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ABSTRACT

New learning rules for the storage and retrieval of temporal sequences, in neural
networks with parallel synchronous dynamics, are presented. They allow either
one-shot, non-local learning, or slow, local learning. Sequences with bifurcation
points, i.e. sequences in which a given state appears twice, or in which a given
state belongs to two distinct sequences, can be stored without errors and retrieved.

1. INTRODUCTION

The original attempts to use Hopfield-type neural networks as associative
memories aimed at storing information as fixed points of the dynamics of the
systems. However, many pieces of information appear naturally as temporal
sequences : speech, music, flow charts, etc. Obviously, the central nervous system
has the ability to store, retrieve and recognize sequences of patterns. Therefore,
various attempts have been made recently in this direction. Most of them, however,
were aimed at biological modelling : they used networks with sequential
asynchronous dynamics, in which the main problem is the competition between the
stability of a pattern and the transition to the next one ; in the present paper, we
study the behaviour of neural networks with parallel synchronous operation. We
show that it is possible to find efficient learning rules which allow the perfect
storage, and the retrieval, of complex sequences, i.e. of sequences in which a given
pattern occurs more than once. Some of the results which are obtained apply to
asynchronous dynamics, too. In the first section, we shall recall the various learning
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processes which have been proposed and used for storing patterns as fixed points.
In a subsequent section, we shall present various learning rules for temporal
sequences.

2. THE STRUCTURE AND DYNAMICS OF THE NETWORKS.

The neural networks considered here are assemblies of McCulloch-Pitts binary
formal neurons, having the following operation : each neuron computes its
potential, which is the weighted sum of its inputs, and makes a decision by
comparing it to a predetermined threshold; if the sum is larger than the threshold,
the neuron goes to (or remains in) the active state ; if the sum is smaller than the
threshold, the neuron goes to (or remains in) the inactive state. We denote the state
of neuron i by a variable o; which can take the values +1 or -1 only ; Cij is the
weight of the synapse inputting information from neuron j to neuron i ; we shall take
all thresholds equal to zero. Such neurons are arranged to form a fully connected
network. Therefore, the evolution of the state of neuron i is governed by the
following process : denoting by v; the potential of neuron i in a network of n neurons

Z C|J oi{t) , one has :

Oj (t+1:) = sign (vi(t)) .
where 1 is the characteristic response time of the neuron.

Unless otherwise stated, we consider neural networks with paralle!, synchronous
dynamics : all neurons evaluate their potentials and make their decisions
simultaneously, with the same response time 1. The state of a network of n neurons
is represented by a vector ¢ whose n components are equal to +1. The points in
state space that can be occupied by the network are the summits of a hypercube.
The dynamics of the network is fully defined by the values of the interaction
coefficients Cij ; the matrix C of these coefficients is usually termed the synaptic
matrix of the system.

3. STORING PATTERNS AS FIXED POINTS

Hopfield-type networks!, as opposed to feedforward networks, are essentially
dynamical systems ; classically, their use as associative memories is based on the
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fact that information can be stored as attractor, fixed points of their dynamics : when
left to evolve spontaneously from an initial state, which corresponds to an
erroneous or incomplete information, the network converges to a fixed point which
is, hopefully, the correct information ; of course, this property holds true only if the
interaction coefficients are properly computed during the learning phase.

The first learning rule guaranteeing the perfect storage of any set of patterns was
proposed in Ref. 2. We summarize briefly its derivation : the stability of a state gK is
guaranteed iff one has :

Ccok =Akgk=pk (1),
where AK is any diagonally dominant matrix with positive diagonal terms. Therefore,
any synaptic matrix guaranteeing the stability of a set of states { gk} must satisfy
relation (1) for alt k=1, 2, ... p ; the general solution is given by:
c=azl+B(I-22) (@,
where A is the matrix whose columns are the vectors Lk
A=A, 42, ..., APT,

=[g!, &2 ..., oP1,
B is an arbitrary matrix and ! is the pseudoinverse of X. This holds true provided
one has AZlZ= A ®3)

The computation of the synaptic matrix can be performed iteratively, by
presenting each pattern to be learnt only once ; this learning procedure will be
detailed in the next section. Note that matrix B is the synaptic matrix at the
beginning of the learning phase, i.e. when Z = [0].

If condition (3) is not satisfied, matrix C = A =l minimizes the quantity

2'? Lp (Vik—lik)z
i=1k=1

A particularly simple and important result is obtained if A =%, i.e., if all AK are
taken equal to the identity matrix : in this case, if learning begins with a tabula rasa
(B=[0]), the synaptic matrix reduces to the orthogonal projection matrix into the
subspace spanned by the stored patterns. This gives rise to a very simple
geometrical interpretation of the information retrieval properties of the networks,
and allows us to define a Lyapunov function for the study of the paralle!l dynamics of
the system ; moreover, it turns out to be very efficient for applications in the field of
pattern recognition. This learning rule, termed the projection rule, has been
analyzed in detail in Ref. 3, and, in a slightly different form, in Ref. 4 ; applications to
pattern recognition are described in Ref. 5 and 6.
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The above learning procedure is fast and non-local. 1t is fast because the iterative
computation of the synaptic matrix requires presenting each pattern to be learnt
only once ("one-shot learning") ; if p patterns are to be stored, p iterations will be
necessary. This rule is non-local since computing the variation of the strength of the
synapse linking neurons i and j requires information from all other neurons of the
network ; from a practical standpoint, it would be more advantageous to have a
local learning rule, which would make the implementation of the learning rule on an
electronic or electro-optic neural network much easier. The price to be paid for a
local rule is that the learning procedure is slow since it requires that each pattern be
presented repeatedly. Two such procedures have been proposed recenﬂy7. One of
them is derived from the Widrow-Hoff rule® and has been shown to yield the
projection matrix if the stored patterns are linearly independent. The other local
learning procedure is a variant of the Perceptron rule? ; it guarantees the stability of
the stored patterns, but the synaptic matrix is of the general form (2) ; it is not the
projection matrix ; the maximal storage capacity is 2n if the patterns are chosen
randomly10.

4. STORAGE AND RETRIEVAL OF SEQUENCES OF PATTERNS

The Hopfield network, being essentially a dynamical system, is an attractive
candidate for processing temporal sequences. Recently, several authors proposed
network architectures and learning rules for storage, retrieval and/or recognition of
sequences1 1 essentially in the framework of sequential dynamics. The problem
that we address here is the storage and retrieval of sequences with neural networks
under parallel synchronous dynamics. We shall first recall results obtained
previously for the storage of simple sequences, and subsequently show how they
can be extended to complex sequences, leading to learning rules which guarantee
the perfect storage of temporal sequences.

1) Storage and retrieval of simple sequences

Storing a sequence consists in computing the synaptic coefficients so as to
impose a set of prescribed one-step transitions in state space. Consider a set of
transitions :

gk —>Qk+ Jk=1,2, ....,p .

We wish to compute the synaptic matrix in order to guarantee that, if the network

is in state gk, it is in state g_k+ at the next time step. In other words, we wish to
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impose the condition: C ok = AK K+ 22K forall k,
where AK is an arbitrary diagonally dominant matrix with positive diagonal terms. As
mentioned in the previous section, the general solution of this equation is :
C=Azl+B(I1-32l).
If we impose the same margin for all neurons and all transitions, that is, if we take
AK = [ for all k, one has :
c=x+txl+B(I-xxl),
provided that condition Z* s1s =3 is satisfied.

With this learning rule, the number of transitions that can be stored is O(n), with
the restriction that a given pattern must not appear twice in matrix Z. Figure 1
illustrates the type of sequences that can be stored with this rule. Examples of
applications to classification tasks performed with such networks are presented in
Reference 3.

Figure 1

As in the case of pattern storage, matrix C can be computed iteratively with single
presentation of the transitions to be stored. Starting from a zero synaptic matrix, the
computation of C =zt x!
proceeds as follows : assume that k-1 elementary transitions

o 5o (h=1,2, ..., k1),
have been learnt, leading to a synaptic matrix C(k-1). Then, C(k) can be computed
as:
C(k) = C(k-1) + (g -uR) SR/ K2 (4)
where vK=C(k-1)oK,  3K=M(k-1)gk

and M) = M(k-1) - GRGKT /1 8K|12
the initial conditions being
C(0) =[0], M(0) = L.

This fast learning algorithm is non-local because of the term Kinthe relation (4).
Local learning can be achieved by a straightforward generalization of the
slow-learning procedures (Widrow-Hoff or Perceptron type) developed for storing
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patterns as fixed points. The Widrow-Hoff algorithm can be written as :
C(k) = C(k-1) + (1/n) (¥ - ¥K) KT (5)
with C(0) = [0].

The Perceptron-type procedures allow us to find a synaptic matrix whose
coefficients satisfy a set of inequalities :

Ej Cij Gj'k (Sik"' >8>0.
It &is smaller than a limiting value 8,54 Which can be determined!?, a solution
exists and will be found by the Perceptron algorithm in a finite number of steps.

retrieval of complex sequences

In order to learn sequences in which a given pattern occurs twice, the previous
approach is inappropriate : consider a pattern gk belonging to two distinct
sequences, or appearing twice in the same sequence (Fig. 2) ; when the network is
in that state, it must decide which of the subsequent possible states it must go to at
the next step. Therefore, in order to make such a decision, some information on the
previous state must be conveyed ; this is not possible with the structure described in
the previous section. A solution to this problem consists in performing, at each
neuron, two weighted sums, one of them taking into account the present state of the
network, the other involving its previous state.

Figure 2

More generally, we define the order of a set of sequences as the minimal memory
span necessary to store all the sequences. Hence, a sequence where a pattern
occurs twice is of order one. Simple sequences, discussed in the previous section,
are of order zero. In the following, we consider sequences of order one, but
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extensions to higher order are straightforward. Two possible solutions, for
sequences of order one, will be discussed here.

As mentioned above, the network needs information both on the current state and
on the previous one ; we denote g(t-1), o(t) and g(t+1) by ¢~, o and gt respectively.
The dynamics of the network is now governed by the following relation :

ct=sign[Cy],
where yis a vector with 2n components :

£

Therefore, C is a (n,2n) matrix.
The computation of C proceeds as follows : the sequences to be stored can be
put in the form
oK = oK = okt k=t ., p.
We define a matrix I’ whose columns are the vectors yk. The usual storage
condition for the sequences can be written as :
C yk = AK Qk .
Taking all Ak equal to the identity matrix, and starting from an initially
unconnected network, matrix C is given by :
C=xt Tl s
under the condition £trir=xt .
This structure of the network guarantees the storage of any sequence of order 1.
It requires 2n2 synaptic coefficients, and the number of transitions that can be
stored is O(2n). The retrieval requires that the network be initialized with two states.

An alternate solution can be used, allowing the initialization of the process with
only one pattern. In this case, we decompose C intoc two square (n,n) matrices c(0)
and c(1 ), c(0) acting on g and c(Mon o". Therefore, the dynamics for the network
is:

ot =sign(CO g+Cllg) .
The sequences to be stored are divided into subsequences :

oK — gk+ -t k=1, p.
The storage of the sequences is guaranteed if :

C(O) _Qk = Qk+ and C(1) Qk = Qk++ k=1, ..... VP,
which can be put in matrix form as :

cOs=5+ andc)z=3x+t.
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As opposed to the previous case, the solutions

cO=z+sl and c{)=z++xl
are not exact solutions because the bifurcation vectors appear twice in Z. This
difficulty can be overcome in the following way : we define matrix S as the matrix
derived from matrix £ by deleting the columns of X corresponding to all
occurrences, but the first one, of each bifurcation point ; matrices S* and S*+ are
derived from T+ and T** by deleting the same columns as for S, and by replacing
the columns corresponding to the bifurcation points by Q. Synaptic matrices
guaranteeing the storage of the sequences are given by :

c®=s+sl and c(1)=g++sl.

When this solution is used, the network can be initialized with one state only, the
second state being equal to Q. The storage capacity, however, is decreased by a
factor of 2 as compared to the previous solution, and one cannot have two
bifurcation points in succession in a sequence.

With either solutions, straightforward extensions of the local rules presented are
available and allow slow, local learning. Other solutions to the problem of
sequence learning and retrieval, together with some illustrations, will be presented
in a more detailed paper13.

5. CONCLUSION

The present paper has introduced new storage prescriptions which guarantee
the storage, and allow the subsequent retrieval, of temporal sequences of
information in networks with parallel synchronous dynamics. Having in view the
possible electronic implementations of such systems, we have shown that local
learning rules can be used, in addition to the fast, non-local learning rules which
are more suitable for off-chip computation of the synaptic matrix. The ability to store
and retrieve information in the form of temporal sequences extends the range of
tools which are available to the "neural network designer” for attempting to solve
information processing problems with such systems.
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