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Abstract
This paper presents recent developments on our “silent speech
interface” which converts tongue and lip motions, captured by
ultrasound and video imaging, into audible speech. We present
here two approaches to model the relationships between the
observed articulatory movements and the resulting speech
sound, which are based on the joint modeling of visual and
spectral features using respectively Gaussian Mixture Models
(GMM) and Hidden Markov Models (HMM). The prediction
of the voiced/unvoiced parameter from visual articulatory data
only is also investigated using an artificial neural network
(ANN). The proposed mapping techniques are evaluated on a
continuous speech database containing one-hour of high-speed
ultrasound and video sequences.
Index Terms: silent speech interface, GMM, HMM,
ultrasound, video, multimodal, statistical mapping

1. Introduction
A “silent speech interface” (SSI) is a device that allows speech
communication without the necessity of vocalizing. SSI could
be used in situations where silence is required (as a silent cell
phone), or for communication in very noisy environments.
Further applications are possible in the medical field. For
example, SSI could be used by laryngectomized patients as an
alternative to electrolarynx which provides a very robotic
voice; to oesophageal speech, which is difficult to master; or
to tracheo-oesoephageal speech, which requires additional
surgery. The design of SSIs has recently received considerable
attention from the speech research community [1]. Different
approaches have been proposed in the literature. A speaker
may for example produce small airflow in his vocal tract and
capture the resulting “murmur” with a stethoscopic (or NAM)
microphone as in [2] and [3]. Other approaches, based on
completely non-acoustic features have also been proposed, as
for example in [4] where electromyographic electrodes placed
on the speaker’s face (or on his neck in [5]) record muscular
activity. In our approach, articulatory movements are captured
by a non-invasive multimodal imaging system composed of an
ultrasound transducer placed beneath the chin and a video
camera in front of the lips.

In our previous work ([6] [7]), the “visuo-acoustic”
mapping problem, i.e the synthesis of an audible speech signal
from visual articulatory data only, has been addressed using a
concatenative synthesis approach. The system was composed
of two distinct modules: a HMM-based “visual” phonetic
decoder and a segmental vocoder exploiting an audiovisual
unit dictionary in which each visual unit has an equivalent in
the acoustic domain. Given a test sequence of visual features,
a phonetic target sequence was first predicted. Then, a unit

selection algorithm found in the dictionary the optimal
sequence of units that best matched the input test data. Finally,
the speech waveform was generated by concatenating the
acoustic segments for all selected units. This approach gives
encouraging results but presents some drawbacks. First, the
quality of the synthesis depends strongly on the performance
of the phonetic decoding and an error during the recognition
stage corrupts necessarily the synthesis. Second, since the
visual and the audio modality are treated separately, this
approach does not model explicitly the dependency between
the articulatory and the acoustic variables. In this paper, we
investigate the use of statistical mapping techniques to address
the visuo-acoustic conversion. We describe two techniques
based on the joint modeling of articulatory and acoustic data
using respectively Gaussian Mixture Models (GMM) and
Hidden Markov Models (HMM). We also address the problem
of the prediction of the voiced/unvoiced parameter using an
artificial neural network (ANN).

This article is organized as follows. The data acquisition
and the feature extraction are described respectively in Section
2 and 3. Theoretical and practical aspects of the proposed
GMM, HMM and ANN-based mapping techniques are
detailed in Section 4. Experimental results are presented in
section 5. Conclusions and perspectives are presented in the
last section.

2. Data acquisition
The experimental setup used for data acquisition is presented
in figure 1. The hardware component of the system is based on
the portable Terason T3000 ultrasound system, a 140°
microconvex transducer, an industrial USB Bayer color
camera and a standard sound system. In order to automate the
two imaging devices (the ultrasound system and the video
camera), we developed a dedicated software, named
Ultraspeech1. Ultraspeech processes the ultrasound, video and
audio streams in parallel using multithreading programming
techniques and prevents data loss using a FIFO-based buffer
management approach. This software was used to record
simultaneously, and synchronously: the acoustic signal (16
bits, 16 kHz); the ultrasound stream (320x240 pixels) and the
video stream (640x480 pixels). The ultrasound and video
stream were both recorded at a frame rate of 60 fps (frames
per second), which was 2 times higher than in our previous
studies [6] [7] (for which a different acquisition setup were
used).

The recorded dataset used in this work consists of the 1132
sentences of CMU ARCTIC corpus [8], uttered by a female

1 http://www.ultraspeech.com
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native English speaker. To prevent speaker fatigue, the
acquisition was split into 10 sessions, spaced in time. An inter-
session re-calibration mechanism (detailed in [9]), was used to
maintain the positioning accuracy of the sensors across all
sessions (and thus the data consistency). A typical pair of
ultrasound and video images is shown in figure 2.

Figure 1: Experimental setup used for
data acquisition.

Figure 2: Example of an ultrasound vocal tract image
(in the midsagittal plane) with lip frontal view.

3. Feature extraction
Regions of interest (ROI) selected in ultrasound and video
images were first resized to 64x64 pixels. The EigenTongues
decomposition technique was used to encode each ultrasound
frame [10]. In this method, the vocal tract configuration is
interpreted as a linear combination of standard configurations,
the EigenTongues, obtained by performing a Principal
Component Analysis (PCA) on a phonetically balanced subset
of frames. A similar technique was used to encode lip images
(EigenLips). The numbers of projections onto the set of
EigenTongues/EigenLips used for coding were determined by
keeping the eigenvectors carrying at least 80% of the variance
of the training set; typical values used on this database were 30
coefficients for each of the two streams. In order to be
compatible with the speech analysis rate, the
EigenTongues/EigenLips coefficient sequences were
oversampled from 60 Hz to 100 Hz. Finally, they were
concatenated with their first and second derivative in one and
same visual feature vector.

The spectral content of the audio speech signal was
parameterized by 25 mel-cepstrum coefficients (Blackman
window, 25 frame length, 10 ms frame shift). The
voiced/unvoiced characteristic and the fundamental frequency
were also extracted. All the audio manipulations were done
using the SPTK tools. Silence frames were removed from the
training set using an automatic (threshold-based) silence
detection method.

4. Visuo-acoustic mapping
4.1. GMM-based mapping
We investigate the use of the GMM mapping framework
originally proposed by Stylianou [11] for voice conversion. In
this study, we used the implementation proposed by Kain [12]
which is based on the modeling of the joint probability density
of source and target vectors p(Z ) = p(X ,Y ) with:

Z = X Y[ ] =
x11 … x1dx
  

xN1  xNdx

y11 … y1d y

  

yN1  yNdy

















(2)

where X and Y are respectively the sequence of N source
and target vectors (dx and dy are respectively the dimensions
of the source and target vectors).

The mapping function that predicts the target vector ŷt
from the given source vector x

t
, observed at time t, is

formulated as a weighted sum of linear models such as:
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with Wm and µm the transformation matrix and bias vector
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and P(c
m
| x

t
) , the probability that the source vector

“belongs” to the mth component, defined as:

P(cm | xt ) =
mN (xt ,µm

X ,m

XX )

 pN (xt ,µ p

X , p

XX )
p=1

M


(5)

where N (., µ, ) is a normal (Gaussian) distribution with
mean µ and covariance matrix  . In our implementation, the
GMM is initialized using the k-means algorithm.

4.2. HMM-based mapping
In the proposed HMM-based mapping approach, the sequence
of target vectors ŷ , predicted from the given sequence of

source vectors x, is defined as ŷ = argmax
y

p(y | x){ } with:

p(y | x) = p(y | q,)  P(q | x,) (6)

where  is the parameters set of the HMM and q the HMM
state sequence. As shown in Equation 7, the HMM-based
mapping can be achieved with a recognition followed by
synthesis approach which means: 1) finding the optimal state
sequence for a given source vector, and 2) inferring the target
vector from the decoded state sequence. The HMM can be
defined and trained in different ways. In this paper, we
describe a method based on the use of phonetic information.

In the training stage, a multistream HMM (MSHMM) is
trained on articulatory-acoustic data for each of the 40
phonetic classes. Two streams are dedicated to the modeling
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of the visual features (ultrasound/video), one stream is used to
model the spectral features (mel-cepstrum coefficients). For
each stream, the emission probability density of each state is
modeled by a GMM with diagonal covariance matrix. The
initialization of the HMMs requires temporal segmentation of
the training data at phonetic level. As articulatory and acoustic
data were recorded synchronously, this segmentation was
obtained by annotating the acoustic data. This was done
automatically using a forced-alignment procedure and an
initial set of acoustic HMMs trained on the multi-speaker
TIMIT database. After initialization, HMM parameters were
estimated using a standard procedure (similar to that described
in [13]): models are trained first separately, using the standard
Baum-Welch re-estimation algorithm and then processed
simultaneously, using an embedded training strategy. Since
articulatory and acoustic features are naturally sensitive to
context effects such as co-articulation and anticipation,
context-dependency was then introduced in the modeling.
Triphone models were created by adding information about
left and right contexts to the phone models. A tree-based state-
tying strategy based on the Minimum Description Length
(MDL) criterion, was adopted to address the problem of data
sparsity (triphones having only a few occurrences in the
training dataset). Each resulting multistream HMM were then
split into two distinct HMMs: a 2-streams “visual HMM” and
a 1-stream “acoustic HMM”. Visual HMMs were finally
refined by increasing incrementally the number of Gaussian
mixture components.

The prediction of the sequence of acoustic feature vector
y, for a given test sequence of visual feature vectors x, was
achieved in two stages. First, phonetic and state decoding was
performed by the visual HMMs, using the Viterbi algorithm.
Second, given the predicted sequence of phones and the
decoded HMM state sequence, target vector sequence was
inferred by the acoustic HMMs, using the speech parameter
generation algorithm proposed by Tokuda for HMM-based
speech synthesis [14]. This algorithm determines the vector
sequence that maximizes the likelihood of the model with
respect to a continuity constraint on the predicted feature
trajectories. In the proposed HMM-based mapping approach,
linguistic constraints can be introduced to help the phonetic
decoding. With that in mind, we implemented two decoding
scenarios. In the first, considered “unconstrained”, the
structure of the decoding network was a simple loop in which
all phones loop back to each other. In the second, or
“constrained” scenario, the phonetic decoder was forced to
recognize words contained in the CMU Arctic sentences. In
that case, the decoding network allows all possible word
combinations which can be built from a 3k word dictionary.
No statistical language model was used in the present study.
All the procedures involving HMM manipulations described in
this paper, are done using the HTK and HTS toolkits.

4.3. Prediction of the voiced/unvoiced parameter

In this study, the synthesis of the audio speech signal is
achieved using a MLSA digital filter derived from the
predicted mel-cepstrum coefficients [15]. The generation of
the excitation signal requires the prediction of the
voiced/unvoiced parameter as well as the pitch for voiced
frames. In this paper, we investigate the prediction of the
voiced/unvoiced parameter from visual articulatory data, using
an artificial neural network (ANN). A feed-forward neural
network was trained using a standard gradient descent
algorithm; the log-sigmoid function was used as the activation
function for the hidden neurons and the output layer, the mean
squared error (MSE) was used as the cost function.

5. Results & Discussion
The partitioning of the 1132 recorded sentences was done as
follow. 82 sentences were used as a validation set for the
determination of the model hyper-parameters which are: (a)
the optimal number of Gaussians for the GMM/HMM models
(which was found to be 32 for the GMM and 4 for the HMM),
(b) the model insertion penalty for the phonetic decoding stage
in the HMM-based mapping experiment (which was found to
be -20 for the unconstrained scenario and -150 for constrained
scenario), (c) the optimal number of hidden neurons for the
prediction of the voiced/unvoiced parameter (which was found
to be 10). 900 sentences where used for training, the remaining
150 sentences composed the test set.

The quality of the mapping between visual and spectral
features was evaluated by calculating the Mel-cepstral
distortion between the target and the predicted mel-cepstrum
coefficients, defined as:

Mel  CD[dB] =
10

ln10
2 (m̂d  md )

2

d = 0

24

 (7)

For the GMM-based mapping experiment, the Mel-cepstral
distortion (with the 95 % confidence interval calculated with a
normal approximation) was found to be 7.6 ± 0.03 dB if the 0th

cepstral dimension, i.e the component known to correspond to
overall signal power, was taken into account, and 6 dB ± 0.02
dB if this term was ignored. As expected, it was difficult to
estimate correctly the speech signal power only from the
corresponding articulatory motions.

For the HMM-based mapping experiment, the
performance of the intermediate phonetic decoding stage was
measured by evaluating the recognition accuracy defined as:

P = 100 
N  D  S  I

N
(8)

where N is the total number of phones in the test set, S the
number of substitution errors, D deletion errors, and I insertion
errors. The recognition accuracy was found to be 62% for the
unconstrained scenario and 70% for the constrained scenario.
Quite naturally, most of the substitution errors were made on
phones with similar tongue and lip movements, such as
{p,b,m}, {t,d,n}, {f,v}, {k,g,}, {,}. However, some of these
mismatches in the phonetic decoding would not necessarily
lead to unintelligible synthesis; context effects could be used
to advantage in a real communicative situation. The mel-
cepstral distortion obtained in the unconstrained and
constrained decoding were respectively 7.2 ± 0.03 dB and 7.1
± 0.03 dB; 5.8 ± 0.02 dB and 5.6 ± 0.02 dB if the 0th cepstral
dimension was ignored. The mel-cepstral distortion obtained
when the phonetic target is given (i.e P = 100%), was found to
be 5.4 ± 0.01 dB and 4.6 ± 0.01 dB when excluding the first
mel-cepstrum coefficient. The HMM-based approach
outperforms the GMM-based approach, even if the decoded
phonetic sequence contains some errors.

The accuracy of the voiced/unvoiced binary classifier
(section 4.3), its sensibility and its specificity were
respectively 0.82, 0.80 and 0.84. This means that about 80% of
the frames were correctly classified. However, this relative
good performance should be interpreted carefully. Since there
is no direct relationship between voicing and articulatory
configuration, the performance may be partially explained by
indirect relationships; for instance, stable vocal tract
configurations are likely to correspond to vowels and thus to
voiced frames; and “corpus-effects”, since the CMU Arctic
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corpus does not contain the same number of examples for each
phonetic class.

A constant pitch was used here for the synthesis of the
audio signal (for the frames predicted as “voiced”). In order to
evaluate the intelligibility of the synthesized speech, 3 native
speakers of American English were asked to transcribe the
synthetic speech signals corresponding to 15 sentences
randomly extracted from the test set. The global quality of the
synthesis was found to be more acceptable with the HMM-
based approach compared to the GMM-based approach.
However, even if some sentences were well transcribed
(especially the short ones and those containing “common
words”), this preliminary subjective evaluation revealed that it
was not possible to synthesize intelligible speech
“consistently”, neither with the GMM-based mapping
approach, nor with the HMM-based approach. For now,
statistical approaches based on the joint modeling of the visual
and acoustic data do not outperform our previous
concatenative approach, in which the two modalities were
modeled separately. To measure the impact of the “joint
modeling” on the phonetic decoding stage (for the HMM-
based mapping approach), we evaluated the performance of a
HMM-based decoder trained only on the two visual modalities
(following the procedure described in section 4.2). The
recognition accuracy was found to be 70.8% for the
unconstrained scenario and 83.3% for the constrained
scenario, i.e approximately 10% higher than the performance
obtained with the joint modeling approach. The use of
alternative strategies to combine the visual and acoustic
modalities at the classifier level is envisioned.

6. Conclusions and Perspectives
The paper presents recent developments on our “silent speech
interface”, driven by ultrasound and video images of the vocal
tract. Two techniques, based respectively on the joint
modeling of articulatory-acoustic data using Gaussian Mixture
Model (GMM) and Hidden Markov Model (HMM) have been
proposed to model the relationships between articulatory
movements and the resulting speech sound. These techniques
have been evaluated on a database containing one-hour of
high-speed ultrasound and video data. The best mapping was
obtained with the HMM-based method in which external
linguistic information (such as phonological or morphological
information) can be introduced to constrain the mapping.

Future work will focus on the improvement of the visuo-
acoustic mapping. We will investigate the adaptation of
different mapping techniques recently described in the
literature, such as the GMM-based approach proposed by Toda
et al. [16] based on the maximum likelihood estimation of the
feature trajectories, and the approach proposed by Zen et al. in
[17], which is based on trajectory HMM.

The specificities of silent articulation will also be studied.
Preliminary tests showed that the performance of statistical
models trained on “vocalized” visual speech decreases when
they are used to decode “silent” visual speech (if no model
adaptation scheme is applied). This may reveal some
differences in terms of articulatory strategies between these
two production modes, which we have started to describe in a
pilot study [18], using electromagnetic articulography (EMA).
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