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Slowing and loss of complexity in Alzheimer's EEG:
Two sides of the same coin?

Justin Dauwels, Srinivasan K, Ramasubba Reddy M,
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Abstract—Medical studies have shown that EEG of
Alzheimer's disease (AD) patients is “slower” (i.e., contas
more low-frequency power) and is less complex compared to
age-matched healthy subjects. The relation between thosevd
phenomena has not yet been studied, and they are often silént
assumed to be independent. In this paper, it is shown that
both phenomena are strongly related. Strong correlation beveen
slowing and loss of complexity is observed in two independén
EEG data sets: (1) EEG of pre-dementia patients (a.k.a. Mild
Cognitive Impairment; MCI) and control subjects; (2) EEG of
mild AD patients and control subjects. The two data sets are
from different patients, different hospitals, and obtained through
different recording systems.

The paper also investigates the potential of EEG slowing and
loss of EEG complexity as indicators of AD onset. In particudr,
relative power and complexity measures are used as featurde
classify the MCI and MIAD patients vs. age-matched control
subjects; linear and quadratic discriminant analysis and sipport
vector machines are applied as classifiers. When combined thvi
two synchrony measures (Granger causality and stochastiovent
synchrony), classification rates of 83% (MCI) and 98% (MiAD)
are obtained. By including the compression ratios as featus,
slightly better classification rates are obtained than withrelative
power and synchrony measures alone.

Index Terms—Alzheimer’s disease (AD), mild cognitive impair-
ment (MCI), electroencephalogram (EEG), compression rat,
relative power, Granger causality, stochastic event syncbny

I. INTRODUCTION

The progression of AD can be categorized into three differ-
ent stages: mild, moderate, and severe AD; there is als@a sta
known as Mild Cognitive Impairment (MCI) or predementia,
that characterizes a population of elderly subjects whaate
compromised in their daily living, but have a subclinicadan
isolated cognitive deficit and are potentially at risk of elep-
ing Alzheimer’s disease [4, 5]. Around 6% to 25% of people
affected by MCI progress to AD. MCI may develop into Mild
AD and next Moderate AD; in those stages, cognitive deficits
become more severe, and the patients become more dependent
on caregivers. In the final stage known as severe AD, the
personality of patients may change dramatically, and pttie
are entirely dependent on caregivers [6].

Diagnosing MCI and Mild Alzheimer’s disease is hard,
because most symptoms are often dismissed as normal con-
sequences of aging. To diagnose MCI or Mild AD, extensive
testing is required, to eliminate all possible alternat@eses.
Tests include psychological evaluations such as Mini Menta
State Examination (MMSE), blood tests, spinal fluid, neuro-
logical examination and imaging techniques [7, 8].

Several research groups have investigated the potential of
electroencephalograms (EEG) for diagnosing AD in recent
years. Since EEG recording systems are nowadays relatively
inexpensive and mobile, EEG may potentially be used in the
future as a tool to screen a large population for the risk of

Alzheimer’s disease (AD) is the most common form of\D, before proceeding to any expensive imaging or invasive
dementia; it is the sixth leading cause of death in the Unit&jocedures. To date, however, EEG does not have sufficiently
States. More than 10% of Americans over age 65 suffer frodngh specificity and sensitivity to assume the role of rééab
AD, and it is predicted that the prevalence of AD will triple2nd reproducible method of screening AD.
within next 50 years [1]-[3]. Currently, no known medicine In recent years, several studies have shown that AD has at
exists for curing AD, but a number of medications are betievdeast three major effects on EEG (see [9, 10] for an in-depth

to delay the symptoms and the causes of the disease.
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review): slowing, reduced complexity, and loss of synclron
However, these effects tend to vary across patients, which
makes diagnosis of AD a difficult task. Many recent studies
are devoted to improving the sensitivity of EEG for diagngsi
AD. We refer to [10] for a detailed review on various EEG
statistics that have been used in this context.

In this paper, we investigate the relation between slowing
and reduced complexity in AD EEG. Those two phenomena
are often silently assumed to be independent. Howevere sinc
low-frequency signals are more regular than signals wiginhi
frequency components, one would expect that slowing and
reduced complexity in AD EEG are strongly related to each
other. Nevertheless no study so far has analyzed the melatio
between both phenomena on a statistical basis though.

In order to investigate the slowing effect in AD EEG, we
compute relative power in the standard EEG frequency bands
(see Table 1). When relative power is larger than usual in
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low-frequency bands (delta and/or theta), it is said that ths in [10], let us consider an example wih = 20s and the
EEG is “slower”, and that “EEG slowing” occurs. We quantifysampling frequency 200Hz, then DFT is computed at OHz,
the irregularity of EEG by a standard measure, i.e., Lemp@&:05Hz, 0.1Hz, ..., 200Hz. The Nyquist theorem states that
Ziv complexity (see Table I). We also apply several losslessnly one half the spectrum is of interest, while the othef isal
compression algorithms to the EEG, and we use the resultitng mirror image of the first half; hence for the above example
compression ratios (reduction in data size after compra¥siit is enough to retain the DFT values at OHz, 0.05Hz, 0.1Hz,
as regularity measures (see Table I). Regular signals are ma., 100Hz. The DFT valueX(f,) are complex , and we
compressible than irregular signals, and therefore, theylt are mostly interested in its absolute magnitudg f)|. The
in larger compression ratios; as a consequence, compnessalative power of a frequency band is computed by summing
ratios are a measure of the regularity of signals. |X (fn)| over the frequencieg,, in that band, and next by
We consider two EEG data sets: (1) EEG of pre-dementiividing the resulting intra-band sum by the sum |&f(f)]
patients (a.k.a. Mild Cognitive Impairment; MCI) and caitr over all DFT frequencieg,,.
subjects; (2) EEG of mild AD patients and control subjects.
The two data sets are from different patients, differeniphos 1. COMPLEXITY MEASURES

tals, and obtained through different recording systems. A variety of complexity measures has been used to quantify
We will show that the theta-band))( relative power is EEG complexity, stemming from several areas ranging from

significantly larger in both groups of patients comparedfe-a statistical physics to information theory. We refer to [10]

matched control subjects, and that the lossless compressir more information. Earlier studies have reported that th

ratios are significantly larger in MiAD patients than in ttgea EEG of MCI and AD patients seems to be more regular

matched control subjects; however, no significant pertigha (j.e., less complex) than in age-matched control subjdtts.

of Lempel-Ziv complexity and the lossless-compressioiosat s conjectured that due to MCI/AD induced loss of neurons

is observed for the MCI patients. Interestingly, our nu@ri and perturbed anatomical and/or functional coupling, fewe

analysis will reveal strong correlation between thetatiea neurons interact with each other, and the neural activity

power on the one hand and Lempel-Ziv complexity and thgatterns and dynamics become simpler and more predictable.

lossless-compression ratios on the other hand; in othedsyor As mentioned earlier, we quantify EEG complexity by a

the effects of slowing and loss of complexity in AD EEG seemstandard measure, i.e., Lempel-Ziv complexity. In additio

to be significantly coupled, at least in the two EEG data sef& use lossless-compression ratios as regularity meadares

at hand. the following, we describe Lempel-Ziv complexity, next we
The paper is structured as follows: In Section |l we explaislaborate on lossless compression and its use as measure for

how relative power of EEG may be computed. In Section lltegularity.

we describe the Lempel-Ziv complexity measure and the

lossless-compression schemes used in this study. In 8dWtio o | empel-Ziv (LZ) complexity

we discuss the two EEG datasets, and in Section V we presen{.he Lempel-Ziv complexity measure (LZ complexity) com-
our results. We provide concluding remarks and topics of

future research in Section VI putes the number of different patterns present in a sequence
Readers who are not interésted in the technical and ma\gﬁ_symbols [12]; if the number of different patterns is large
ematical details of our data analysis may skip Sections e sequence is complex and hence difficult to compress. LZ

and Ill, and may directly proceed to Section IV. complexity is obtaln_ed by d|V|d|ng_ the number of different
patterns by the maximum complexity of a sequence of length

N. For more details we refer to [13].

Il. RELATIVE POWER OFEEG To compute LZ complexity, the time series is first reduced
The spectrum of EEG is helpful in describing and grioa symbol list. For the sake of simplicity, we convert theGeEE
derstanding brain activity. The EEG spectrum is commonRjdnals into binary sequences= s(1),s(2), ..., s(IV), where

divided in specific frequency bands: 0.5-4Hz (delta), 43(1) = 0 if (i) < Ty ands(i) = 1 otherwise; that approach
8Hz (theta), 8~10Hz (alpha 1), 10-12Hz (alpha 2), 1ovas _also foIIO\_Ned in [13]. The thresholf; is _chosen as the
30Hz (beta), and 30—100Hz (gamma) [11]. Neurological digjedlan ofx, since the latter is robust to outliers.
eases, including MCI and AD, often affect the EEG spectrum.
Many studies have shown that MCI and AD cause EEB. Lossless-compression algorithms
signals to “slow down” (see [10] and references there in), In this section, we briefly explain the lossless-comprassio
corresponding to an increase of power in low-frequency banalgorithms applied in this study (see Fig. 2); we will coresid
(delta and theta band, 0.5-8Hz) and a decrease of powethree different algorithms, which were all proposed in [18].
higher-frequency bands (alpha and beta, 8—-30Hz). The aim of compression is to reduce the size of a given
The EEG spectrum can be computed by means of tHata source (e.g., EEG data). In lossless compression (e.g.
Discrete Fourier Transform (DFT) of the EEG [10]. The DFEZIP compression algorithm), no information in the original
X (fn) of the sequence is usually computed at multiple§, data source is lost after compression, in contrast to lossy
of fr =1/T, whereT refers to the length of the signal. Forcompression, where the original can only approximately be
computational convenience, the length of the sequeni® constructed after compression (e.g., JPEG compression alg
often extended to the nearest power of two by zero-paddinghm for images).
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Measure Description Referenceg

Relative power Power within specific EEG frequency band normalized by tptater [11]

Frequency bands: 0.5-4Hz (delta), 4-8Hz (theta), 8—10kih#al), 10-12Hz (alpha 2), 12—-30Hz (beta)

Lempel-Ziv complexity Number of different patterns present in a sequence of sysneoimplexity measure) [12]

Lossless-compression ratio Reduction of the size of EEG data after lossless compregsigularity measure) [14, 15]

Compression algorithms considered here: 1-D SPIHT, 2-DH$P&and 2-D SPIHT followed by arithmetic coding

TABLE |
OVERVIEW OF STATISTICAL MEASURES RELATIVE POWER, LEMPEL-ZIV COMPLEXITY, AND LOSSLESSCOMPRESSION RATIO

Biomedical signals such as EEG often havalecaying
spectrum: The energy is mostly concentrated at low frequen- (n)
cies, and it decays with increasing frequency. Therefdre, t foput
spectral components are close to zero at high frequencies; ¢
the same holds for coefficients in the time-frequency repre-
sentation corresponding to high frequencies. To explag th
phenomenon, compression algorithms often subject thengive
data source to a transform (e.g., time-frequency trangform
which results in an alternative representation of the dEe.
three algorithms used in this study all map the signals into a
other domain, i.e., time-frequency domain; the sparseaéss
the time-frequency representation is then exploited tenfar P
compact code. We now briefly outline the compression process
(see Fig. 2). First the EEG signal fmeprocessedi.e., the (®)
DC component (average value of EEG signal) is removed By, 1. wavelet transform realization via lifing scheme) (@orward
applying backward difference; the resulting zero-meanalig transformation, (b) Inverse transformation. The boxeeleth by z~! stand

- i . ; delays (over one sample). The boxeg and{ 2 represent downsampling
is then arranged as a 1D vector (see Fig. 2(a); Algorithm '&?:d upsampling by a factor of two respectively; in the latterero is inserted

or 2D matrix_(see Fig. 2(_b) and 2(c); A|90rith.m5 B. ancgfter every sample, whereas in the former, every second lseasmpemoved.
C). The resulting structure is then decomposed into differeThe lifting scheme repeats two primitive steps: predictioand updatex.

frequency bands viinteger lifting wavelet transforgnwhich

maps the signals to integers on several time scales; atalast,

set partitioningcoding scheme converts the (integer) wavel&@mpression [14].

coefficients into a compact representation. In the follgvin 2) Lifting Wavelet Transform:A wavelet transform de-
sections we describe those different steps in more det&Pmposes a given signal into different frequency bands; it

and then we elaborate on the differences between the thA@Wws to represent the signal in multiple resolutions (eea
algorithms (Algorithms A, B, and C). to fine) [16]. Wavelets are usually realized by a set of filters

operating in parallel (“filter banks”). An alternative methof
éealizing wavelets is #fting schemd17], which consists of a
cascade of simple filters; it may be viewed as the factoonati
of a filter bank into elementary filters. One such simple filter
1) is depicted in Fig. 1(a)) and Fig. 1(b)). The former shows
the forward lifting transformation; the signal is first split
wherez(n) is the signal obtained by applying the backwarthto odd andevenphasest, andz. respectively, containing
difference. Next the EEG is arranged as a vector of 8iZ6D the odd and even samples respectively of input signdlhe
compression) or as a matrix of si2éx N (2D compression); odd and even phases contain adjacent samples; in natural
the latter matrix is filled starting at the top left-hand sidesignals such as EEG, adjacent samples are highly correlated
from left to right on the odd rows, and from right to left onTherefore, the odd phase may be predicted from the even phase
the even rows. In matrices, each entry has 8 nearest neghl{and vice versa). By subtracting the predictidn = p(z.)
(except for entries in the first/last row/column), compated from the odd phase, we are left with a high-frequency residue
two nearest neighbors in vectors (except for first and lasignal (HF) of the odd phase. The latter is used in another
entries). In the present application, neighboring entdes lifting step, to predict the even phase (“‘update” u); the
adjacent EEG samples, which are highly correlated [14]. Begsulting prediction is subtracted from the even phasge
leveraging on the additional nearest neighbors (8 insté&y, o which leaves the low-frequency component (LF) of the even
2D compression often yields better compression ratios #ftan phasez.; this also ensures the complete frequency separation

zr(n) =x(n— L)
Reconstructed signal

1) Backward difference:First the EEG signal: is pre-
processedi.e., the DC component (average value of EE
signal) is removed; this is performed Jisckward difference
operation:

Z(n) =xz(n) — z(n — 1),
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between a LF and HF component. The forward transforamd resolution of the signal improves as bitstream progeess
of Fig. 1(a) is easily invertible by reversing the steps anthis is a very desirable property for real-time applicasion
flipping the signs (see Fig. 1(b)). We implement the preditti Moreover, the output bitstream is embedded: The bitstream
p and updatex by means of the widely used bi-orthogonatan be truncated at any point to approximately reconstruct
5/3 filter [18], as we did in our previous study on EEQGhe signal. When the bitstream is fully decoded, we obtain a
compression [15]. lossless representation.

In a lifting scheme, the pair of lifting steps, i.e., pre@atp Though this coding scheme is specifically developed for
and updateu, is repeated several times, leading to multi-scalenages, it can be applied to all data sources with decaying
representation of the input signal (“wavelet”); the nature spectrum [21].
and number of lifting stepp andu depends on the type of 4) Three SPIHT compression algorithm$he three com-
wavelets [17]. Integer wavelet transforms can easily bzexh pression algorithms are depicted in Fig. 2: (1) 1-D
by systematic rounding and truncation of the intermedia& IHT compression, where the EEG is arranged as a vec-
results, i.e., output op andwu [19]. tor (Fig. 2(a)), (2) 2-D SPIHT compression, where the EEG is

The lifting wavelet transform provides a sparse, multiarranged as a matrix (Fig. 2(b)), and (3) 2-D SPIHT compres-
resolution representation, that is well suited for effexti sion (at optimal raté?,), followed by arithmetic coding for the
compression (for example, by means of SPIHT, to be explainegsiduals (Fig. 2(c)). In the 1-D SPIHT compression scheme,
in next section)integerlifting in particular enables convenientbackward differentiated EEG is subjected to integer wavele

and simple implementations of lossless compression. transformation followed by SPIHT coding. The 2-D SPIHT
compression scheme arranges the EEG as a matrix instead of
Root nodﬁ (Low frequency) a vector. In the two-stage 2-D SPIHT compression scheme,
l.fi.— ™ . arithmetic coding is applied to the residuals of 2-D SPIHT

compression: First SPIHT encodes the wavelet coefficidhts t
the source loses its memory and behave as independent and
identically distributed (corresponding to the optimal-tzite

R,); next the residuals are encoded by means of single-context
arithmetic coding.

mT =
|
<

IV. EEG DATASETS
A. Dataset 1: MClvs. Control

The first EEG data set has been analyzed in previous studies
concerning early diagnosis of AD [22]-[26].

Ag/AgCI electrodes (disks of diameter 8mm) were placed
Fig. 3. Wavelet decomposition of the 2-D matrix and assedidtee-based on 21 sites according to 10_,20 international system, wih th
set originating from the low frequency band. The root nodady branches reference electrode on the right ear-lobe. EEG was recorded
towards horizontal, vertical and diagonal higher-freqyebands (H,V,D). with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at a sampling

rate of 200Hz, with analog bandpass filtering in the freqyenc

3) Set partitioning in hierarchical trees algorithm (SPIHT range 0.5-250Hz and online digital bandpass filtering betwe
As the last step in the process, the wavelet transformédand 30Hz, using a third-order Butterworth filter. We used
signals are compressed. We use a widely known wavelet-basedommon reference for the data analysis (right ear-lobe),
compression scheme, i.eSet Partitioning in Hierarchical and did not consider other reference schemes (e.g., average
Trees(SPIHT) [20]. The underlying idea iset partitioning or bipolar references).

Sets of samples are recursively split, guided by a series ofThe subjects comprise two study groups. The first consists
threshold tests. This approach is particularly well-sliter of 25 patients who had complained of memory problems.
wavelet transformed data, as wavelet coefficients are algtur These subjects were diagnosed as suffering from mild cogni-
clustered. In SPIHT the sample sets are non-overlappinige impairment (MCI) when the EEG recordings were carried
and they are organized by means of a tree: Each setoi#. Later on, they all developed mild AD, which was verified
rooted in a subset of low-frequency coefficients, and braschthrough autopsy. The criteria for inclusion into the MCI gpo
successively to subsets of high-frequency coefficientshé twere a mini mental state exam (MMSE) score = 24, though the
same orientation (see Fig. 3). The search for coefficierdserage score in the MCI group was 26 (SD of 1.8). The other
associated with a particular threshold usually starts at throup is a control set consisting of 56 age-matched, healthy
root node and proceeds successively towards the leaves ofghbjects who had no memory or other cognitive impairments.
tree, until all significant coefficients are listed. Sucletteased The average MMSE of this control group is 28.5 (SD of 1.6).
search, starting at coarse resolution at the root and emdthg The ages of the two groups are 71#910.2 and 71.7: 8.3,

the finest resolution at the leaves, results in output siggo&l respectively. Finally, it should be noted that the MMSE ssor
increasing quality and resolution. of the MCI subjects studied here are quite high compared to

The integer wavelet transform, in conjunction with SPIHTa number of other studies. For example, in [27] the inclusion
yields a quality and resolution scalable bitstream: Thdityua criterion was MMSE = 20, with a mean value of 23.7, while
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1-D Integer
Backward e 1-D SPIHT :
E';EG Difference iy Wamzie Algorithm Bit-
signal Transform stream
(a) Algorithm A: EEG compression using 1-D SPIHT.
. 2-D Integer
EEG Backward Matriz s , 2-D SPIHT s Bit-
signal Difference Formation Lifting Wavelet Algorithm "
& Transform stream
(b) Algorithm B: EEG compression using 2-D SPIHT.
SCTLC
Backward Matriz 2-D Integer SPIHT Residual
E.EG — Difference s s —| Lifting —> Algorithm 1 Arithmetic [— Re.,.
Signal ormation Transform (Ro) Ruw Coder

(c) Algorithm C: EEG compression using 2-D SPIHT (at optimate R,), followed by arithmetic coding for the residuals.

Fig. 2. Lossless EEG compression algorithms apply wavedeisforms followed by Set Partitioning in Hierarchical @se(SPIHT).

in [28], the criterion was MMSE = 22 (the mean value was Theta
not provided); thus, the disparity in cognitive ability tveten
the MCI and control subjects is comparatively small, making

the classification task relatively difficult.

Alpha-1 Alpha-2

B. Dataset 2: Mild ADvs. Control
The second EEG data set also has been analyzed in previous:

protocol from Derriford Hospital, Plymouth, U.K., and had &
been collected using normal hospital practices [30]. EEGs
were recorded during a resting period with various states:
awake, drowsy, alert and resting states with eyes closed and
open. All recording sessions and experiments proceeded aft
obtaining the informed consent of the subjects or the ceeegi

and were approved by local institutional ethics committees 0 4 8 10 12 30
EEG dataset is composed of 24 healthy control subjects (age: Frequency (Hz)

69.4+11.5 years old; 10 males) and 17 patients with mild @

AD (age: 77.6:10.0 years old; 9 males). The patient group
underwent full battery of cognitive tests (Mini Mental Stat
Examination, Rey Auditory Verbal Learning Test, Benton
Visual Retention Test, and memory recall tests). The EE® tim
series were recorded using 19 electrodes positioned angord
to Maudsley system, similar to the 10-20 international exyst

at a sampling frequency of 128 Hz. EEGs were band-pass
filtered with digital third-order Butterworth filter (forwd and
reverse filtering) between 0.5 and 30 Hz.

Theta Beta

Alpha-1 Alpha-2

Subject

C. Recording Conditions Common to Both Datasets

In both data sets, all recording sessions were conductéd wit
the subjects in an awake but resting state with eyes closed,
and the length of the EEG recording was about 5 minutes,
for each subject. The EEG technicians prevented the ssbject
from falling asleep (vigilance control). After recordinthe
EEG data has been carefully inspected. Indeed, EEG record-
ings are prone to a variety of artifacts, for example due to
electronlg smog, head movements, and mySCUIar aCtIV.IW' FF? . 4. Relative power distribution in various frequencyndia for all the
each patient, an EEG expert selected by visual inspectien Qfiiasets, (a) Control group, (b) Mild cognitive impairedjsats
segment of 20s artifact free EEG, blinded from the results

0 4 8 10 12 30
Frequency (Hz)

(b)
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Delta Theta Alpha-1 Alpha-2 Beta

function (ffDTF) [33]; in an earlier study we observed that
those two measures indicated statistically significantedhf
ences between MCI/MIAD and age-matched control subjects,
for the data sets described in Section IV [25, 26]. It is
noteworthy that, since the two data sets (MCl and MiAD) were
obtained through different recording systems and at differ
hospitals, a direct comparison of the results obtained from
MCI with those from mild AD is not straightforward.

In Table 1l we list statistics of the average measures, thclu
ing the average computed across the entire subject groups an
the standard deviation. We apply the Mann-Whitney test for
the average measures between MCI and the reference subjects
(Dataset 1) and MIiAD and reference subjects (Dataset 2). The
Mann-Whitney test allows us to investigate whether thdsstat

8 10 12 : tics at hand (EEG measures) take different values between tw
Frequency (Hz) subject populations. Low p-values indicate large diffeeem

(@) the medians of the two populations. The resulting p-values a
Theta  Alpha-1Alpha-2 listed in Table Il. Since we conduct multiple statisticatte
' simultaneously, we need to apply statistical post-coiwact
We adopt Bonferroni post-correction [34], and multiply the
p-values by the number of tests (11). In Table Il we indicate
which EEG measures remain statistically significant aftestp
correction.

Theta relative power is significantly larger in MCI patients
compared to reference subjects, whereas beta power is sig-
nificantly larger. In the MIAD patients the perturbations on
EEG relative power are stronger: Delta and theta relative
power is significantly larger than in the reference subjects
whereas alpha and beta power is significantly smaller. laroth
words, slowing occurs in both the MCI and MIAD patients,
which is in agreement with earlier studies (see [10] for a
review). The slowing effect can also readily be seen from
the (normalized) EEG spectra, shown in Fig. 4 and 5 for
dataset 1 and 2 respectively. The effect of slowing in the BDIiA
(b) subjects is very clear from Fig. 5: Power is obviously more
concentrated in theta-band in MiAD patients than in the age-
matched control subjects. For the MCI patients (see Fighat),
such clear effect can be observed from the spectra; this is no
surprise, since MCl is a less severe disease state than MiAD.

of the present study. Only those subjects were retained QWeVer, one may notice a slight increase (decrease) ia thet
the analysis whose EEG recordings contained at least 20st@) relative power in MCI patients. In both the MCI pateen
artifact-free data. Based on this requirement, the number 3'd control subjects, power is concentrated in low-fregyen
subjects of EEG Dataset 1 was further reduced to 22 MERNdS (delta and theta band) and in high-frequency banel (bet
patients and 38 control subjects; in EEG Dataset 2 no sud@nd); high-frequency power (beta band) is much smaller in
reduction was required. From each subject in the two ddfi MIAD patients. In summary, as in earlier studies (seg [10

sets, one artifact-free EEG segment of 20s was analyzed. fOr & review), we observe slowing in MCI and MiAD EEG.
No significant effect on the complexity and regularity mea-

sures can be observed in MCI patients. On the other hand, the
regularity measures and complexity measures are signifycan
We compute relative power, compression ratios and UZrger and smaller respectively for MiAD patients than for
complexity for the EEG signals of all subjects. More specifontrol subject; in other words, the EEG signals of MIAD
ically, we calculate those measures for all individual EE@atients are significantly less complex than in healthyesttbj
channels, and then the measures are averaged over all cfdns observation is in agreement with several earlier s&idi
nels; this results in average measures for all subjects. (fsee [10] for a review).
results are summarized in Table Il and Il and Figs. 6 and We also try to classify patients vs. control subjects by nsean
7. In the analysis we also include two measures of EEG the most discriminative EEG measures< 0.05). We test
synchrony: stochastic event synchrory) (31, 32] and a those measures individually and jointly for their discriative
Granger causality measure, i.e., full frequency direataxsfer ability. Table Il shows the resulting classification perfance

Subject

Subject

8 10 12
Frequency (Hz)

Fig. 5. Relative power distribution in various frequencynia for all the
datasets, (a) Control group, (b) Mild Alzheimer's diseasbjexcts

V. RESULTS AND DISCUSSION
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TABLE Il TABLE Il
MEAN AND STANDARD DEVIATION VALUES OF COMPRESSIONRATIQLZ CLASSIFICATION RATES FOR DISCRIMINANT ANALYSIS(DA) OF THE
COMPLEXITY, RELATIVE POWER AND SYNCHRONY MEASURES LOSSLESS COMPRESSION RATIQ4.Z COMPLEXITY AND RELATIVE
SENSITIVITY OF THE MEASURES IN DISCRIMINATING BETWEENMCI AND POWER IN THETA BAND

MILD AD IS GIVEN IN LAST COLUMN. UNCORRECTED PVALUES FROM
MANN-WHITNEY TEST, WHERE* AND ** INDICATE p < 0.05 AND ‘
p < 0.005 RESPECTIVELY,  INDICATES P-VALUES THAT REMAIN

MCI vs. Control ‘

SIGNIFICANT AFTER POSTCORRECTION(BONFERRON| p < 0.05). ‘ Measure H Linear DA ‘ Quadratic DA ‘ SVM ‘
‘ MCI vs. Control ‘ ‘ theta H 76.67% ‘ 76.67% ‘ 76.67% ‘
‘ Measure H Control MCI H p-value ‘ ffDTF 63.33% 71.67% 78.33%
75% 75% 76.67%
1-D SPIHT CR || 1.34:0.04 | 1.35£0.03 0.3077 L > 2 2
fiDTF+ 76.67% 83.33% 80.00%
2-D SPIHT CR || 1.36£0.04 | 1.37:0.03 0.3778 L > > >
thet 78.33% 83.33% 80.00%
2-D SPIHT+AC || 1.36£0.04 | 1.37£0.03 0.4477 elap 2 2 >
LZ complexity || 0.65+0.07 | 0.62+0.09 0.0830 ‘ Mild AD vs. Control ‘
p 0.25+0.07 0.36+0.10 0.00044* 1 ‘ Measure H Linear DA | Quadratic DA ‘ SVM ‘
ffDTF 0.05+0.003 | 0.05140.003 0.0012* f 1-D SPIHT CR 80.49% 80.49% 80.49%
delta 0.204-0.06 0.214-0.06 0.2934 2-D SPIHT CR 82.93% 82.93% 85.37%
theta 0.08+0.03 0.12+0.04 0.000%* ¥ 2-D SPIHT+AC CR 75.61% 80.49% 82.93%
alpha-1 0.07+0.03 0.08+0.03 0.1698 LZ complexity 68.29% 68.29% 68.29%
alpha-2 0.05+0.02 0.05+0.02 0.9939 theta 95.12% 95.12% 95.12%
beta 0.24+0.05 0.2140.03 0.0116* ffDTF 58.54% 78.05% 82.93%
‘ Mild AD vs. Control ‘ o 56.10% 63.41% 63.41%
‘ Measure H Control Mild AD H p-value ‘ fiDTF + p 65.85% 70.73% 78.05%
R theta + fiDTF 95.12% 92.68% 95.12%
1-D SPIHT CR || 1.09£0.01 | 1.12£0.04 || 3.45x10 51 il ° ° >
s h + fiDTF +
2D SPIHT CR || 1.11:£0.02 | 1.15:0.04 || 6.0 %10~ % theta
. 1-D SPIHT CR 95.12% 92.68% 97.56%
2-D SPIHT+AC || 1.074+0.02 1.114+0.04 || 4.86 x10 51
LZ complexity 0.63+0.06 0.55+0.08 0.0024* 1
p 0.46+0.04 | 0.49+-0.03 0.0024* T approximations of the continuous EEG signals, whereas the
fiDTF 0.04£0.004 | 0.037:0.009 0.000%+ t former are derived from accurate representations of the,EEG
delta 0.0010.004 | 0.017£0.01 0.0029* associated W|th_lossless_ cgmpressmn. _ _
theta. 0.17£0.08 0.54:0.16 8 107w 1 _ In order to gain more insight in the relatlon_shlp between the
, different measures, we calculate the correlation betwieeset
- * T . . . .
alpha-1 032£0.12 | 0.18+0.10 0.0009" 1 measures (see Fig. 6). The correlation coefficient amonky eac
alpha-2 0174011 | 0.06£0.02 || 3.41 x10_ o1 pair of measures is calculated as follows:
beta 0.33+0.14 | 0.18+0.11 0.0006* T Nuubjeot
1 T)’Li(k) —m,; mj(k) — T)’_L]'
Ty = N ;@)
Nsubject oF) gj

k=1

with linear and quadratic discriminant analysis, and suppavherem;(k) andm,; (k) is the average value of EEG measure
vector machine, determined through leaving-one-out gadss ¢ and j respectively for subjeck, the sum is computed over
idation [35]. Only the best performing combinations of EE@Il subjects, andn;, 175, o; ando; are the mean and standard
measures are listed. From Table Ill we can see that thetviation ofm; andm; respectively. The resulting correlation
band relative power yields good performance when used sepaefficients are displayed in Fig. 6, for Dataset 1 and Datse
rately, and results in even better performance when cordbirgeparately. We also conduct the Pearson correlation tst, t
with the most discriminative lossless-compression ratid averify whether the correlations or anti-correlations abiatis-
synchrony measure. The other relative power measures tgally significant. The resulting p-values are shown in.Fig
less discriminative, for both datasets (not shown herd}, ti{logarithmic scale). Since we have multiple simultaneous
observation is in agreement with the p-values listed indélbl tests, statistical post-correction is required. Again e

The compression ratios and LZ complexity fail to discriniaa Bonferroni post-correction [34], and multiply the p-vaduiey

MCI patients from control subjects (not shown here). Howgvdhe number of tests (55).

those measures yield good classification performance for th As expected, the compression measures are significantly
MIAD patients. Interestingly, the lossless-compressiatios mutually correlated as all the schemes are based on the same
result in better classification rates than LZ complexityis th principle; they are also significantly anti-correlated hwitZ

may be explained as follows: LZ complexity is based on binagpmplexity in the MiAD dataset (Dataset 2).
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Fig. 6. Correlation between the lossless compressionstati complexity, Fig. 7. Pearson correlation test between the lossless @ssipn ratios, LZ
relative power in different bands, Granger causality (f)Tand stochastic complexity, relative power in different bands, Grangerszity (fDTF), and
event synchrony 4); red and blue indicate strong correlation and antistochastic event synchrony)( The (uncorrected) p-values are shown on a
correlation respectively. logarithmic scale.

Interestingly, the compression ratios are significantly- cojpssless compression ratios (MiAD) and low-frequencytieda
related with low-frequency relative power (delta and thetgower (both datasets). We believe that this observatiombas
MIAD) and anti-correlated with high-frequency relativews® peen documented yet. We conjecture that the observed- statis
(beta; both data sets). Likewise LZ complexity is strongi$i-a tical (anti-)correlation between ffDTF and the other measu
correlated with low-frequency relative power (delta anett#h s an artefact of the multivariate model underlying Granger
both data sets) and correlated with high-frequency reati¢ausality (and ffDTF in particular). More specifically, @gger
power (beta; MIAD). Taken together, this observation s§tgn causality is derived from a multivariate autoregressivedeio
suggests that slowing and loss of complexity in AD EEG aig@1vAR). The order of the latter needs to be kept low, since
not independenphenomena but are strongly related; to thghe coefficients of the MVAR need to be inferred from a short
best of our knowledge, this observation has not been reporieeg segment; high-order MVARs contain many coefficient,
before in the literature. which cannot be reliably inferred from the limited amount

Perhaps surprisingly, Granger causality (ffDTF) [33] ig-si of data. Low-order MVARs have short memory, and cannot
nificantly correlated with LZ complexity and high-frequgnc capture low-frequency components in the EEG. Consequently
relative power (MiAD), and significantly anti-correlatedtiv Granger causality may underestimate the correlation among
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brain signals when the EEG contains strong low-frequencig]
components.

Stochastic event synchrony)([31, 32] seems to be uncor-
related with the other measures (both datasets), and tineref
it may provide complementary information.

(20]

[11]

VI. CONCLUSION (12]

In this study, we investigated the use of relative power, LZ3]
complexity, and lossless compression ratio as EEG markers f
MCI and Mild AD. Lossless compression ratio is shown to be
discriminative for Mild AD, whereas it is not discriminaév [14]
for MCI. On the other hand, theta-band relative power was
observed to be statistically larger in MCI and Mild AD[15]
patients than in control subjects. Maximum discriminatisn
obtained by combining the compression ratio, relative powe
and synchrony measures (Granger causality and/or stécha
event synchrony).

We would like to reiterate, however, that the two data sei&]
analyzed (MCI and MIAD) were obtained through differenhs]
recording systems and at different hospitals; a direct @mp
ison of the results obtained from MCI with those from mild
AD is therefore difficult. On the other hand, since the daﬁg]
sets are independent, our observations are probably nabdu
particularities of the recording systems and/or proceslate
the hospitals. (20]

Interestingly, compression ratios were found to be signif-
icantly correlated to delta and theta band relative powery]
showing their strong correlation with relative power at low
frequencies; also strong anti-correlation between cosgioa
ratios and beta relative power was observed. Therefore:- slgz2]
ing and loss of complexity in the EEG of MCI and MiAD
patients may be strongly related phenomena.

More generally, this study also underlines the importangs
of analyzing MCl and AD EEG by means of a variety
of statistical measures (relative power, complexity/tagty
measures, synchrony measures), in order to detect pdtentia
correlations between various observed phenomena assbciat
with MCI and AD.
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