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ABSTRACT

Neural networks are often advertised as being "adaptive”. However, until now, neural networks have been used
mainly in a non-adaptive way: the network is first trained, and subsequently used. This is in contrast with
linear adaptive filters, which undergo continual adaptation; they have been widely used for many years, and
investigated in great depth. It is only recently that neural network training schemes for truly adaptive operation
have been proposed.

The purpose of the paper is to show that there is a wide variety (i) of cost functions, (ii) of techniques for _
estimating their gradient, and (iii) of adaptive algorithms for updating the coefficients of neural networks used
as non-linear adaptive filters. We discuss the choices that have to be made, and we show that the training
algorithms suggested recently for feedback networks are very closely related to (and, in some cases, identical to)
the algorithms used classically for adapting recursive filters.

PRINCIPLES OF ADAPTIVE FILTERING AND MODELLING

A general filter is defined as a system with external time-dependent inputs, outputs, and an input-output,
possibly recursive, relationship. The task that the system is supposed to perform is defined by a set of inputs
and of corresponding desired output values. Generally, the input-output relationship features parameters which
are estimated in order for the system to perform the desired task, i.e. for the actual outputs of the filter to be
“as close as possible” (in a sense which will be defined mathematically later) to the desired outputs.

Two cases of interest arise:

(i) non-adaptive filtering: if the task is satisfactorily defined in advance by a finite set of input/desired output
pairs, the estimation of the parameters can be carried out prior to using the filter (in the terminology of neural
networks, the estimation is called "training");

(ii) adaptive filtering: otherwise, the parameters are estimated permanently while the filter is being used; thus,
"training" never stops. This is a highly desirable feature in many cases; for instance, in a speech predictor, the
parameters of the predictor must adapt to the characteristics of speech, which are known to be non stationary.

In the following, we consider a specific, although very widely used, type of discrete-time filter: we assume that
the M external inputs consist of the values {u(n),u(n-1),....,u(n-M+1)} of a signal u at successive instants of
time; in addition, the filter has a single output y(n). Two kinds of filters are usually considered:

(i) non-recursive (also termed "transversal") filters, whose input-output relation is in the form

y(n) = ®[u(n), u(n-1), ..., u(n-M+D)], (1)

(it) recursive filters, in which the output signal is delayed and fed back to the inputs; in this case, the
input-output relation is in the form

y(n) = ®[u(n), u(n-1), ... , u@-M+1), y(n-1), y(n-2), ..., y(n-N)],  (2)

where N is the order of the filter.

In this paper, we shall study adaptation algorithms for non linear recursive filters; in this context, transversal
filters may be considered as a special kind of recursive filters.



In a more general approach, the inputs {u(n)} and output {y(n)} may be vectors. In addition to having a single
output, the filters considered here have a further specificity: the output is the only variable which is fed back to
the input. The present approach can be generalized to neural networks with arbitrary feedback structure.

4

ZMeN+1 IM4N+2 y@)

----------

0
Fully connected (ﬁ_ﬁ_ J

g g "

V u(n) u{n-M+1)

An architecture of the type shown on Figure 1, featuring M external inputs, N feedback inputs and one output,
can implement a fairly large class of functions @; the non-recursive part of the network (which implements
function @) is a fully-connected feedforward net. This architecture is more general than the standard layered
network; the latter makes sense in pattern recognition tasks (successive layers performing feature extraction and
classification in a hierarchical way), but has no special significance for the filtering of time signals or for the
modelling of physical processes. The basic building block of the filter is a "neuron”, which performs a
weighted sum of its inputs and computes an "activation function" f - usually non linear - of the weighted sum:
z=f{vi] withvi=) Cjx; (3
ek

where z; denotes the output of neuron i, x; denotes the j-th input of neuron i, and P; is the set of indices of the
inputs of neuron i. Note that the output néuron has a linear activation function.

As mentioned above, the task to be performed by the filter is defined by a (possibly infinite) set of inputs and
corresponding desired outputs. At each sampling time n, an error e(n) is defined as the difference between the
desired output d(n) and the actual output of the filter y(n): e(n) = d(n) - y(n). In general, d(n) is not known in
advance: in a modelling process, the desired output of the network d(n) is the output of the process to be
modelled at the same time n; in a predictor, it is desired that the output of the filter at time n be equal to the
input signal at time n+1. The filter adaptation algorithms aim at finding the filter coefficients which minimize
a given satisfaction criterion involving, usually, the squared error e(n)“.

Thus, it is clear that adaptive filters and neural networks are formally equivalent, and that neural networks,
which are potentially capable of realizing non-linear input-output relations, are simple generalizations of linear
filters. In the next sections, we put into perspective the training algorithms developed for discrete-time
recurrent neural networks and the algorithms used classically in adaptive filtering.

ADAPTATION CRITERION AND GRADIENT ESTIMATION TECHNIQUES
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At time n, the most natural satisfaction criterion is:  J(n) = Ll z w(m) e(m)2
n+1 m=0
In the stationary case, all weights w(m) can be taken equal to 1: J(n) is the best estimator of the expectation

value of e(m)“ (Mean Square Error criterion) [1, 2]. However, the amount of computation involved in this
estimation grows unbounded. In addition, in many cases of practical interest, the system is not stationary, so
that taking into account all the errors since the beginning of the optimization does not make sense; thus, one
must weight the errors in order to implement a forgetting mechanism. In the present paper, we make all
weights equal to 1 within a "sliding window" of length N ; hence the following quantity:

n

rm=L ¥ em)’.

m=n-Nc+1

The choice of the length N, of the window will be discussed below.



The present paper focusses on gradient estimation methods, whereby the updating of coefficients is given, at
iteration k of the process, by

AGij(k) =-u [—BL (4) where i is the gradient step.

9Gij jca-1)
In the following, we give a presentation of the two techniques that can be used for gradient estimation.
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As mentioned above, we have to compute, at time n, the gradient estimate

armq =[_a_ (L ; z)} 5 .
[acij cx-1) L0Cyj 2m=nz-1:~:c+1 ) C(k-1) ®

As a preliminary remark, one must notice that no assumption has been made as to the relationship between the
iteration index k and time n. Several possibilities arise:

- one can use a purely recursive algorithm, whereby one iteration of the gradient (i.e. one modification of the
coefficients) is performed per sampling interval n; in other words, k=n; this is the usual technique for the
recursive adaptation of filters;

- one can perform several modifications of C per sampling interval; this may improve the tracking
capabilities of the system in the non-stationary case, or speed up convergence to a minimum in the
stationary case;

- one can modify the coefficients after several sampling periods.

For the gradient estimation to be meaningful, the coefficients C must be considered as being constant on the
window of length N... Thus, the N, errors {e(m)} appearing in relation (5) must be computed from a "training
network”, which is a static network made of N, identical versions (hereinafter termed "copies") of the static .
part of the actual network. In the case of a purely recursive algorithm, the values of the coefficients used at
time n are the coefficients C(n-1) which were computed at time n-1.

We introduce the following notation: all parameters computed from copy m of the training network will be
denoted with superscript m. Hence, in the purely recursive case, the estimation (5) becomes

2. {—1— > [e%)ﬂ with €7(n) = d(m) - y°(8)  (5) .
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n denotes the actual time at which the computation is performed, so that y™(n) is the value of the state of the
output neuron of copy m at time n (see figure 2, where M=2; N=3; v=3; N =5).
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Figure 2.

Two techniques are available: a technique involving the forward computation of the gradient (commonly used
in linear adaptive filtering) and a technique involving backpropagation (commonly used in neural network
training). In both cases, we shall present the computations for the most general unconstrained architecture, in
which the static part of the network is fully connected.



a) Foerward computation of the gradient estimation at time n:
This technique was first suggested for the supervised training of neural networks in [3]; it is based on the
following relation:
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Each term in the sum is related to one copy. Since all computations are performed ar time n, we omit time, in
the above relation as well as in the following ones.

For simplicity, we renumber the external inputs and the neurons of the network as indicated on Figure 1: we
denote by z; to z the external inputs; we denote by z)q, | 10 zyg, N the feedback inputs; we denote by
ZMAN+1 00 ZpfeN+v (where.v is the total number of neurons) the outputs of the neurons, ordered in the
following way: neuron #p receives the outputs of neurons #(q<p) only.

With these notations, the outputs of the neurons of comy m are given by

=f{v?] withvP =Y Cyz" (1),

j€Pp
and the derivative of the output of neuron #p of copy mwith respect to C is given by:
o _ VRl &2 + D, Cph ()  with pe {(M+N+1, . . ., M+N+v} and j<i,
aCu he Pp ij

where f denotes the activation function of neuron #p and 8,; is the Kronecker symbol.

The recursion of relation (8) allows the forward computauon of the derivatives of the outputs y™ of the N
copies, the computations being carried out in the order of the numbering of the neurons, and from copy
n-N_+1 up to copy n, with:

(i)forp=1toM (external inputs):

7 = u(m-p+1) ; =0;
a 1_,

(ii) for p = M+1 to M+N (feedback inputs);

- for the first copy (m=n-N_+1): the values of z ™ and of the partial derivatives must be chosen in order to
initialize the computation; for instance, one can use the desired output values at times n-N, to n-N_-N+1:
2N = d(n-Ne-p+M+1)
but other choices are possible. The values of the derivatives can be taken equal to zero, or alternatively one
can use the values of the derivatives computed by the training network at the previous updating, with the
coefficients C(k-1). We shall see that various choices lead to various algorithms;

- for the other copies (m=n-N +2 to n) one has
for p=M+2 to M+N : 2z =23

for p=M+1:  zB1 = ZBidNey = y™!

Once the N, sets of partial derivatives of the output values y™ are obtained, relations (6) and (4) are used for
computing the modifications of the coefficients.

b) Gradient estimation by backpropagation:

Backpropagation is a computational trick which can be used to obtain the same gradient estimate (5) as above,
at time n [4-7] .

We consider the training network with N, copies; first, { m} and {z_™M) are computed from (7). We denote by
C M the coefficient C in copy m, SO that we can make use of the ?pllowing relation:

for i=M+N+1 to M+N
ol (n) oJ'(n) ovi"(m) _ BJ (m) Z"(n) o;(:r j“; to+M[~?-N+:- 1+V

BC avl acu av‘ and j<i
Actually, the definition of the copies of the training network requires that all C;
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Jm be equal. Thus, one has:



For a given copy m, we define the following set of variables qim:

(1) for i=M+N+v+N-1 down to M+N+v+1:

¢ =0 if m=n;q" = g%+ otherwise;

(ii) for i=M+N+v (output neuron):

¢ = e if m=n; g = e™ + q¥.1 otherwise; (note that ¢ = - 9y,
i

(iii) for 1 = M+N+v—1 down to M+N+1 (hidden neurons):
m aJ where R, is the set of indices of the neurons
= (v QT P=-=); o - s i
@ ( )hg;‘{. Cri ¢ (q v ) to which neuron i transmits its output;

(iv) for i = M+N (last feedback input):
= CGig;

heRy
(v) for i=M+N-1 down to M+1 (other feedback inputs):
q' = Z Cﬁqﬂ’+q¥lmv .

heR

Once the recursion has been carried out, the modifications of the coefficients at time n are computed

n for i=M+N+1 to M+N+v
as: ACj(n)=u Z Gz for j=1 to M+N+v-1
m=n-Ng+1 and j<i

Note that computation by backpropagation implicitly assumes that the derivatives of the feedback inputs of the
first copy with respect to the coefficients are equal to zero; this is in contrast with the forward computation of
the gradient, where these values can be initialized arbitrarily.

¢) Discussion

In the above section, we have shown that the gradient can be estimated either by forward computation or by
backpropagation. In both cases, the total number of coefficients is equal to v[(M+N)+(v-1)/2] if the static part
of the network is fully connected.

For each copy, the forward computation involves v[(v-1)/2+M+N][v(v+1)/2+VvN+2] (i.e. O(v4))
multiplications and the computation by backpropagation involves (3/2)v2+[2M+3N——(1/2)]v+N (ie. O(vz)).
Thus, in general, the computational complexity of backpropagation is much smaller than the complexity of
forward computation [8]. The consequences of this reduced complexity are discussed below.

ALGORITHMS

The present section discusses the various algorithms which result from various choices of criteria and of
gradient estimation techniques. New algorithms are introduced, and the relations between the present work, the
"Real Time Recurrent Learning" algorithm, and the "teacher forcing" technique are discussed.

Whichever gradient estimation technique is used, the following parameters must be chosen: (i) window length
N¢» (ii) initial values z of the N feedback inputs of the first copy (state variable initialisation). In addition, as
mentioned above, the initial values of the derivatives dz/0C for the N feedback inputs of the first copy can be
imposed to zero or non zero values in the case of forward computation, whereas these initial values are
implicitly taken equal to zero if the computation is performed by backpropagation. It must be emphazised that
both methods lead to the same result if the initial values of the derivatives are chosen equal to zero. If such a
choice is not satisfactory, it is possible to take into account the dependency of the feedback inputs of copy
#(n-N_) by using backpropagation with a number N, of copies larger than N.. This is reasonable because
backpropagation is less computationally expensive than forward computation. It may also become possible to
iterate the gradient descent between two consecutive sampling instants, which lead to a faster convergence rate.
The choice of N, and N, results from a tradeoff between the accuracy of the estimation of the gradient and the
computation time. In the stationary case, N, and N, are only limited by the computation time. In the
non-stationary case, the optimal coefficients are time dependent and the typical time scale of the
non-stationarity must be taken into account: N, must be shorter than the time constant of the non-stationarity
of the process (or than the mean duration of stationarity for a piecewise stationary process).

The "Real-Time Recurrent Learning Algorithm” [3] is a particular technique using the forward computation of
the gradient estimation with N;=N_=1; the coefficient modifications are performed at each sampling instant n;



at time n, all the derivatives dz/0C are computed using the N derivatives dz/0C of the N state variables
computed at time n-1 with coefficients C(n-1) (this algorithm is known as the Recursive Prediction Error
algorithm, or IIR-LMS algorithm, in linear adaptive filtering). These drastic choices are justified if the
coefficients change slowly, i.e. if the gradient step p is small enough. It should be noticed that, with the same
computation time, it might be possible to use backpropagation with several copies.

The above adaptation algorithms are complex non linear feedback processes which may lead to unstable
behaviours. In order to generate stable adaptation algorithms, it is possible to modify the above algorithms in
the following way: the feedback inputs of copy m are no longer the outputs of copy m-1, but they are the
desired values of these outputs. This technique was introduced for the supervised training of neural networks
under the name of teacher forcing.[9]. This family of algorithms is well known in Process Identification [10]
(Series-Parallel algorithms) and in Adaptive Filtering (Equation-Error algorithms).

CONCLUSION

In this paper, we have shown that a large variety of techniques are available for training recurrent neural
networks to perform adaptive filtering and modelling. The techniques used thus far are but a small fraction of
the available possibilities. Neural networks, viewed as adaptive non-linear filters, have a considerable potential
which needs be explored, and basic issues, such as the stability of the algorithms, are still open.
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