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ABSTRACT

The early detection of Alzheimer’s disease (AD) is an im-
portant challenge. In this paper, we propose a novel method
for early detection of AD using only electroencephalographic
(EEG) recordings for patients with Mild Cognitive Impair-
ment (MCI) without any clinical symptoms of the disease
who later developed AD. In our method, first a blind source
separation algorithm is applied to extract the most signifi-
cant spatiotemporal uncorrelated components; afterward these
components are wavelet transformed; subsequently the wavelets
or more generally time frequency representation (TFR) is
approximated with sparse bump modeling approach. Fi-
nally, reliable and discriminant features are selected and re-
duced with orthogonal forward regression and the random
probe methods. The proposed features were finally fed to
a simple neural network classifier. The presented method
leads to a substantially improved performance (93% cor-
rectly classified - improved sensitivity and specificity) over
classification results previously published on the same set
of data. We hope that the new computational and machine
learning tools provide some new insights in a wide range of
clinical settings, both diagnostic and predictive.

1. INTRODUCTION

Alzheimers disease (AD) is the most common neurodegen-
erative disorder [1, 2]. Since the number of individuals with

AD is expected to increase in the near future due to soci-
eties aging phenomenon, early diagnosis and effective treat-
ment of such brain degenerative disease are challenging is-
sues for neurophysiological research [1]. Physiological or
clinic studies have both showed that AD is characterized by
a presymptomatic phase, usually lasting a few years, dur-
ing which neuronal degeneration is occurring prior to the
clinical symptoms appearance. This poses both a challenge:
how do we identify individuals during this preclinical pe-
riod; as well as an opportunity: can preventive therapy be
started during the preclinical period before disease symp-
toms appear? Therefore, a major goal is to improve the
performance of early detection of this disease by develop-
ing advanced computational and machine learning tools, es-
pecially for analysis of EEG data. Since an early detec-
tion method should be inexpensive, in order to allow simple
and possibly mass screening of elderly patients electroen-
cephalography (EEG) the most promising candidate in that
respect [1, 2, 3].

Due to high complexity and variability of EEG signals,
early detection of AD based on EEG depends on develop-
ment of advanced computational tools [2]. In [3], Blind
Source Separation (BSS) approach was first applied for the
above purposes, while standard methods were used for fea-
ture extraction and classification.

In the present paper, we propose a multistage proce-
dure (see Fig. 1) employing BSS for filtering/enhancement
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Fig. 1. Schema of the new method applied to obtain reliable features from raw EEG signals.

of EEG signals, time frequency representation, subsequent
”bump modeling” for feature generation and dimensionality
reduction (see Fig. 2), and for statistical feature selection.
We show that such multistage approach provides a substan-
tial improvement in discrimination between AD cases and
healthy subjects, as compared to similar classification re-
sults obtained previously [1, 3] with the same data set.

2. METHODS

In this section several necessary steps of proposed approach,
are illustrated in Fig. 1. The most important steps are: EEG
signals preprocessing which remove some noise and arti-
facts, optional blind sources separation for EEG denoising
and enhancement, wavelets or time frequency representa-
tion (TFR) with sparse bumps modeling and feature extrac-
tion. Since the number of features is relative large model
reduction/selection plays also a key role. The EEG signals
were recorded for three age matched groups: Healthy con-
trol, Mild Cognitive Impaired (MCI) patients and mild/severe
AD diagnosed patients. In that study, patients who com-
plained only for memory impairment, but had no apparent
loss in general cognitive, behavioral, or functional status,
were recruited. Fifty-three patients of this group met the
following criteria for MCI: MMSE score 24 or higher, Clin-
ical Dementia Rating (CDR) scale score of 0.5 with memory
performance less than one standard deviation below the nor-
mal reference (Wechsler Logical Memory Scale and Paired
Associates Learning subtests, IV and VII,≤ 9, and/or≤ 5
on the 30 min delayed recall of the Rey-Osterreith figure
test). These patients were followed clinically for12 − 18
months. Twenty-five of them developed probable or pos-
sible AD according to NINDS-ADRDA criteria. Normal

age-matched controls were recruited from family members
of the patients (mainly spouses) participated in the study as
control group. Both patients and controls underwent gen-
eral medical, neurological, psychiatric, and neuroimaging
(SPECT, CT and MRI) investigation for making the diag-
nosis more precise. EEG was recorded within one month
after entering the study from all patients and controls, but
only EEG recorded from the patients who progressed to
AD (n = 22; below: MCI group) and age-matched con-
trols (n = 38) was used for the analysis. No patient or
control subject received psychotropic medication at the pe-
riod when EEG was recorded. Mean MMSE score was
26± 1.8 in MCI group and28.5± 1.6 in control group; age
71.9 ± 10.2 and71.7 ± 8.3, respectively. EEG recording
was done in an awake resting state with eyes closed, under
vigilance control. Ag/AgCl electrodes (disks of diameter
8 mm) were placed on 21 sites according to 10/20 inter-
national system, with the reference electrode on the right
ear-lobe. EEG was recorded with Biotop 6R12 (NEC San-
ei, Tokyo, Japan) using sampling frequency of200Hz (see
[1, 3] for more detail).

2.1. Blind source separation for signal denoising

According to the currently prevailing view of EEG signal
processing, those signals can be modeled as a linear mix-
ture of a finite number of sources with additive noise [4].
Therefore, blind source separation techniques can be used
advantageously for decomposing recorded EEG into brain
signal related subspace and noise subspace. The AMUSE
(Algorithm for Multiple Unknown Signals Extraction [5])
algorithm, a blind source separation technique that relies
on second-order statistics for spatiotemporal decorrelation,



was previously used in order to select five significant com-
ponents of the signal that had the best linear predictabil-
ity. This algorithm uses simple principles that the estimated
components should be spatiotemporally decorrelated and less
complex (i.e., have better linear predictability) than any mix-
ture of those sources. The components are ordered accord-
ing to decreasing values of singular values of a time-delayed
covariance matrix. As in PCA (Principal Component Analy-
sis) and unlike in many ICA algorithms, all components
estimated by AMUSE are uniquely defined (i.e., any run
of algorithms on the same data will always produce the
same components) and consistently ranked. Mathematically
AMUSE algorithm is based on the following two stage pro-
cedure: In the first step we apply a standard or robust pre-
whitening (sphering) as linear transformation
x1(k) = Qx(k) with

Q = R−1/2
x = (VΛVT )−1/2 = V(Λ)−1/2VT (1)

whereRxx = E{x(k)xT (k)} is a standard covariance ma-
trix and x(k) is a vector of observed data for time instant
k. In the second step, for pre-whitened data, the SVD (Sin-
gular Value Decomposition) is applied for time-delayed co-
variance matrix

Rx1x1 = E{x1(k)xT
1 (k − 1)} = UΣVT , (2)

whereΣ is diagonal matrix with decreasing singular values
andU , V are orthogonal matrices of left and right singular
vectors. Then, an unmixing (separating) matrix is estimated
asW = UT Q.
AMUSE algorithm is much faster than the vast majority of
BSS algorithms (its processing speed is mainly defined by
the PCA processing within it) and is very easy to use, be-
cause no parameters are required. It is implemented as a
part of packageICALAB for Signal Processing[6] freely
available on authors’ web site.

In the present paper, the same pre-processing method is
used for collected21 EEG channels, as a baseline for assess-
ing the efficiency of sources detection. In order to remove
components carrying noise, only first six components are
kept. After such preprocessing procedure we obtain three
databases with21 deflated signals for each of the cases:
MCI, Control (healthy subjects), and Severe set. We will
nameD the database featuring60 recordings:22 from MCI
set and38 from Control sets; andS the database featuring
45 recordings :22 from MCI set and23 from Severe AD
sets.

2.2. Time-frequency maps and bump modeling for fea-
ture generation

In order to obtain a compact representation of the signals
of D database suitable for automatic discrimination of MCI

patients from control individuals, the signals are first ana-
lyzed in the time-frequency domain by wavelet transforma-
tion, and the resulting time-frequency maps were modeled
by bumps [7], as described following subsections.

2.2.1. Wavelet transformation and time-frequency map ge-
neration

EEG signals are first transformed to time-frequency domain
maps using wavelets. Complex Morlet wavelets are appro-
priate for time-frequency analysis of EEG signals [8]. Com-
plex Morlet waveletsw(t) of Gaussian shape in time (devi-
ationσt) are defined as:

w(t) = A exp
(−t2/2σ2

t

)
exp (2iπft) , (3)

whereσt andf are appropriately chosen parameters, which
cannot be chosen independently, since the productσtf de-
termines the number of periods that are present in the wave-
let). In the present investigation, the wavelet family defined
by 2πσtf = 7 was chosen, as described in [8]. The sig-
nals present in theD database were wavelet transformed in
two different frequency discrete ranges with steps of0.25Hz
frequency bins:

• 1.5 to 16.5Hz: in order to monitorTheta rangeof
EEG (3.5 to 7.5Hz);

• 9 to 31.75Hz: in order to studyBeta rangeof EEG
(12.5 to 25Hz).

These ranges take into account borders needed for the bump
modeling procedure. We obtained two databases of time–
frequency maps,D1 for Beta rangeandD2 for Theta range.
S database is wavelet transformed only in theTheta range.

2.2.2. Bump Modeling

The bump modeling [7] technique is a two-dimensional gen-
eralization of the Gaussian mesa function modeling tech-
nique that was initially designed for one-dimensional sig-
nals (electrocardiogram analysis - ECG) [9]. In the present
study, it is used for extracting information from the time-
frequency maps. This method of bump modeling was ini-
tially successfully applied to the analysis of local field po-
tential signals, gathered from electrophysiological (invasive)
measurements [10, 7]. The present paper reports an appli-
cation of bump modeling to EEG signals. The main idea of
this method is to approximate a time-frequency map with a
set of predefined elementary parameterized (adaptive) func-
tions called bumps (non-overlapped or overlapped). There-
fore, the map is represented by the rather limited set of pa-
rameters of the bumps, which is a very sparse encoding, re-
sulting in information compression rates ranging from one
hundred to one thousand (further details are given in [7, 9]).
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Fig. 2. Bump modeling of a recording, in theTheta range.
Top panel: wavelet time-frequency map computed using
complex Morlet wavelets. Middle panel: bump decompo-
sition of the time-frequency map. Bottom panel: 3D view
of the bump decomposition.

The algorithm is divided into following steps of normalized
time-frequency maps analysis:

(i) Window the map in order to define the zones to be
modeled (those windows forms a set of overlapped
time-frequency sub-areas of the map);

(ii) Find the window that contains the maximum amount
of energy;

(iii) Adapt a bumpφb(f, t) to the selected zone, and with-
draw it from the original map, the parameters of the
bumps are computed in order to minimize the cost
functionC defined by:

C =
1
2

∑

t,f∈W

(zft − φb(f, t))2 , (4)

where the summation collects values of all the pixels
within the windowW . zft are the time-frequency
coefficients at timet and frequencyf , andφb(f, t) is
the bump function value at timet and frequencyf .

(iv) If the amount of energy of the modeled bumps reaches
a threshold, stop; else return to (iii).

Half ellipsoids were found to be the most appropriate bump
functions for the present application (Fig. 2 shows a typical
example of bump modeling of the time-frequency map of

an EEG recording). The principal axes of the bumps are re-
stricted to be parallel to the time frequency axis in order to
have the less possible parameters - each bump is described
by five parameters: its coordinates on the map (two para-
meters), its amplitude (one parameter) and the lengths of its
axes (two parameters). Half ellipsoids are defined by:

φb(f, t) =

{
a
√

1− ν for 0 ≤ ν ≤ 1
0 for ν > 1

(5)

whereν = (e2
f + e2

t ) with ef = (f − µf )/lf andet =
(t − µt)/lt; µf andµt are the coordinates of the center of
the ellipsoid,lf and lt are the half lengths of the princi-
pal axes,a is the amplitude of the function,t is the time
andf the frequency. We applied bump modeling toD1 and
D2 databases. The parameters of the bumps obtained are
candidate features for classification. Although the model is
sparse, feature selection is necessary because of the small
size of the data sets.

2.3. Feature selection

After bump modeling, the signals under investigation are
represented by the set of parameters that describe the bumps.
The following features were defined and computed:

F1: the number of bumps;

F2: the sum of the amplitudes of the bumps present.

ForD1, bumps are studied in two separate frequency ranges:
β1 (12.5 - 17.5Hz) andβ2 (17.5 - 25Hz). ForD2 andS, the
Theta range(3.5-7.5 Hz) is used.

Thus four features are computed per signal forD1, and
two for D2 or S. Therefore, for each recording (21 time-
frequency maps), the number of candidate featuresfi is 84
for D1 and42 for D2 or S. Since the number of candidate
features remains still large, given the number of examples in
the data bases, feature selection could be performed based
on the Gram-Schmidt orthogonal forward regression (OFR)
algorithm [10]. OFR consist the following steps:

(i) Select the candidate featurexj that is most correlated
to the quantity to be modeled:xj = arg maxi cos2 fi;

(ii) Project the output vector and all other candidate fea-
tures onto the null space of the selected feature and
compute the parameter pertaining to that feature;

(iii) Iterate in that subspace, return to (i).

This method of selection is applied three times, to obtain
the best features in order to separate MCI sets from Con-
trols ones, and MCI set for Severe set: first forD1 set, then
for D2, and finally forS. Only a few features relevant to the
classification are selected using OFR. Subsequently, in or-
der to choose optimally the reduced number of features, the



random probe method [11] is applied. One hundred probes,
i.e., realizations of random variables, are computed and ap-
pended to the feature set. A risk level is defined, which cor-
responds to the risk that a feature might be kept although,
given the available data, it might be less relevant than the
probe. At each step of the selection procedure, the follow-
ing steps are performed iteratively:

(i) Obtain a candidate feature from OFR;

(ii) Compute the value of the cumulative distribution func-
tion of the rank of the probe for the rank of the candi-
date feature;

(iii) If that value is smaller than the risk, select the feature
and return to (i);

(iv) Else, discard the feature under consideration and ter-
minate.

Since the database is small compared to the number of
features to be tested, the ensemble feature ranking method
was used:E subsets are built by iteratively removing one
example from the database (thusE = number of recordings
in the database). OFR is then applied to these subsets. The
overall distribution of features, and the average numberNk

of selected features is computed; finally, theNk overall best
features are selected. Accepting a percentageP of false
positive variables (i.e. irrelevant variables that are wrongly
selected), we obtained finallyF features, ranked as the most
significant ones.P was set to15%.
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3. RESULTS

Each data set was used for training and validating a neural
network classifier (multi-layer perceptron model, see for in-
stance [12]). The generalization performance was estimated

using the leave-one-out (”jackknifing”) cross-validation me-
thod [13] which was also used in the previous study of the
data set [3]. The best results, shown in Table 1 (D′

1 andD′
2

are obtained without denoising by AMUSE), are obtained
with linear classifiers (no hidden layer).

In case of databaseD, the non-preprocessed signals are
better classified than denoised ones, however when the method
was applied toS, we observed that denoised signals show
better performance. This emphasizes the question of how
bump modelling and denoising algorithm may interfere, which
still needs further investigation. ROC curves confirm the
overall superiority of theTheta rangefor such classification
task (see Fig. 3). The six best features for discrimination of
MCI cases from Controls usingD′

1 data set are: inβ1 range,
the number of bumps for signals corresponding to electrode
F3 and the sum of bump amplitudes for signals correspond-
ing to electrodesCZ, F7andF3; and inβ2 range the number
of bumps in electrodesFP2andP4. Consideration of only
these features leads to a validation error of18.3%. The six
best features for discimination of MCI cases from Controls
usingD′

2 data set are: the number of bumps in signals of
electrodesF8, 02, T7, C3, andFPZ and the sum of bump
amplitudes of signals from the electrodeP4. The use of
only these features leads to a validation error of11.7%.

4. DISCUSSION

In the present paper, we reported a novel application of blind
source separation combined with time frequency represen-
tation and sparse bump modeling to the automatic classifica-
tion of EEG data for early detection of Alzheimers disease.
The developed method was applied to EEG recordings that
had been analyzed previously [3] with standard feature ex-
traction and classification methods. Compared to that previ-
ous analysis, some further improvement was achieved, the
overall correct classification rate was raised from80% to
93% (sensitivity86.4% and specificity97.4%).

The task was to discriminate the EEG recordings of nor-
mal individuals from those of patients who developed Alz-
heimers disease in the period about eighteen months later.
Therefore, the present study provides exciting prospects for
early mass detection of the disease. The method is very
cheap as compared to PET, SPECT and fMRI scans, re-
quiring only a21−channel EEG apparatus. Note that short
intervals (20 seconds) of artifact-free recording of sponta-
neous EEG is already sufficient for high accuracy of classi-
fication.

Sparse bump modeling appeared to be a useful tool for
compressing information contained in EEG time-frequency
maps. Amplitude variations and bursts of EEG oscillations
are highly related to the brain state dynamics. Bump mod-
eling can be a good approximation of bursts and sufficiently
well follow important features of amplitude modulation of



Table 1. Number of subjects correctly and incorrectly
classified by neural network models (SEN-sensitivity, SPE-
specificity).

Correctly
Data set Misclassified classified

D1, β-waverange MCI = 8 / 22 SEN = 63.6%
Controls = 5 / 38 SPE = 92.1%

(P = 15%, F = 7) All = 78.3%
D2, Theta range MCI = 5 / 22 SEN = 77.2%

Controls = 5 / 38 SPE = 86.8%
(P = 15%, F = 9) All = 83.3%
D′

1, β waverange MCI = 6 / 22 SEN = 72.7%
without denoising Controls = 3 / 38 SPE = 92.1%
(P = 15%, F = 8) All = 85.0%
D′

2 Theta range MCI = 3 / 22 SEN = 86.4%
without denoising Controls = 1 / 38 SPE = 97.4%
(P = 15%, F = 8) All = 93.3%
MCI Vs Severe AD Severe = 5 / 23 SEN = 78.3%
denoised data MCI = 4 / 22 SPE = 81.8%
(P = 15%, F = 5) All = 80.0%
MCI Vs Severe Severe = 11 / 23 SEN = 52.3%
without denoising MCI = 10 / 38 SPE = 54.5%
(P = 15%, F = 2) All = 53.3%
Previous study [3] MCI = 6 / 22 SEN = 72.7%
(without bumps Controls = 6 / 38 SPE = 84.2%
modeling) All = 80.0%

EEG oscillations, therefore it can become a promising way
of compressing information contained in EEG and be widely
used for its analysis. Although our preliminary results are
quite promising, a full validation of the method requires in-
vestigating more extensive databases. Furthermore, there is
presumably a lot of information present in the recordings
that is not yet exploited, such as the dynamics of the bumps
and the brain functional connectivity. This will be the sub-
ject of our future reports.

5. ACKNOWLEDGMENTS

This work was partially supported byCentre de Microelec-
tronique de Paris-Ile de France. François Vialatte is sup-
ported by aMENESRgrant.

6. REFERENCES

[1] T. Musha, T. Asada, F. Yamashita, T. Kinoshita,
Z. Chen, H. Matsuda, U. Masatake, and W.R. Shankle,
“A new EEG method for estimating cortical neuronal
impairment that is sensitive to early stage alzheimers
disease,” Clinical Neurophysiology, vol. 113, no. 7,
pp. 1052–1058, 2002.

[2] J. Jeong, “EEG dynamics in patients with alzheimers

disease,” Clinical Neurophysiology, vol. 115, pp.
1490–1505, 2004.

[3] A. Cichocki, S.L. Shishkin, T. Muash, Z. Leonowicz,
T. Asada, and T. Kurachi, “EEG filtering based on
blind source separation (BSS) for early detection of
alzheimers disease,”Clinical Neurophysiology, vol.
116, no. 3, pp. 729–737, March 2005.

[4] A. Cichocki, “Blind signal processing methods for
analyzing multichannel brain signals,”International
Journal of Bioelectromagnetism, vol. 6, no. 1, 2004.

[5] A. Cichocki and S. Amari, Adaptative blind signal
and image processing: learning algorithms and appli-
cations, Wiley, New York, NY, 2003.

[6] A. Cichocki, S. Amari, K. Siwek, and T. Tanaka
et al., “ICALAB toolboxes,” available online at
http://www.bsp.brain.riken.jp/ICALAB/.

[7] F. Vialatte, C. Martin, R. Dubois, B. Quenet, R. Ger-
vais, and G. Dreyfus, “A machine learning approach
to the analysis of time-frequency maps, and its appli-
cation to neural dynamics,”Neural Networks, (sub-
mitted).

[8] C. Tallon-Baudry, O. Bertrand, C. Delpuech, and
J. Pernier, “Stimulus specificity of phase-locked and
non-phaselocked 40Hz visual responses in human,”
Journal of Neuroscience, vol. 16, pp. 4240–4249,
1996.

[9] R. Dubois, B. Quenet, Y. Faisandier, and G. Dreyfus,
“Building meaningful representations in knowledge-
driven nonlinear modeling,”Neurocomputing, p. (in
print), 2005.

[10] F. Vialatte, C. Martin, N. Ravel, B. Quenet, G. Drey-
fus, and R. Gervais, “Oscillatory activity, behaviour
and memory, new approaches for lfp signal analysis,”
in Proceedings of 35th Annual General Meeting of the
European Brain and Behaviour Society, Barcelona,
Spain, 17–20 September 2003, vol. 63 ofActa Neu-
robiologiae Experimentalis, supplement.

[11] S. Chen, S.A. Billings, and W. Luo, “Orthogonal least
squares methods and their application to non-linear
system identification,”International Journal of Con-
trol, vol. 50, pp. 1873–1896, 1989.

[12] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar,
“Ranking a random feature for variable and feature se-
lection,” Journal of Machine Learning Research, vol.
3, pp. 1399–1414, 2003.

[13] S. Haykin, Neural Networks a Comprehensive Foun-
dation, Prentice Hall, second edition, 1999.


