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Abstract—Support vector machines are widely used for 
classification and regression tasks. They provide reliable 
static models, but their extension to the training of dynamic 
models is still an open problem. In the present paper, we 
describe Regularized Recurrent Support Vector Machines, 
which, in contrast to previous Recurrent Support Vector 
Machine, models, allow the design of dynamical models 
while retaining the built-in regularization mechanism 
present in Support Vector Machines. The principle is 
validated on academic examples; it is shown that the results 
compare favorably to those obtained by unregularized 
Recurrent Support Vector Machines and to regularized, 
partially recurrent Support Vector Machines. 
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I.  INTRODUCTION  
Recurrent least squares support vector machines 

(RLSSVMs) were first described in [1], and were further 
discussed in [2]. As in standard least squares support 
vector machines, the constraints are equality constraints 
(instead of inequalities in standard SVMs), but, in 
addition, the recursion that is necessary to design dynamic 
models is taken into account. However, for simplification 
purposes, the regularization term was neglected altogether, 
thereby losing one of the attractive features of the SVM 
framework. As a result, the authors had to resort to 
conventional regularization tricks such as early stopping. 
In [3-4], different simplifying assumptions were also 
made. 

In the present paper, we show that such simplifications 
are not necessary. We derive the exact equations that 
describe the problem and the constraints, and we show that 
satisfactory performances can be obtained while retaining 
the regularization mechanism of support vector machines. 

This paper is organized as follows: recurrent least 
squares support vector machines are first recalled. The 
simplified versions of RLSSVMs are subsequently 
presented: unregularized recurrent LSSVMs (as derived in 
[1] and [2]) and regularized partially recurrent LSSVMs 
(as described in [3]-[4]). Regularized, fully recurrent 
LSSVMs are derived, and some illustrative examples are 
provided. 

 
 

II. RECURRENT LEAST SQUARES SUPPORT VECTOR 
MACHINES 

The present section reviews the basic concepts of 
recurrent least squares support vector machines 
(RLSSVMs) [1]. 

Given a deterministic nonlinear single-input single-
output dynamical system with measured inputs  

and measured outputs , where k is a positive 
integer, we consider a nonlinear model of the form:  

    (1) 
where is the process output at time k predicted by the 
model, P is the order of the model, and M is a positive 
integer. Therefore, vector zk is of size P + M. Such a 
model is called Nonlinear Auto-Regressive with 
eXogenous inputs (NARX). Since relation (1) is a 
recurrent discrete-time equation, such a model belongs to 
the family of recurrent models. 

In order to design such a model, a function f must be 
postulated. In the present framework, we postulate a 
parameterized function of the form: 

                          (2) 
where w is a vector of parameters, b is a scalar parameter, 
and ϕ(x) is a “feature vector” derived from the primary 
variables x. Relation (1) can be rewritten as: 

                           (3)  
Given a postulated function ϕ , training is intended to 
provide a vector of parameters such that the model predicts 
correctly the data sequences used for training, and, in 
addition, provides satisfactory predictions for other 
sequences drawn from the same probability distributions.  

In the framework of least squares support vector 
machines, training is cast into the form of a constrained 
optimization problem: minimize the cost function 

                (4) 

subject to the constraints 
, k = 1, 2 …N       (5) 

where ek (component k of vector e) is the prediction error 
at time k, and N is the length of the training sequence. γ is 
a positive real constant that is intended to provide an 
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appropriate tradeoff between the regularization term 

 and the accuracy term , thereby providing 

both accurate predictions on the training set and 
satisfactory generalization on test data. Thus, SVM 
training has a built-in regularization mechanism.  

Combining cost function (4) and constraints (5), the 
Lagrange function is derived 

       (6) 

where α  is the vector of Lagrange multipliers, which can 
be either positive or negative. 

Noting that zi can be written as 
, 

the stationarity conditions of the Lagrange function can be 
derived: 

    (7) 

Assuming that there exists a feasible solution 
( ), the model can be written as 

 

where the kernel function K is defined by 
. 

III. SOLVING THE NONLINEAR EQUATIONS 
Clearly, the critical point is the computation of the 

partial derivatives in the third stationarity condition. 
Several approaches to that problem have been described 
in the literature. 

A. Unregularized recurrent LSSVMs 
In [1], the problem is simplified drastically by setting γ 

to infinity. The optimization problem reduces to 
minimizing 

                               (8) 

under the constraints  

                  (9) 

Since the regularization mechanism of SVMs is 
deleted by setting γ to infinity, another regularization 

scheme, such as early stopping, must be implemented in 
order to avoid overfitting 

B. Regularized partially recurrent LSSVMs 
In [3], the recurrence is not taken into account in the 

computation of , i.e. the summation term is ignored. 

Therefore, the nonlinear equations to be solved are: 

      (10) 

C. Regularized recurrent LSSVMs   
In the present section, we relax the assumptions of the 

previous two approaches, and we derive the exact set of 
nonlinear equations that must be solved 

 

(11) 
Different kernel functions lead to different forms for 

relation (11), which, together with the other three 
stationarity conditions in (7), must be solved numerically.  
 
 

IV. NUMERICAL EXPERIMENTS 
 
In this section, we illustrate various aspects of 

regularized recurrent LSSVMs on academic problems. 
Results on real-life problems will be described elsewhere. 
All simulations were implemented in the MATLAB 
environment running on HP Compaq dc7600. The 
nonlinear equations (7) were solved numerically using the 
‘fsolve’ function in the Optimization Toolbox.   

 

A.  Noise-free process 
 
In this section, two simulated processes, linear and 

nonlinear, without noise, are modeled. 
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Experiment 1: We consider a linear single-input-
single-output simulated process. Data sequences are 
generated by 

      (12) 

where u(k) is the exogenous input, y(k) the process output, 
and where y(1) = y(2) = 0. A training sequence of length 
NT and a validation sequence of length NV are generated. 
The input vector zk has three components: 

. 
 

Fig. 1 and Fig. 2 show the responses of the simulated 
process to a pseudo-random input signal. 

  

 
Figure 1.  Training sequence. 

 
Figure 2.  Validation sequence. 

The performance of the model is assessed by the by root-
mean-square-errors on the training sequence (TMSE) and 
on the validation sequence (VMSE), 

    (13) 

Since a linear model is sought, the linear kernel 
function  is used. The value of the 

regularization constant γ is varied from 0.1 (“strong” 
regularization) to 300 (“weak” regularization). The results 
are shown in Table 1. 

TABLE I.  PERFORMANCE OF REGULARIZED RLSSVMS FOR 
DIFFERENT VALUES OF γ 

 γ TMSE VMSE 
0.1 0.0422 0.037 
10 0.0004 0.0004 

300 0 0 
 
As expected, the training error decreases as 

regularization decreases. Similarly, the validation error 
decreases with decreasing regularization: since the 
generating model is linear and the predictive model is also 
linear, no overfitting occurs. For γ = 300, the optimal 
parameters of the model are equal to the parameters of the 
generating process (within roundoff errors). Therefore, the 
regularized recurrent LSSVM provides the best achievable 
result. 

 
Experiment 2: We consider the following nonlinear 

data generating process [5]: 

 (14) 

with a = −0.139, b = 1.2, c = 5.633, d = −0.326, T = 0.1 
sec. As in the previous example, two data sequences are 
generated for training and validation, as shown in Fig. 3 
and Fig. 4.  
 

 
Figure 3.  Training sequence 

In this experiment, the predictive model is sought with 

the polynomial kernel function  
(n=2). In that case, the regression function (a rational 
fraction) does not belong to the family of polynomials. As 
a result, the influence of the regularization parameter γ is 
different from the previous example: as regularization 
decreases, i.e. as the effective complexity of the predictive 
model increases, the model tends to overfit the data, as 
evidenced by the increase of the VMSE (Table II).  
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Figure 4.  Validation sequence  

TABLE II.  PERFORMANCE OF REGULARIZED RLSSVMS FOR 
DIFFERENT VALUES OF γ 

γ TMSE VMSE 
0.001 0.5193 0.3821 
0.01 0.1496 0.2222 
0.1 0.0173 0.0197 
1 0.0132 0.0132 

10 0.0131 0.0143 
100 0.0130 0.0145 

1000 0.0101 0.0154 
Clearly, the presence of the regularization term in 

RLSSVMs provides an important means of controlling the 
effective complexity of the machine learning model.  

 

B. Process with output noise  
 
We consider a nonlinear data generating process whose 

deterministic part is the same as in the previous example, 
but with additive output noise:  

                            (15) 

where w(k) is white noise with standard deviation 0.1. As 
usual (see for instance [6]), the purpose of training is to 
find a model with minimal prediction error, i.e. a model 
whose prediction error is as close as possible to the 
variance of the noise present in the training data. As in the 

previous case, the polynomial kernel , 
with n = 2, is used. Table III shows the results obtained, by 
regularized partially recurrent LSSVMs and regularized 
recurrent LSSVMs. Regularized fully recurrent LSSVMs 
provide a predictive model whose VMSE is closer to the 
standard deviation of the noise than the model obtained by 
partially recurrent LSSVMs, albeit at the expense of a 
longer computation time. 

TABLE III.  COMPARISON OF REGULARIZED FULLY RECURRENT 
LLSSVMS AND REGULARIZED PARTIALLY RECURRENT LSSVMS (γ = 1) 

 TMSE VMSE 

Noise 
0.101 

(standard 
deviation) 

0.103 
(standard 
deviation) 

Regularized fully 
recurrent LSSVM 0.098 0.109 

Regularized partially 
recurrent LSSVM 0.109 0.115 

 

V. CONCLUSIONS 
In the present paper, regularized recurrent LSSVMs 

have been presented, and compared both to unregularized 
recurrent LSSVMs and to regularized partially recurrent 
LSSVMs. We have shown that the computations involved 
in RLSSVMs are tractable analytically without having to 
resort to approximations. As a result, capacity control can 
be more effectively achieved than with previous RLSSVM 
models. 

However, it should be noticed that the uniqueness of 
the solution, which is an attractive feature of support 
vector machines, is lost due to the recurrence that is 
necessary for dynamic modeling. Therefore, several 
parameter initializations are required. In addition, the 
approach requires large computations times that do not 
scale nicely with the length of the training sequence. 
Future work will be directed towards gaining 
computational efficiency without losing the elegance and 
accuracy of the method. 
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