Computer Design, 1988, pp. 549-552.

Rutenbar, R., and S. Kravitz. Layout by annealing in a parallel environment.
Proc. IEEE Conf. Computer Design, 1986, pp. 434-437.

