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Abstract

Many properties of glasses and glass-forming liquids of oxide mixtures vary in a relatively simple and regular way

with the oxide concentrations. In that respect, the liquidus temperature is an exception, which makes its prediction

difficult: the surface to be estimated is fairly complex, so that usual regression methods involve a large number of

adjustable parameters. Neural networks, viewed as parameterized non-linear regression functions, were proved to be

parsimonious: in order to reach the same prediction accuracy, a neural network requires a smaller number of adjustable

parameters than conventional regression techniques such as polynomial regression. We demonstrate this very valuable

property on some examples of oxide mixtures involving up to five components. In the latter case, we show that neural

networks provide a sizeable improvement over polynomial methods.

� 2002 Elsevier Science B.V. All rights reserved.

PACS: 0260; 6470

1. Introduction

Most industrial glasses are blends of oxides, in
which the total number of different oxides can be

high. The composition of these blends is a key

factor for many physical properties of the glasses;

the prediction of the latter is a problem of indus-

trial importance. Many oxide glass properties vary

smoothly with composition across a wide range of

concentration; therefore, data obtained from a

large amount of experimental work, extending

over years, can be used for inferring many physical

properties of glasses from their compositions [1].
Even simple additive equations are found to be

quite successful for several important properties,

such as thermal expansion, density at room tem-

perature, refractive index [2]. Several approxima-

tion procedures have been proposed for the

viscosity ([3] and references therein). Among the

properties of glasses, the liquidus temperature is

expected to be the most difficult to predict [2]: al-
though the liquidus temperature depends only on

the composition of the blend, liquidus curves exhibit

sharp minima as well as inflexions and maxima

across sections of most systems, so that multiple
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linear regression analysis cannot be expected to be
successful. Yet getting a reliable prediction of the

liquidus temperature would be a worthwhile result:

this temperature is the highest temperature at

which crystals are at equilibrium with the liquid,

and the value of the viscosity at the liquidus tem-

perature is a key factor in the choice of the glass

process to be used. Modeling this industrially im-

portant quantity has been the goal of several in-
vestigations: in a study of liquidus temperature of

several binary glasses [4], thermodynamic model-

ing was found to be quite successful, but another

study concluded that empirical models derived

from series of glasses and statistical analysis still

remain the most useful approach, because ther-

modynamic modeling might require the estima-

tion of thermodynamic parameters that are not
known accurately [5,6]. Yet, as the liquidus tem-

perature exhibits a very strong non-linear behav-

ior, it is difficult to account for it in a large range

of composition, even by high order polynomial

approximations. In order to eliminate the prob-

lems that arise near the boundaries, it was sug-

gested to divide the data into different regions

[7,8]. As long as the composition was kept
within the same primary phase field of the phase

diagram, polynomial relations between the com-

position and the liquidus temperature could be

derived. Multiple polynomial regression can be

found in several papers in order to predict the

liquidus temperature in usual industrial glasses

with up to 10 different oxides [6] and including

some high level waste glasses [9]. The most recently
published approximation [6] includes terms up to

degree four.

In the present paper, we resort to a recently

developed non-linear regression technique, name-

ly, neural networks, in order to model the diagram

of liquidus temperature versus composition, for

blends with up to five components.

Non-linear regression is nowadays an impor-
tant part of the engineer�s toolbox, because of its

numerous applications in data analysis, automatic

classification and discrimination, and process

modeling and control. One of the most recent de-

velopments in the field has been the introduction

of networks of formal or artificial (as opposed to

natural) neurons, also termed neural networks

[10]. A neural network is a non-linear parameter-
ized function, whose parameters (usually called

weights) are estimated from examples in a process

called training. After training, the neural network

is expected to generalize, i.e. to give an appropriate

response to situations that are not present in the

set of examples from which it is trained.

In this paper, we apply neural networks to the

prediction of the liquidus temperature of glass-
forming liquids of oxide blends. In the first section,

we describe the different glass-forming systems

examined in this work. The main definitions and

properties of neural networks are briefly summa-

rized in Section 2. In Section 3, we describe the

results obtained in the prediction of four glass-

forming liquids, two ternary blends, one four-

oxide blend, and one five-oxide blend, and we
consider the problem of the size of the training/test

sets. Finally, we compare polynomial models to

neural models.

2. Databases

Numerous liquidus temperature measurements
have been performed over the years, because of the

importance of this parameter in industrial pro-

cesses. Therefore, useful data are scattered

throughout numerous technical reviews, so that

collecting numerical data is a lengthy, time-

consuming work. In addition, data concerning the

most useful systems are often included into pro-

prietary databases of glass manufacturers, the ac-
cess to which is not granted. Therefore, we resorted

to the SciGlass database, available commercially

from SciVision Inc. [11], in which a large amount of

experimental data points on glassy systems is

gathered.

As an example of the non-regular variation of

the liquidus temperature with the concentration of

its constituents, the liquidus temperatures versus
the molar concentration in alkali oxide of the bi-

nary blend (Li2O, SiO2) is shown in Fig. 1(a). The

complexity of the variation of the liquidus tem-

perature obviously increases with the number of

constituents, as illustrated in Fig. 1(b). Glass-

forming blends investigated in the present work

feature up to five constituents; constituents and
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composition range are reported in Table 1. Several

glass-forming systems were chosen, the main cri-

terion being the number of data points available.

We restricted our investigation to systems for

which more than 100 data points were available.
Nevertheless, they cover a fairly large range of

concentrations for each species. Only those re-

ported data points for which the constituent con-

centrations summed to a number between 99% and

100% were selected; therefore, some experimental

temperature points are probably affected by the

presence of some minor constituents with un-

known concentration. This was regarded as a

disturbance, expected not to affect grossly the

quality of the prediction. Bibliographical refer-
ences extracted from SciGlass database are given

in Appendix A. In some cases, experimental errors

on the value of the liquidus temperature are re-

ported; they vary between �1 and �5 K, de-

pending of the reference.

Fig. 1. (a) (Li2O, SiO2): variation of the liquidus temperature with the Li2O molar concentration (�) experimental (�) estimated with

a four-neuron network; bars indicate the 95% confidence interval; (b) 3D representation of the liquids temperature versus molar

concentrations in (K2O, Al2O3, SiO2) blend.
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3. Neural networks

This section is intended to provide the necessary

background on neural networks in the context of

the present investigation.

3.1. Definitions

3.1.1. Formal neurons

A formal neuron is a function y whose value

depends on parameters (or weights). The variables

fxn; n ¼ 1 to Ng of the function are the inputs of

the neuron, and the value of the function is called

the output of the neuron. Most frequently, the

non-linear function of a neuron can be split into

two parts:

(i) a weighted sum v of the inputs:

v ¼
XN
n¼1

wnxn þ w0; ð1Þ

where xn is the nth input of the neuron; wn, the

weight (or parameter) related to the nth input

of the neuron; and w0, an additional parameter
which can be viewed as the weight related to

an additional input variable equal to 1 (this

input is called the bias of the neuron).

(ii) a non-linear function (termed activation func-

tion) of this sum.

Any bounded, differentiable function can be
used, but, for reasons that will be developed be-

low, the most frequent activation function is a

sigmoid function such as

y ¼ tanhðvÞ; ð2Þ
where y is the output of the neuron.

It is useful to note that the output of the neuron
is non-linear with respect to the variables xn and to

the parameters wn. The latter property is of im-

portance, as shown below.

3.1.2. Neural networks

A neural network performs a non-linear func-

tion of its inputs, which is a combination of the

functions of its neurons. For reasons that are ex-
plained below, the general form of a neural net-

work intended to perform non-linear regression is

the following: the output of the network is a linear

combination of the non-linear functions per-

formed by �hidden� neurons, i.e. neurons whose

inputs are the inputs of the network. The output g
of the network is given by

g ¼ p0 þ
XM
m¼1

pmym

¼ p0 þ
XM
m¼1

pm tanh
XN
n¼1

wmnxn

 
þ w0

!
; ð3Þ

Table 1

Oxide blends, number of data points, composition range and sum of all constituents

Number of data points Molar percentage range Sum of all constituents

Al2O3, K2O, SiO2 384 0:6 < nAl2O3 < 31 100

0:65 < nK2O < 32

46 < nSiO2 < 96

CaO, K2O, SiO2 155 0:75 < nCaO < 45 99.99–100

2:4 < nK2O < 46

33 < nSiO2 < 86

Na2O, CaO, Al2O3, SiO2 893 0 < nNa2O < 52:7 99.15–100.1

0 < nCaO < 79:5

40 < nAl2O3 < 45:4

5:6 < nSiO2 < 95:74

Na2O, CaO, Al2O3, MgO, SiO2 309 0:14 < nMgO < 18:1 99.07–100.00001

2:28 < nNa2O < 18:97

0:3 < nCaO < 33

0:06 < nAl2O3 < 11:47

46:12 < nSiO2 < 79:94
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where M is the number of hidden neurons; pm, the
weight of the �connection� between hidden neuron

m and the output; p0, the weight of the connection

between the bias (network input equal to 1) and

the output neuron; and wmn, the weight of the

connection between input n and neuron m. A

graphical representation of the network is shown

in Fig. 2. Note that the output neuron is a �linear
neuron�, whose output is simply a weighted sum of
its inputs, i.e. of the outputs of the hidden neurons;

no non-linearity is involved in this neuron.

Therefore, a neural network without hidden neu-

rons is simply an affine function of the variables.

Such networks are termed feedforward net-

works, or multilayer perceptrons.

3.2. Neural networks are parsimonious universal

approximators

The universal approximation property can be

stated as follows: any sufficiently regular, bounded

function can be uniformly approximated, to an

arbitrary accuracy, in a given volume of input

space, by a neural network of the type shown in

Fig. 2, or described by relation (3), having a finite
number of hidden neurons.

Other families of functions can also perform

uniform approximation: polynomials, Fourier se-

ries, spline functions, etc. The specific property of

families of approximators that are non-linear with

respect to their parameters (such as neural net-
works, as mentioned in Section 3.1.1) is their par-

simony: the number of parameters that are

required to obtain a given level of accuracy is linear

with respect to the number of inputs of a neural

network, whereas it varies exponentially with the

number of inputs in the case of approximators that

are linear with respect to their parameters, such as

polynomials [12]. Therefore, the parsimony of
neural networks can essentially be taken advantage

of for models that have more than two inputs; the

larger the number of inputs, the more valuable this

property. Fig. 3 compares the variation of the

number of parameters when the number of hidden

neurons increases, for a given number of variables,

to the variation of the number of parameters in-

volved in a polynomial regression when the degree
of the polynomial increases.

The origin of parsimony can be understood as

follows: consider an approximator that is linear

with respect to its parameters, such as a polyno-

mial. For simplicity, let us consider a third-degree

polynomial with a single variable x : gðxÞ ¼ w0 þ
w1xþ w2x2 þ w3x3 	 gðxÞ is a linear combination of

four functions (1, x, x2; x3) which are determined
once and for all; by contrast, the output g of a

neural network, as described by relation (3), is a

linear combination of the outputs of the hidden

Fig. 2. Schematic representation of a feedforward neural net-

work, or multilayer perceptron, as used in the present paper.

Fig. 3. Comparison of the number of parameters versus the

number of inputs for neural and polynomial regression. Hidden

neurons in the neural net: 2 (j), 3 (�), 4 (N), 6 (.), 8 (r).

Degree of the polynomial regression: 1 (�), 2 (
), 3 (M), 4 (r).
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neurons (the tanh functions), which depend on the
weights of the first layer. Thus, instead of com-

bining functions of fixed shapes, one combines

functions whose shapes are adjustable. This pro-

vides additional degrees of freedom, which, un-

derstandably, allow one to build more complex

functions with the same number of parameters, or

to build functions of comparable complexity with

a smaller number of parameters.
Capitalizing on this property, neural networks

have been extensively applied as non-linear re-

gression tools in a wide variety of areas of engi-

neering: static modeling [13], dynamic modeling

(using recurrent neural networks) [13], automatic

discrimination (e.g. for pattern recognition) [10],

process control [14], etc. To the best of our

knowledge, neural network predictions of liquidus
temperatures of oxide mixtures have not been re-

ported in the literature. Investigations of binary

and ternary molten salts blends [15] and blends of

alkali metal/alkali halide [16] have been published.

3.3. From function approximation to non-linear

regression

Actually, neural networks are essentially never

used for computing a uniform approximation of a

known function. Instead, a finite set (called the

training set) of NL measurements ykp (k ¼ 1 to NL)

of the quantity of interest yp, and of the corre-

sponding vector of inputs xk, is available. The

measured output is assumed to be the sum of an

unknown function rðxÞ (called the regression
function of the quantity of interest) and of a zero-

mean noise. If rðxÞ is a non-linear function, neural

networks are excellent candidates for approxi-

mating the unknown function rðxÞ, given the

available data. To this end, the parameters of

the network are adjusted through training from

the available examples.

3.4. Neural network training

Training is the procedure whereby the param-

eters of the network are computed so as to mini-

mize a cost function that takes into account the

modeling errors of the network. Most frequently,

the least squares cost function is used:

JðwÞ ¼
XNL

k¼1

ykp
�

� gkðwÞ
�2

; ð4Þ

where w is the vector of the weights of the net-

work; ykp , the measured value of the quantity of

interest for example k; and gkðwÞ, the output of the

model, with weight vector w, for example k. If

perfect modeling is achieved, all the terms of the

sum are equal to zero, so that the cost function

JðwÞ is equal to zero, which is the minimum value
of the function. Since the measurements are noisy,

perfect modeling is definitely not desirable, but still

a (non-zero) minimum of the cost function is

sought, such that the mean square error JðwÞ=NL is

of the order of the variance of the noise.

Since this cost function is not linear with respect

to the weights, the standard least-squares proce-

dure cannot be used for obtaining the optimal
weight vector. Instead, minimization of the cost

function with respect to the weights must be per-

formed through iterative updating of the weights,

according to one of several algorithms that make

use of the gradient of the cost function. An in-

creased complexity of parameter estimation is the

price that one has to pay for taking advantage of

parsimony.
Therefore, each iteration of the minimization

procedure is performed in two steps:

(i) computation of the gradient of the cost func-

tion with respect to the weights; this is per-

formed by a computationally economical

algorithm called �backpropagation� [10];
(ii) weight updating by a minimization algorithm

such as the Broyden–Fletcher–Goldfarb–

Shanno algorithm or the Levenberg–Mar-

quardt algorithm [17].

Training is terminated when the cost function

no longer decreases significantly, indicating that a

minimum of the cost function JðwLSÞ, corre-

sponding to a weight vector wLS, has been found.

3.5. Performance evaluation and model selection

Performance evaluation is a crucial step in the

design of neural models, for two reasons:
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• the model designer must find a tradeoff between

flexibility and generalization ability: if the num-

ber of parameters (or, equivalently, of hidden

neurons) is too small, the model is not flexible

enough to learn the data; conversely, if the

number of parameters is too large, the model

fits the noise present in the data, hence gives

poor predictions on data that is not present in
the training set; this phenomenon is known as

overfitting;

• since the output of the model is non-linear with

respect to the weights, the cost function is not

quadratic with respect to the weights, hence

does not have a unique minimum; therefore,

the iterative minimization procedure leads to

different minima, hence produces different mod-
els, for different initializations of the parame-

ters; therefore, for a given number of hidden

units, a choice must be performed between the

models obtained after minimization.

In the present work, a recently developed model

selection technique, termed local overfitting con-

trol via leverages was used [18]. It is based on the
computation of the leverage hkk of each example k.
The leverage of an observation is the proportion of

the adjustable parameters of the model that is used

to fit that observation, if the latter belongs to the

training set. The sum of the leverages of the ob-

servations is equal to the number of parameters:

the higher the leverage of a given example, the

higher the influence of that example on the pa-
rameters of the model. As a consequence, if an

example that has a large influence on the param-

eters of the model is withdrawn from the training

set, and if a new model is trained with the re-

maining examples, the resulting model will be

substantially different from the previous one, and

the prediction error on the example that has been

left out will be large. A good approximation of the
prediction error on example k when it is left out of

the training set is given by

Rð�kÞ
k ¼ Rk

1� hkk
; ð5Þ

where Rk is the modeling error on example k when

the latter belongs to the training set; hkk, the le-

verage of example k; and Rð�kÞ
k , the prediction error

on the example k had the latter been withdrawn

from the training set, and the model been trained

with all other examples. A proof of relation (5),

and details of the computation of the leverages,

can be found in [18] and references therein.

The quantity

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

Rð�kÞ
k

h i2vuut ; ð6Þ

called the leave-one-out score, is known to be an

unbiased estimate of the generalization error of the

model. Hence, Ep is a natural criterion for model

selection: the smaller Ep, the better the general-
ization ability of the model. Furthermore, confi-

dence intervals on the prediction of the model can

be computed from the leverages.

In addition, a test set, made of examples that

were not used for training, nor for model selection,

was used for estimating the performance of the

model selected by the procedure described above.

The performance was estimated through the
standard prediction error on the test set:

ET ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XNT

k¼1

ykp � gkðwLSÞ
h i2vuut ;

where NT is the number of elements in the training
set.

It will be demonstrated in Section 4 that, as

expected, the standard prediction error on the test

set first decreases as the number of neurons in-

creases, and starts increasing when the number of

parameters is large enough for overfitting to occur.

This is in contrast to the behavior of the standard

prediction error on the training set, defined as
Etr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J wLSð Þ=NL

p
, which decreases as the number

of hidden neurons increases.

3.6. Numerical procedure

All numerical experiments reported below were

performed with the commercial software package

NeuroOne [19]. For each experiment, the set of
available measurements was divided into two sets,

the elements of which were chosen randomly; 80%

of the available data were used as the training set,

whereas the rest of the data was the test set.
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Weights were initialized randomly, with small en-
ough values so that all sigmoids were in their linear

region. For a given dataset and a given number of

hidden neurons, 100 trainings were performed

with different weight initializations. The gradient

of the cost function was computed by backprop-

agation, and the weight updates were performed

with the Levenberg–Marquardt algorithm. The

model having the smallest leave-one-out score (6)
was selected.

4. Results

Neural network regression was performed on

two ternary databases: (Al2O3, K2O, SiO2), (CaO,

K2O, SiO2), and on the multiple databases (CaO,
Na2O, Al2O3, SiO2) and (Al2O3, CaO, Na2O,

MgO, SiO2). The number of data points chosen

respectively for the training set and for the test set

is reported in Table 1. The number of hidden

neurons was varied between 0 and 8, 0 corre-

sponding to a multilinear regression. Inputs were

the molar fractions of each component, except

SiO2: since the molar fractions sum to 1, there is no
point in taking all of them into account. Thus, the

number of inputs is 2 for ternary blends, and 3 and

4 for the others respectively. The output is the

liquidus temperature. We first consider the gener-

alization ability of the neural models thus obtained;

the influence of the size of the training set on the

accuracy of the regression is subsequently investi-

gated. The last section is devoted to a comparison
between the performances of neural and polyno-

mial regressions.

4.1. Generalization ability of the neural models

Fig. 1(a) shows, as an example, the liquidus

temperature versus concentration obtained with a

model having four hidden neurons in the simple
case of a binary mixture, together with the 95%

confidence intervals, computed as described in

[18]. As expected, the confidence interval increases

in the regions of input space where training data is

scarce.

For more complex mixtures, other representa-

tions must be used: Figs. 4–6 are scatter plots that

display the liquidus temperature estimated by the
network, together with the confidence intervals on

the estimation, versus the measured liquidus tem-

perature for one of the ternary, the four-oxide and

the five-oxide glasses. In all cases, the results, both

on the training set and on the test set, are less and

less scattered as the number of hidden neurons is

increased. Figs. 7–10 show the standard prediction

error on the test set, and the standard prediction
error on the training set, as a function of the

number of parameters, for the four-oxide mixtures

under investigation. As expected, the prediction

error on the training set decreases as the number of

neurons increases, whereas the prediction error on

the test set starts increasing when the number of

parameters becomes too large, indicating the onset

of overfitting.

4.2. Size of the training set and generalization

ability

One of the difficulties in the liquidus tempera-

ture approximation is the number of data points

required to obtain a meaningful regression. In

order to try to assess the required size of the
training dataset in a systematic way, we used the

following procedure: selecting the blend (Al2O3,

K2O, SiO2), whose dataset contains 384 data

points, Fig. 8 shows that the standard prediction

errors on the training set and on the test sets are

similar up to 35 parameters. Let us now divide the

dataset into three parts: removing the data points

belonging to the former test set, the K remaining
points are split into a new training set with 0.8 K
elements and a new test set with 0.2 K elements, so

that one can perform the training process again on

the reduced database. The total test set includes

both the former test set and the new test set. One

can thus compute the standard prediction error of

the training set, the same quantity of the total test

set, and the leave-one-out score. Iterating the
procedure, the (trainingþ test) set is further

reduced. Fig. 11 shows the standard prediction

errors on the training sets, on the test sets and

the leave-one-out scores. The standard prediction

errors on the training sets are almost constant,

whereas the standard prediction error on the test

set and the leave-one-out score increase regularly
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Fig. 4. Estimated versus measured liquidus temperatures (K2O, Al2O3, SiO2) oxide blend: (�) training set, (j) test set. (a) 0 neuron;

(b) 2 neurons; (c) 4 neurons; (d) 6 neurons; (e) 8 neurons; (f) fourth order polynomial regression.
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Fig. 5. Computed versus measured liquidus temperatures in (Na2O, CaO, Al2O3, SiO2) oxide blend: (�) training set, (j) test set. (a) 0

neuron; (b) 2 neurons; (c) 4 neurons; (d) 6 neurons; (e) 8 neurons; (f) fourth order polynomial regression.
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Fig. 6. Computed versus measured liquidus temperatures in (Al2O3, Na2O, CaO, MgO, SiO2) oxide blend: (�) training set, (j) test set.

(a) 0 neuron; (b) 2 neurons; (c) 4 neurons; (d) 6 neurons; (e) 8 neurons; (f) fourth order polynomial regression.
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in a similar way and become substantially larger
than the standard prediction error on the training

sets when the number of training points decreases.

Reducing the number of training points, the excess

in standard prediction error of the test set spreads

out over the whole temperature range, showing

that the training set is becoming too small to allow

a reasonable prediction to be performed.

4.3. Polynomial regression versus neural regression

As summarized in the introduction, several

polynomial regression models have been proposed

to approximate the liquidus temperature. The

simplest is a linear approximation scheme, but it

became soon apparent that this approximation

failed because higher order terms had to be in-
volved. The highest order polynomial to be found

in the literature involves expansion of the tem-

perature with respect to the concentrations up to

order four. In such a scheme, and if all the terms of

the polynomial expansion are kept, the number of

parameters increases exponentially with the num-

ber of inputs. Thus the number of monomials re-

tained in the model is usually limited, based on
�educated guesses� about monomial relevance. 1

We consider here only the general case: we esti-

mate the prediction accuracy of polynomial re-

gression up to order four when all terms are kept

and we compare it to the performance of a neural

network involving the same number of parame-

ters. The scatter plots for polynomial regression

are shown for three-, four- and five-oxide blends in

Fig. 7. (K2O, CaO, SiO2) blend: standard prediction error

versus number of parameters for the two regression methods.

Neural regression: (�) training set, (j) test set. Polynomial

regression: (M) training set, (N) test set.

Fig. 8. (K2O, Al2O3, SiO2) blend: standard prediction error

versus number of parameters for the two regression methods.

Neural regression: (�) training set, (j) test set. Polynomial

regression: (M) training set, (N) test set.

Fig. 9. (Na2O, CaO, Al2O3, SiO2) blend: standard prediction

error versus number of parameters for the two regression

methods. Neural regression: (�) training set, (j) test set.

Polynomial regression: (M) training set, (N) test set.

1 A statistical test (Fisher�s test) is available for monomial

selection; to the best of our knowledge, they have never been

used for liquidus temperature prediction.
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Figs. 4(f), 5(f) and 6(f), respectively. Because the

number of parameters strongly depends on the

number of inputs, the efficiencies of the regressions

shown in Fig. 4(f), 5(f) and 6(f) must be compared

respectively to Figs. 4(c), 5(d) and 6(e). In the first
case (ternary mixture), the results are essentially

similar (fourth-degree polynomial regression: 15

parameters: Etr ¼ 65, ET ¼ 65; neural regression,

four hidden neurons, 17 parameters: Etr ¼ 50,

ET ¼ 55). Figs. 7 and 8 also report results of

polynomial regression on ternary mixtures: the

performances of polynomial regression are similar

to those of neural regression for both ternary
mixtures. More complex mixtures are shown in

Figs. 9 and 10. Comparing the fourth-degree

polynomial with the seven-neuron model (36 pa-

rameters) for the four-oxide blend, one observes

that the Etr and the ET are still very similar, the

neural regression results being only marginally

better. Fig. 10 shows the results for a five-oxide

blend. For six hidden neurons (32 parameters) and
third order polynomial, one observes that the

neural regression result for Etr is better than the

polynomial regression value. The main difference

appears in the Eval, which is much higher in the

polynomial regression. It can be seen in the inset of

Fig. 10 that the variance of the performance for

higher order polynomials is even larger.

Fig. 11. (K2O, Al2O3, SiO2) blend: seven neurons regression for

a variable size of the training set. Standard prediction error

versus the size of the training set : (�) training set, (�) total test
set, (þ) leave-one-out score.

Fig. 10. (Na2O, CaO, Al2O3, MgO, SiO2) blend: standard prediction error versus number of parameters for the two regression

methods. (a) Neural regression: (�) training set, (j) test set. Polynomial regression: (M) training set, (N) test set. Inset: (b) polynomial

regression.
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5. Conclusion

We have demonstrated the applicability of

neural networks to the prediction of the liquidus

temperature of glass-forming oxide blends, due to

the ability of neural networks to approximate any

non-linear function in a parsimonious fashion.

Ternary, 4-oxide and 5-oxide glass databases were
used. Neural regression efficiency is expected to

increase as compared to other methods when the

number of inputs (i.e. the number of components)

increases. Since industrial glasses include usually

much more than three components, we expect

that this application of neural regression meth-

ods could be of interest for glass processing

problems.
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