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The ability of neural networks to store and retrieve informa-
tion has Dbeen investigated for many years. A renewed interest
has been triggered by the analogy between neural networks and
spin glasses which was pointed out by W.A. Little et al.

and J. Hopfield . Such systems would be potentially wuseful
autoassociative memories "if any ©prescribed set of states
could be made the stable states of the system" ;  however,
the storage prescription (derived from Hebb's law) which was
used by both authors did not meet this requirement, so that
the information retrieval properties of neural networks based
on this law were not fully satisfactory. In the present paper,
a ceneralization of Hebb's law is derived so as to guarantee,
under fairly general conditions, the retrieval of the stored
information (autoassociative menory). Illustrative examples

are presented.

DESCRIPTION OF THE NETWORK : we consider a fully connected net-
work of n IMcCulloch-Pitts formal neurons, with simultaneous,
parallel operations. Each neuron is a binary state threshold
device having n inputs (the states of all neurons) and one
output (its own state). At time t, the state of neuron i is
represented by a bhinary variable Gz(t) which can take the
numerical values of +71 or -1. In order to determine its next
state g (t+T ) , the neuron 1 performs a weighted sum

i
of its inputs and compares it to a threshold value ei :

n
<ei = 03 (t+T)= -1
= 0y = 03 t+T)= T ()
Therefore, the parameters of the network are the (n,n) matrix
C of the weights{cij} and the (n) vector & of the threshold
values {E%}. The state of the network is defined by an
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(n) vector ¥~ , the components of which are the states %q}

of all the neurons.

NEURAL NETWORKS AS AUTOASSOCIATIVE MEMORIES : for the network
to be useful as an autoassociative memory, it should have the
following behaviour : if the network is set into a given state
o e fﬂ,+4y\(representing a distorted or incomplete informa-
tion), it should evolve until it reaches a stable state (repre-
senting the full information to be retrieved). The problem of
designing a neural network acting as an autoassociative memory
is therefore : given a set of p prototype states to he memori-
zed, how should the parameters C and Q be chosen so as to re-
trieve these states as faithfully as possible ? Obviously, the
minimum requirement 1is that the prototype states be stable ;
very desirable features would be :

(i) the fact that prototype states be stable and act as attrac-
tors,

(ii) the absence of cycles,

(iii) the absence of spurious stable states or, at least,
their predictability.

In the following, we show how to design networks embodying the-

se three features.

THE GENERALIZED HEBR'S LAW : the general stability condition
of a network can be expressed as follows3 if all thre-
sholds are taken eqgual to zero : a given state g is stahle if
and only if there exists a diagonal matrix A, with all ele-

ments positive or zero, such that one has :

Coe =Ac (1)

In order to make the p prototype states {gk} stable, relation
(1) must hold true for all of them :

K C:gf‘:.?fgxk

A being a diagonal matrix with all its elements positive
or =zero. The general problem of finding C has been addressed
in Ref. 3. In the present paper we take A =I for all k. If
the prototype states are linearly independent, the solution is
given by : c=x5* (2)
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where 3 is the matrix whose columns are the prototype vectors
&f and ZiI=CZ?jEYM§:r is the pseudoinverse4 of mat-
rix 2 . The matrix C is symmetric. It is the orthogonal projec-
tion matrix into the subspace spanned by the prototype vec-
tors. It can be computed either directly from relation (2), or
recursively , without matrix inversion, by introducing
each prototype vector once (and only once). This recursive com-
putation is typical of a learning process.
One should notice that relation (2) is a generalized form of
the classical Hebb's law C:(T/n)EZE:T : in the special case
where the prototype states are orthogonal , relation (2) redu-
ces exactly to Hebb's law. Therefore, since our storage pres-
cription guarantees the retrieval of the prototype states even
if the latter are not orthogonal, it is a generalization of
Hebb's law.

PROPERTIES OF THE GENERALIZED HERB'S LAW : besides the funda-
mental feature of guaranteeing the stability of the prototype
states, we show some additional properties of such networks :
the absence of cycles, the characterization of the spurious
stable states and the attractivity of the prototype states.

i- Absence of cycles. The "energy"” of the network in the state

g can be defined by analogy with spin glasses in the absence
of external field: E=-%92CT-

Assume that the system is in an unstable state ¢ and that the
next parallel iteration drives it to a state g'. Tt can be
shown6 that ¢ Ca L Cx  gCx

Therefore, the energy is an ever decreasing function, thus pre-
venting any cycle to occur even under parallel operation.

It should be noticed that the prototype states and their 1i-
near combinations belonging to f4,44}h (if any) are the sta-
tes of lowest possible energy (they are identical to the Mat-
tis states referred to by D. Amit et al. in the present book).

ii- Spurious stable states. Consider a stable state a

which 1is possibly a non prototype state. Since C is the matrix
of the orthogonal projection into the subspace spanned by the
prototype vectors, Cga is a linear combination of the proto-

type vectors.
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Since 9 is stable, from relation (1), there exists a positi-
ve diagonal matrix A such that :

Cg: :-.Ag:
Vector g is therefore a "normalized" combination of the proto-
type states. Thus, any stable state is a normalized combina-
tion of the prototype states.
iii- Attractivity of orthogonal prototype states. If the proto-

type states are orthogonal, it has been shown that any
state lying within a Hamming distance of n/2p of a given proto-
type state will converge to that state in one iteration. Simi-
larly, the opposite of any prototype state has a radius of at-

traction of n/2p.

EXAMPLES : we present an example which illustrates the effi-
ciency of the generalized Hebb's law : a neural network de-
signed after this law is used for error correction purposes.
The titles of scientific journals have been chosen as prototy-
pe patterns. Each alphabetic character has been coded on six
bits. The prototype states are shown in the upper left block
of the figure. Each example in the other two blocks has three
lines ¢ the first one is the initial state ; the second and
third lines are the final states reached by neural networks de-
signed with the generalized Hebb's law and with Hebb's law res-
pectively. These two networks have exactly the same structure;
the only difference hetween them is the analytic expression of
the matrix C. As was mentioned above, the numerical computa-
tion of that matrix is performed in both cases by an algorithm
which yields the exact result (within roundoff errors) after a
finite number of steps (egual to the number of prototype vec-
tors). In the upper right block, the retrieval of the prototy-
pe states is attempted ; as expected, all the prototype states
are retrieved in the first case, whereas several are forgotten
in the second case. The lower block shows the error correction
properties ; obviously, the generalized Hebb's law is much mo-

re efficient than Hebb's law for error correction.

CONCLUSION : we have proposed a generalization of Hebb's law

which guarantees a perfect retrieval of the information stored
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in a neural network. This approach has enabled us to demonstra-

te the absence of cycles under parallel iteration conditions,
attractivity of the prototype states, and to

examples

to evaluate the
clarify the nature of the spurious stable states. The
that are that such networks exhibit reliable

properties of autoassociative memories.
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