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A new learning mechanism is proposed for networks of formal neurons 
analogous to Ising spin systems; it brings such models substantially closer to 
biological data in three respects: first, the learning procedure is applied initially 
to a network with random connections (which may be similar to a spin-glass 
system), instead of starting from a system void of any knowledge (as in the 
Hopfield model); second, the resultant couplings are not symmetrical; third, 
patterns can be stored without changing the sign of the coupling coefficients. It 
is shown that the storage capacity of such networks is similar to that of the 
Hopfield network, and that it is not significantly affected by the restriction of 
keeping the couplings' signs constant throughout the learning phase. Although 
this approach does not claim to model the central nervous system, it provides 
new insight on a frontier area between statistical physics, artificial intelligence, 
and neurobiology. 

KEY WORDS: Neural networks; associative memory; biological memory; 
learning rules; spin glasses; storage capacity. 

INTRODUCTION 

D u r i n g  the pas t  few years,  a large n u m b e r  of inves t iga t ions  have  

e n d e a v o r e d  to exp la in  the b e h a v i o r  of large co l lec t ions  of n e u r o n s  wi th  the  

tools  of  s ta t is t ical  mechanics .  T h e  mode l s  p r o p o s e d  in i t i a l ly  by  Li t t le  (1) a n d  
by Hopf ie ld  (2) have  been  exp lo red  a n d  their  scope ex tended  b o t h  f rom the  

po in t  of view of the i r  i m p l i c a t i o n s  at  n o n z e r o  t e m p e r a t u r e s  (3'4) a n d  of  the i r  

l ea rn ing  ab i l i ty  at zero t empe ra tu r e .  (5-v) These  i nves t i ga t i ons  have  s h o w n  
tha t  n e t w o r k s  of s imple  fo rma l  n e u r o n s  m i g h t  exhib i t  very in t e re s t ing  
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properties in terms of information processing (storage and retrieval). 
However, from a biological standpoint, the learning rules (derived from 
Hebb's rule) which have been used in all the investigations of neural 
networks inspired by the Hopfield model are questionable in at least three 
respects (8): 

(i) The learning process starts from a zero synaptic matrix, a fact which 
is not substantiated by experimental evidence: the Hopfield model is 
an essentially "instructive" model in which the learning phase 
proceeds from an initial tabula rasa, whereas alternate theories 
advocate a "selectionist" point of view, in which learning starts 
from a network which already contains some "knowledge" 
(prerepresentations).(9'l~ 

(ii) The learning rule leads to a symmetrical synaptic matrix, which is a 
severe restriction and at best an approximation for real neural 
networks. 

(iii) The synaptic changes undergone during the learning phase include 
the possibility of sign reversals for the synaptic strengths, which 
means that an excitatory synapse (with positive synaptic strength) 
might become an inhibitory synapse (with negative synaptic 
strength); such phenomena have not been observed in biological 
systems. 

In the present paper, we show that it is possible to define a new, local, 
selectionist learning rule, which avoids the above-mentioned pitfalls, while 
guaranteeing the perfect memorization and retrieval of orthogonal 
prototype patterns of information (up to a maximal storage capacity). 

Starting from an initial synaptic matrix with random elements (synap- 
tic strengths), which produces a very large number of stable memorized 
states (called prerepresentations), we show that the effect of the learning 
procedure is a sequence of modifications of the initial synaptic matrix, 
which stores the prototype states as fixed points (attractors) of the 
dynamics, and retains those prerepresentations that are uncorrelated to the 
prototype patterns while gradually forgetting the others. We also show 
that, for weakly correlated prototype patterns, the storage capacity of 
networks obtained with this learning rule is similar to the storage capacity 
obtained with Hebb's rule; moreover, preventing sign reversals of the syn- 
aptic strengths does not significantly degrade this capacity. 

Obviously, the present approach is not an attempt at modeling the 
whole complexity of the central nervous systems; it shows that the models 
of learning in networks of formal neurons which have been used in the 
recent past can be brought substantially closer to biological models 
without involving more complicated mathematical formalism. 
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LEARNING F R O M  P R E R E P R E S E N T A T I O N S  

1. Presentat ion of  the N e t w o r k  

The networks investigated in the present paper  are identical to those 
studied in a previous paper; (s) we summarize briefly their characteristics 
and the notations used. The state of a neuron i is represented by a variable 
~ri (spin), the numerical value of which can be either 1 if the neuron is 
active or - 1  if the neuron is inactive. We consider a fully connected 
network of n such neurons operating synchronously in parallel with period 
r, without sensory inputs. The strength of the synaptic junction of neuron i 
receiving information from neuron j is represented by a coupling coefficient 
C,j. The state of a neuron i at time t + r  depends on the state of the 
network at time t in the following way: the neuron i computes its mem- 
brane potential 

v,(O = ~ co.~j(t) 
j = l  

then it compares v~(t) to its threshold value 0i and determines its next state 
a~(t + r) according to the following decision rule 

~ri(t + 17) ---- sgnl-v~(t) - 0~] if v~(t) r Oi 
(1) 

ai(t  + ~) = ai( t)  if vi(t) = Oi 

In this paper we take Or = O. The network operates at zero temperature. 

2. A N e w  Opt imal  Learning Rule 

In Ref. 5, the general condition under which a given set of p prototype 
patterns {or k} are stable was established; it was shown that, if the activity 
thresholds are taken equal to zero, the simplest form of this condition can 
be written as 

CL" = Z ~ (2) 

where C is the (n, n) synaptic matrix and S is the (n, p) matrix whose 
columns are the prototype patterns to be memorized 

S =  Ea 1, ~2 ..... ~k,..., ~.] 

Therefore, the computat ion of the synaptic matrix reduces to the com- 
putation of a nontrivial solution of (2). 

This equation always has a solution, the general form of which is 

C = S S '  + B( I - -  S r ' )  (3) 
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where I is the identity matrix, B is an arbitrary (n, n) matrix and S z is the 
Moore-Penrose pseudoinverse (12) of S. Matrix XS z is the orthogonal pro- 
jection matrix into the subspace spanned by the prototype vectors. In 
general, C will not be a sparse matrix, so that the network will be fully con- 
nected. This rule is optimal in that it guarantees the perfect storage and 
retrieval of any given set of prototype patterns. 

As long as the learning phase has not started, one has 

C = B  

In Ref. 5, it had been chosen for simplicity 

B = 0  

which corresponds to the empiricist point of view, in which the learning 
phase starts from a tabula rasa. In contrast to this initial approach, we 
consider, in the present paper, that the network is initially defined by a 
nonzero synaptic matrix B with random element values, which creates a 
rich set of attractors in phase space and determines fixed points and limit 
cycles of the dynamics, which are called prerepresentations. Thus, the learn- 
ing process will consist in altering the preexisting phase space picture in 
order to accomodate the new items of information, instead of creating it 
ab initio. 

If the initial matrix B is taken to be symmetrical, then the resulting 
phase space structure can be viewed as a spin glass energy landscape, and 
the attractors are the bottoms of the valleys (static prerepresentations); for 
reviews see Ref. 11. However, even if matrix B is symmetrical, the synaptic 
matrix C after learning will not, in general, be symmetrical, which is one of 
the conditions for a learning model to be plausible from a biological 
standpoint. 

The scaling of the elements of matrix B with n can be determined by 
the following argument: the initial membrane potential v* of neuron i when 
the network is in a state a is given by 

v* = ~ Biter 
r = l  

This potential, being a physically measurable quantity, should remain finite 
if n becomes very large; therefore, the elements of B should be O(I/x/-s ). 

3. A Local,  Se lec t ion is t  Learning Rule 

In the thermodynamic limit (strictly speaking, if n --* oo and p/n ~ 0), 
if the components of the prototype patterns are taken randomly, the latter 
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are uncorrelated, hence orthogonal. For such patterns, the pseudoinverse 
of matrix 22 reduces to 

221= (l/n) S T 

where Z "r is the transpose of Z. 
Therefore, relation (3) may be rewritten as 

C = B + ( 1 / n ) ( I -  B) S X  T (4) 

It will be shown in the next section that this form of the optimal learning 
rule is local and selectionist in nature. It guarantees the perfect 
memorization and retrieval of orthogonal patterns, but is suboptimal for 
weakly correlated patterns. This rule will be used throughout the present 
paper. 

A N A L Y S I S  OF T H E  N E W  L E A R N I N G  RULE 

1. I t e ra t i ve  Form 

Relation (4) expresses the fact that the synaptic matrix depends both 
on the initial configuration of the synapses (matrix B) and on the 
knowledge that has been acquired during the learning procedure 
(matrix 22). If B is taken equal to zero (tabula rasa), it should be noticed 
that relation (4) reduces to Hebb's rule. 

In general, learning is a sequential process: each time a new pattern is 
learned, the synaptic matrix undergoes a change, so that the initial con- 
figuration of the synapses fades out gradually. Therefore, in order to 
understand the learning process correctly, one has to investigate the 
iterative nature of the learning rule: we show in the following that rule (4) 
can be put in an iterative form which does not involve explicitly the initial 
synaptic matrix B. 

We assume that a set of k -  1 patterns has been learned and that one 
extra pattern r orthogonal to the previous ones, is to be learned; learning 
this extra pattern will result in altering the synaptic matrix C ( k - 1 )  
(corresponding to the network having learned k -  1 patterns) to give a new 
matrix C(k) 

C(k) = C ( k -  1)+ ( 1 / n ) ( I -  B) r (5) 

We show in Annex 1 that 

C(k- 1) ~k= B ~  (6) 
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If the patterns stored previously are orthogonal, one can write the iterative 
form of the learning rule as 

C(k) = C ( k -  1) + ( 1 / n ) [ I -  C(k - 1)] r (7) 

with 

c ( o )  = 8 

These relations show that the learning process superimposes the patterns 
learned sequentially to the initial "knowledge" due to matrix B. 

2. M e m o r y  and S e l e c t i o n  

The initial matrix B does not appear explicitly in relation (7). 
However, the network does keep a "memory" of the initial configuration of 
the synapses, in the following way: i t is  clear from relation (6) that if the 
new item of information ~k was a prerepresentation, it is still memorized 
after learning the k - 1  previous patterns. Thus, we have the following 
result: the learning procedure does not erase any o f  the prerepresentations 
which are uncorrelated to the stored patterns. Moreover, we show in Appen- 
dix 2 that the prerepresentations which are correlated to the learned pat- 
terns are gradually erased. Thus, the learning phase consists in altering the 
initial matrix so as: 

(i) to memorize the prototype patterns 

(ii) to select the prerepresentations uncorrelated to the informations lear- 
ned during the learning phase 

(iii) to erase the prerepresentations correlated to the prototype patterns 

Thus, the new learning rule is in fairly good agreement with the selectionist 
point of view. 

Let us consider the particular case in which the new pattern to be lear- 
ned is a prerepresentation 

B~ k = C(k - 1 ) ~k = D~k 

where D is a positive diagonal matrix 

Dii = ]v*l 

The variation of the synaptic strength can thus be written under the simple, 
Hebb-like form 
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Specifically, if Iv*l= 1 for all i, the synaptic matrix remains unchanged: the 
pattern is learned without any effort. If the initial matrix is of the spin-glass 
type, this case will occur with negligible probability, however. On the 
average, since v* is a random variable with standard deviation 1, the 
expectation value of Iv*[ will be x / ~ 0 . 8 ,  so that the increment of Cij, 
for learning a prerepresentation, will be approximately 0.2In (instead of 1/n 
with Hebb's rule). 

3. In te rp re ta t ion  of the  Terms of the  Learning Rule 

In order to get more insight into the learning process, we now con- 
sider the incremental variation of the coefficient of a given synapse Cij 
when the network attempts to memorize a pattern ~k. Relation (5) leads to 

r = l  

The first term corresponds to the classical Hebb's rule, giving a con- 
tribution of +( l /n) ;  if the initial synaptic matrix B is random with values 
of _+ 1/,,~, the second term is O(1/n). Obviously, this term is not sym- 
metrical with respect to i and j, in general. 

An alternate form of the incremental variation of the synaptic coef- 
ficient C U necessary to learn a new pattern ~ may be derived from relation 
(7) 

/ = 1  

where Ci~(k- i) is the value of the synaptic coefficient Ci~ prior to learning 
the new pattern &. As was mentioned previously, the first term, 
corresponding to the classical Hebb's rule, expresses the local interaction 
between neurons i and j at the level of their connecting synapse: the 
variation of the synaptic strength depends only on the states of the neurons 
connected by that synapse. In the second term, the summation is the mem- 
brane potential v~ of neuron i when the new pattern to be learned, ~ ,  is 
input to the network C(k-  !); therefore, the variation of the synaptic coef- 
ficient depends on the state of the afferent neuron j and on the membrane 
potential of neuron i; it takes into account the influence of the other syn- 
apses afferent to neuron i. It can be noticed that v~, being a graded variable, 
provides a fine tuning of the variations of the synaptic coefficient, whereas 
the classical Hebb's rule allows these coefficients to vary only by steps of 
1/n. Thus, the selectionist learning rule is local; in contrast, if the general 
form (3) is used to compute the variation of a given synaptic coefficient, it 
takes into account all the synaptic coefficients of the network. 
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4. Learning W i t h o u t  Sign Reversal of the 
Synapt ic  Coef f ic ients  

As was mentioned above, an important condition for a model to make 
sense from a biological standpoint is the absence of sign reversal in the syn- 
aptic coefficients during learning. We are now in a position to evaluate the 
number of states that can be stored without sign reversal of the synaptic 
coefficients in the following way: the value of a synaptic coefficient C o after 
learning p patterns is given, after relation (8), by 

P P 

Co.(P)=B,y-(p/n)Bo.+(1/n ) ~ a~a~-(1/n) ~ ~, B a k-k ,r r ~  (9) 
k = l  k ~ l  rg - j  

Assume that the elements of matrix B are equal to _+ 1/x/-n, taken ran- 
domly with probability �89 and that the patterns are chosen randomly. The 
second term arises from the contribution of r = j to the second term of 
relation (8). The third term can be interpreted as the result of a random 
walk of p steps of length l/n; therefore, for sufficiently large p, it is the 
realization of a centered Gaussian random variable of standard deviation 
x/-p/n. Similarly, the fourth term can be interpreted as the result of a 

random walk o f p ( n -  1) steps of length 1/n x/-n; therefore, it has a standard 

deviation of x / p ( n - 1 ) / n x ~ x / - p / n .  These random variables being 

independent, their sum { is centered Gaussian with standard deviation 

s g x / ~ / n .  If Bo .=-1 / x~ ,  the probability that the synaptic coefficient 
Co.(p ) undergoes a sign reversal is the probability of having C•(p) > 0 

fs +~176 
Prob [~ > so] = 1/(s ~ )  exp( - t2/2s 2) dt 

0 

where So = (n - p)/n x/-s 
As usual, this probability can be expressed in terms of normalized 

quantities ~/s and S = So/S 

Prob(~ > So) = Prob(~/s > S) 

Therefore, the probability of sign reversal is governed by the normalized 
variable 

s l  - = ( 1  - 

where e = p/n. 
The same result holds if Bo.= +l /x /n .  Therefore, for a given 

probability of a synapse undergoing a sign reversal, the number of patterns 
which can be stored is O(n). For instance, before reaching 
Prob(sign reversal)= 0.05 one can store p ~ n/7 uncorrelated patterns. 
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COMPARISON WITH TABULA RASA LEARNING RULES 

In the Hopfield (or Little) models, the learning rule used to compute 
the coupling coefficients was the usual Hebb's rule, which is a particular 
case of our learning rule (with B = 0). In the present section, we compare 
these two approaches. 

The new learning rule has one common feature with Hebb's rule: it is 
optimal for storing orthogonal patterns. Therefore, if these rules are used 
with nonorthogonal patterns (such as, for instance, random patterns with a 
finite number of neurons), the stability of the prototype patterns is no 
longer guaranteed; it is well-known that this problem is a strong limitation 
to the storage capacity of Hopfield networks. Similarly, the question which 
arises in our case is: what is the behavior of the new learning rule when one 
attempts to memorize nonorthogonal patterns? Moreover, we have shown 
that, with some restriction on the storage capacity, the new learning rule 
enables the network to store patterns without causing sign changes in the 
synaptic strengths. In this context, two questions arise: first, is this restric- 
tion more or less stringent than the restriction due to the fact that the 
weakly correlated prototype patterns must be stable; second, how does 
our rule compare with the Hopfield model as far as sign changes in the 
coupling coefficients are concerned? 

Thus, a comparison between these rules must consider two problems 
separately: 

(i) the ability of storing random prototype patterns with a finite number 
of neurons 

(ii) the ability of storing such patterns without sign reversal of the syn- 
aptic coefficients 

Let us consider the first problem, without any restriction concerning the 
sign reversals of the synapses; the stability condition of a component a f  of 
a prototype pattern is 

C~j~? > 0 
J 

where C a is given by relation (9). 
Following the lines of derivation of the sign reversal probability for a 

synapse, it can be shown, after some algebra, that the probability for a bit 
of a prototype state to be stable is governed by the dimensionless quantity 
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In the Hopfield model (tabula rasa hypothesis), one has B = 0, so that the 
above stability condition reduces to 

n + p - l + E  ~ a~~ > 0  
j ~ i  k ~ r n  

A similar derivation shows that, in this case, the relevant variable for 
studying the stability is 

Since $2 and $3 have the same order of magnitude, the storage capacity of  
weakly correlated patterns with or without tabula rasa are similar. 

We consider now the problem of the sign reversals of the synaptic 
strengths. Obviously, the tabula rasa learning rule implies very frequent 
sign reversals, since the initial value of the synaptic strengths is zero and 
since the latter are incremented by __ 1/n each time a new vector is learned; 
in sharp contrast, we have shown in a previous section that the probability 
of a change in the sign of a synaptic strength with the new learning rule is 
governed by 

St =- (1 - ~ ) / x / ~  

Since S1 ~ $2, the constraint of  having no sign reversal in the synaptic 
strengths does not impair the storage capacity of  a network without tabula 
rasa, whereas it has a dramatic effect on the storage capacity of  networks 
with tabula rasa. 

A final point should be mentioned: the fact that the storage capacity is 
limited by the nonorthogonality of the prototype patterns is due to our use 
of a particular form of relation (3), in which the pseudoinverse Z x was 
replaced by the simpler form (l/n) Z r. If the general form of relation (3) is 
used, the stability of any set of prototype patterns is guaranteed, and the 
iterative nature of the learning rule is preserved; however, as was 
previously mentioned, the rule is no longer local, which is questionable 
from a biological standpoint. 

C O N C L U S I O N  

Starting from the general stability condition of a pattern in a neural 
network, we have derived a new learning rule, interpreted in terms of local 
interactions, which embodies three features that are essential for a 
biologically realistic model of a neural network. Specifically, we have 
shown that, starting from an arbitrary initial synaptic matrix, it is possible 
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to store and retrieve faithfully uncorrelated patterns of information, and 
that, provided their number is not too large, the synaptic coefficients have 
a low probability of undergoing a sign reversal. It has been further proved 
that, even if the initial synaptic matrix is symmetrical, the synaptic matrix 
after learning is not, in general, symmetrical. It has been established that 
the learning procedure is selective: it does not erase the prerepresentations 
which are not correlated to the knowledge stored during learning, but it 
does forget the prerepresentations which are correlated to the stored infor- 
mation. Finally, the storage capacity due to the new learning rule has been 
shown to be similar to that of t abu la  rasa  learning rules. 

A P P E N D I X  1 

We assume that the network has learned k -  1 patterns of information 
since the beginning of the learning phase, and we denote by C ( k - 1 )  the 
synaptic matrix at this step of the learning phase. 

We define a matrix: 

2(k)  = E,~ 1, ~2,..., ~ , ]  

After relation (4) we can write 

C ( k  - 1 ) ~k = B(5* + ( 1 / n ) ( I -  B )  Z ( k  - 1 ) Z r ( k  - 1 ) (~k 

Since the new item of information is orthogonal to the previous ones, we 
have 

X r ( k  - 1 ) r162 = 0 

Therefore 
C ( k  - 1 ) r  = B ~ k  

which shows that, if Ck was a prerepresentation, it is still memorized after 
k -  1 steps of the learning phase. 

A P P E N D I X  2 

We show that if a vector ~ is a prerepresentation, and if it is correlated 
to patterns stored during the learning phase, it is no longer a stable state 
with the new synaptic matrix. 

Since ~ is a prerepresentation, one has 

B~ = D~ 

where D is a positive diagonal matrix. 
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We define a d i agona l  ma t r ix  D '  by 

( 1 / n ) ( I - -  B )  ~ T ~  = D ' ~  

After re la t ion (4), we have 

C~ = (D + D ' ) ~  

Obvious ly ,  there  is no reason why mat r ix  D '  should  be posi t ive d iagonal .  
Since the elements  of D '  and  D have the same order  of magni tude ,  ma t r ix  
D + D '  will not  be, in general ,  a posi t ive  d i agona l  matr ix ,  so tha t  vector  
will no t  be s table after learning k pat terns .  
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