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Slowing and loss of complexity in Alzheimer’s EEG:
Two sides of the same coin?

Justin Dauwels, Srinivasan K, Ramasubba Reddy M, Toshimitsu Musha, François Vialatte, Charles Latchoumane,
Jaeseung Jeong, and Andrzej Cichocki

Abstract—Medical studies have shown that EEG of
Alzheimer’s disease (AD) patients is “slower” (i.e., contains
more low-frequency power) and is less complex compared to
age-matched healthy subjects. The relation between those two
phenomena has not yet been studied, and they are often silently
assumed to be independent. In this paper, it is shown that
both phenomena are strongly related. Strong correlation between
slowing and loss of complexity is observed in two independent
EEG data sets: (1) EEG of pre-dementia patients (a.k.a. Mild
Cognitive Impairment; MCI) and control subjects; (2) EEG of
mild AD patients and control subjects. The two data sets are
from different patients, different hospitals, and obtained through
different recording systems.

The paper also investigates the potential of EEG slowing and
loss of EEG complexity as indicators of AD onset. In particular,
relative power and complexity measures are used as featuresto
classify the MCI and MiAD patients vs. age-matched control
subjects; linear and quadratic discriminant analysis and support
vector machines are applied as classifiers. When combined with
two synchrony measures (Granger causality and stochastic event
synchrony), classification rates of 83% (MCI) and 98% (MiAD)
are obtained. By including the compression ratios as features,
slightly better classification rates are obtained than withrelative
power and synchrony measures alone.

Index Terms—Alzheimer’s disease (AD), mild cognitive impair-
ment (MCI), electroencephalogram (EEG), compression ratio,
relative power, Granger causality, stochastic event synchrony

I. I NTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia; it is the sixth leading cause of death in the United
States. More than 10% of Americans over age 65 suffer from
AD, and it is predicted that the prevalence of AD will triple
within next 50 years [1]–[3]. Currently, no known medicine
exists for curing AD, but a number of medications are believed
to delay the symptoms and the causes of the disease.
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The progression of AD can be categorized into three differ-
ent stages: mild, moderate, and severe AD; there is also a stage
known as Mild Cognitive Impairment (MCI) or predementia,
that characterizes a population of elderly subjects who arenot
compromised in their daily living, but have a subclinical and
isolated cognitive deficit and are potentially at risk of develop-
ing Alzheimer’s disease [4, 5]. Around 6% to 25% of people
affected by MCI progress to AD. MCI may develop into Mild
AD and next Moderate AD; in those stages, cognitive deficits
become more severe, and the patients become more dependent
on caregivers. In the final stage known as severe AD, the
personality of patients may change dramatically, and patients
are entirely dependent on caregivers [6].

Diagnosing MCI and Mild Alzheimer’s disease is hard,
because most symptoms are often dismissed as normal con-
sequences of aging. To diagnose MCI or Mild AD, extensive
testing is required, to eliminate all possible alternativecauses.
Tests include psychological evaluations such as Mini Mental
State Examination (MMSE), blood tests, spinal fluid, neuro-
logical examination and imaging techniques [7, 8].

Several research groups have investigated the potential of
electroencephalograms (EEG) for diagnosing AD in recent
years. Since EEG recording systems are nowadays relatively
inexpensive and mobile, EEG may potentially be used in the
future as a tool to screen a large population for the risk of
AD, before proceeding to any expensive imaging or invasive
procedures. To date, however, EEG does not have sufficiently
high specificity and sensitivity to assume the role of reliable
and reproducible method of screening AD.

In recent years, several studies have shown that AD has at
least three major effects on EEG (see [9, 10] for an in-depth
review): slowing, reduced complexity, and loss of synchrony.
However, these effects tend to vary across patients, which
makes diagnosis of AD a difficult task. Many recent studies
are devoted to improving the sensitivity of EEG for diagnosing
AD. We refer to [10] for a detailed review on various EEG
statistics that have been used in this context.

In this paper, we investigate the relation between slowing
and reduced complexity in AD EEG. Those two phenomena
are often silently assumed to be independent. However, since
low-frequency signals are more regular than signals with high-
frequency components, one would expect that slowing and
reduced complexity in AD EEG are strongly related to each
other. Nevertheless no study so far has analyzed the relation
between both phenomena on a statistical basis though.

In order to investigate the slowing effect in AD EEG, we
compute relative power in the standard EEG frequency bands
(see Table I). When relative power is larger than usual in
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low-frequency bands (delta and/or theta), it is said that the
EEG is “slower”, and that “EEG slowing” occurs. We quantify
the irregularity of EEG by a standard measure, i.e., Lempel-
Ziv complexity (see Table I). We also apply several lossless-
compression algorithms to the EEG, and we use the resulting
compression ratios (reduction in data size after compression)
as regularity measures (see Table I). Regular signals are more
compressible than irregular signals, and therefore, they result
in larger compression ratios; as a consequence, compression
ratios are a measure of the regularity of signals.

We consider two EEG data sets: (1) EEG of pre-dementia
patients (a.k.a. Mild Cognitive Impairment; MCI) and control
subjects; (2) EEG of mild AD patients and control subjects.
The two data sets are from different patients, different hospi-
tals, and obtained through different recording systems.

We will show that the theta-band (θ) relative power is
significantly larger in both groups of patients compared to age-
matched control subjects, and that the lossless compression
ratios are significantly larger in MiAD patients than in the age-
matched control subjects; however, no significant perturbation
of Lempel-Ziv complexity and the lossless-compression ratios
is observed for the MCI patients. Interestingly, our numerical
analysis will reveal strong correlation between theta relative
power on the one hand and Lempel-Ziv complexity and the
lossless-compression ratios on the other hand; in other words,
the effects of slowing and loss of complexity in AD EEG seem
to be significantly coupled, at least in the two EEG data sets
at hand.

The paper is structured as follows: In Section II we explain
how relative power of EEG may be computed. In Section III,
we describe the Lempel-Ziv complexity measure and the
lossless-compression schemes used in this study. In Section IV
we discuss the two EEG datasets, and in Section V we present
our results. We provide concluding remarks and topics of
future research in Section VI.

Readers who are not interested in the technical and math-
ematical details of our data analysis may skip Sections II
and III, and may directly proceed to Section IV.

II. RELATIVE POWER OFEEG

The spectrum of EEG is helpful in describing and un-
derstanding brain activity. The EEG spectrum is commonly
divided in specific frequency bands: 0.5–4Hz (delta), 4–
8Hz (theta), 8–10Hz (alpha 1), 10–12Hz (alpha 2), 12–
30Hz (beta), and 30–100Hz (gamma) [11]. Neurological dis-
eases, including MCI and AD, often affect the EEG spectrum.
Many studies have shown that MCI and AD cause EEG
signals to “slow down” (see [10] and references there in),
corresponding to an increase of power in low-frequency bands
(delta and theta band, 0.5–8Hz) and a decrease of power in
higher-frequency bands (alpha and beta, 8–30Hz).

The EEG spectrum can be computed by means of the
Discrete Fourier Transform (DFT) of the EEG [10]. The DFT
X(fn) of the sequencex is usually computed at multiplesfn

of fT = 1/T , whereT refers to the length of the signal. For
computational convenience, the length of the sequencex is
often extended to the nearest power of two by zero-padding.

As in [10], let us consider an example withT = 20s and the
sampling frequency 200Hz, then DFT is computed at 0Hz,
0.05Hz, 0.1Hz, . . . , 200Hz. The Nyquist theorem states that
only one half the spectrum is of interest, while the other half is
the mirror image of the first half; hence for the above example,
it is enough to retain the DFT values at 0Hz, 0.05Hz, 0.1Hz,
. . . , 100Hz. The DFT valuesX(fn) are complex , and we
are mostly interested in its absolute magnitude|X(f)|. The
relative power of a frequency band is computed by summing
|X(fn)| over the frequenciesfn in that band, and next by
dividing the resulting intra-band sum by the sum of|X(f)|
over all DFT frequenciesfn.

III. C OMPLEXITY MEASURES

A variety of complexity measures has been used to quantify
EEG complexity, stemming from several areas ranging from
statistical physics to information theory. We refer to [10]
for more information. Earlier studies have reported that the
EEG of MCI and AD patients seems to be more regular
(i.e., less complex) than in age-matched control subjects.It
is conjectured that due to MCI/AD induced loss of neurons
and perturbed anatomical and/or functional coupling, fewer
neurons interact with each other, and the neural activity
patterns and dynamics become simpler and more predictable.

As mentioned earlier, we quantify EEG complexity by a
standard measure, i.e., Lempel-Ziv complexity. In addition,
we use lossless-compression ratios as regularity measures. In
the following, we describe Lempel-Ziv complexity, next we
elaborate on lossless compression and its use as measure for
regularity.

A. Lempel-Ziv (LZ) complexity

The Lempel-Ziv complexity measure (LZ complexity) com-
putes the number of different patterns present in a sequence
of symbols [12]; if the number of different patterns is large,
the sequence is complex and hence difficult to compress. LZ
complexity is obtained by dividing the number of different
patterns by the maximum complexity of a sequence of length
N . For more details we refer to [13].

To compute LZ complexity, the time series is first reduced
to a symbol list. For the sake of simplicity, we convert the EEG
signals into binary sequencess = s(1), s(2), . . . , s(N), where
s(i) = 0 if x(i) < Td ands(i) = 1 otherwise; that approach
was also followed in [13]. The thresholdTd is chosen as the
median ofx, since the latter is robust to outliers.

B. Lossless-compression algorithms

In this section, we briefly explain the lossless-compression
algorithms applied in this study (see Fig. 2); we will consider
three different algorithms, which were all proposed in [14,15].
The aim of compression is to reduce the size of a given
data source (e.g., EEG data). In lossless compression (e.g.,
ZIP compression algorithm), no information in the original
data source is lost after compression, in contrast to lossy
compression, where the original can only approximately be
constructed after compression (e.g., JPEG compression algo-
rithm for images).
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Measure Description References

Relative power Power within specific EEG frequency band normalized by totalpower [11]

Frequency bands: 0.5–4Hz (delta), 4–8Hz (theta), 8–10Hz (alpha 1), 10–12Hz (alpha 2), 12–30Hz (beta)

Lempel-Ziv complexity Number of different patterns present in a sequence of symbols (complexity measure) [12]

Lossless-compression ratio Reduction of the size of EEG data after lossless compression(regularity measure) [14, 15]

Compression algorithms considered here: 1-D SPIHT, 2-D SPIHT, and 2-D SPIHT followed by arithmetic coding

TABLE I
OVERVIEW OF STATISTICAL MEASURES: RELATIVE POWER, LEMPEL-ZIV COMPLEXITY, AND LOSSLESS-COMPRESSION RATIO.

Biomedical signals such as EEG often have adecaying
spectrum: The energy is mostly concentrated at low frequen-
cies, and it decays with increasing frequency. Therefore, the
spectral components are close to zero at high frequencies;
the same holds for coefficients in the time-frequency repre-
sentation corresponding to high frequencies. To exploit this
phenomenon, compression algorithms often subject the given
data source to a transform (e.g., time-frequency transform),
which results in an alternative representation of the data.The
three algorithms used in this study all map the signals into an
other domain, i.e., time-frequency domain; the sparsenessof
the time-frequency representation is then exploited to form a
compact code. We now briefly outline the compression process
(see Fig. 2). First the EEG signal ispreprocessed, i.e., the
DC component (average value of EEG signal) is removed by
applying backward difference; the resulting zero-mean signal
is then arranged as a 1D vector (see Fig. 2(a); Algorithm A)
or 2D matrix (see Fig. 2(b) and 2(c); Algorithms B and
C). The resulting structure is then decomposed into different
frequency bands viainteger lifting wavelet transform, which
maps the signals to integers on several time scales; at last,a
set partitioningcoding scheme converts the (integer) wavelet
coefficients into a compact representation. In the following
sections we describe those different steps in more detail,
and then we elaborate on the differences between the three
algorithms (Algorithms A, B, and C).

1) Backward difference:First the EEG signalx is pre-
processed, i.e., the DC component (average value of EEG
signal) is removed; this is performed viabackward difference
operation:

x̃(n) = x(n) − x(n − 1), (1)

where x̃(n) is the signal obtained by applying the backward
difference. Next the EEG is arranged as a vector of sizeN (1D
compression) or as a matrix of sizeN ×N (2D compression);
the latter matrix is filled starting at the top left-hand side,
from left to right on the odd rows, and from right to left on
the even rows. In matrices, each entry has 8 nearest neighbors
(except for entries in the first/last row/column), comparedto
two nearest neighbors in vectors (except for first and last
entries). In the present application, neighboring entriesare
adjacent EEG samples, which are highly correlated [14]. By
leveraging on the additional nearest neighbors (8 instead of 2),
2D compression often yields better compression ratios than1D

↓ 2 + LP

z
−1 ↓ 2 + HP

p(·) u(·)
x(n)
Input
signal

−

−

xe(n)

xo(n)

one lifting step

(a)

LP + ↑ 2 z−1

HP + ↑ 2

p(·)u(·) +
xr(n) = x(n− L)

Reconstructed signal

(b)

Fig. 1. Wavelet transform realization via lifting scheme (a) Forward
transformation, (b) Inverse transformation. The boxes labeled byz−1 stand
for delays (over one sample). The boxes↓ 2 and↑ 2 represent downsampling
and upsampling by a factor of two respectively; in the lattera zero is inserted
after every sample, whereas in the former, every second sample is removed.
The lifting scheme repeats two primitive steps: predictionp and updateu.

compression [14].
2) Lifting Wavelet Transform:A wavelet transform de-

composes a given signal into different frequency bands; it
allows to represent the signal in multiple resolutions (coarse
to fine) [16]. Wavelets are usually realized by a set of filters,
operating in parallel (“filter banks”). An alternative method of
realizing wavelets is alifting scheme[17], which consists of a
cascade of simple filters; it may be viewed as the factorization
of a filter bank into elementary filters. One such simple filter
is depicted in Fig. 1(a)) and Fig. 1(b)). The former shows
the forward lifting transformation; the signalx is first split
into odd andevenphasesxo andxe respectively, containing
the odd and even samples respectively of input signalx. The
odd and even phases contain adjacent samples; in natural
signals such as EEG, adjacent samples are highly correlated.
Therefore, the odd phase may be predicted from the even phase
(and vice versa). By subtracting the predictionx̂o = p(xe)
from the odd phase, we are left with a high-frequency residue
signal (HF) of the odd phase. The latter is used in another
lifting step, to predict the even phasexe (“update” u); the
resulting prediction is subtracted from the even phasexe,
which leaves the low-frequency component (LF) of the even
phasexe; this also ensures the complete frequency separation
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between a LF and HF component. The forward transform
of Fig. 1(a) is easily invertible by reversing the steps and
flipping the signs (see Fig. 1(b)). We implement the prediction
p and updateu by means of the widely used bi-orthogonal
5/3 filter [18], as we did in our previous study on EEG
compression [15].

In a lifting scheme, the pair of lifting steps, i.e., prediction p
and updateu, is repeated several times, leading to multi-scale
representation of the input signalx (“wavelet”); the nature
and number of lifting stepsp and u depends on the type of
wavelets [17]. Integer wavelet transforms can easily be realized
by systematic rounding and truncation of the intermediate
results, i.e., output ofp andu [19].

The lifting wavelet transform provides a sparse, multi-
resolution representation, that is well suited for effective
compression (for example, by means of SPIHT, to be explained
in next section);integerlifting in particular enables convenient
and simple implementations of lossless compression.

Root node (Low frequency)

H

V

D

Fig. 3. Wavelet decomposition of the 2-D matrix and associated tree-based
set originating from the low frequency band. The root node (black) branches
towards horizontal, vertical and diagonal higher-frequency bands (H,V,D).

3) Set partitioning in hierarchical trees algorithm (SPIHT):
As the last step in the process, the wavelet transformed
signals are compressed. We use a widely known wavelet-based
compression scheme, i.e.,Set Partitioning in Hierarchical
Trees(SPIHT) [20]. The underlying idea isset partitioning:
Sets of samples are recursively split, guided by a series of
threshold tests. This approach is particularly well-suited for
wavelet transformed data, as wavelet coefficients are naturally
clustered. In SPIHT the sample sets are non-overlapping,
and they are organized by means of a tree: Each set is
rooted in a subset of low-frequency coefficients, and branches
successively to subsets of high-frequency coefficients in the
same orientation (see Fig. 3). The search for coefficients
associated with a particular threshold usually starts at the
root node and proceeds successively towards the leaves of the
tree, until all significant coefficients are listed. Such tree-based
search, starting at coarse resolution at the root and endingwith
the finest resolution at the leaves, results in output signals of
increasing quality and resolution.

The integer wavelet transform, in conjunction with SPIHT,
yields a quality and resolution scalable bitstream: The quality

and resolution of the signal improves as bitstream progresses.
This is a very desirable property for real-time applications.
Moreover, the output bitstream is embedded: The bitstream
can be truncated at any point to approximately reconstruct
the signal. When the bitstream is fully decoded, we obtain a
lossless representation.

Though this coding scheme is specifically developed for
images, it can be applied to all data sources with decaying
spectrum [21].

4) Three SPIHT compression algorithms:The three com-
pression algorithms are depicted in Fig. 2: (1) 1-D
SPIHT compression, where the EEG is arranged as a vec-
tor (Fig. 2(a)), (2) 2-D SPIHT compression, where the EEG is
arranged as a matrix (Fig. 2(b)), and (3) 2-D SPIHT compres-
sion (at optimal rateRo), followed by arithmetic coding for the
residuals (Fig. 2(c)). In the 1-D SPIHT compression scheme,
backward differentiated EEG is subjected to integer wavelet
transformation followed by SPIHT coding. The 2-D SPIHT
compression scheme arranges the EEG as a matrix instead of
a vector. In the two-stage 2-D SPIHT compression scheme,
arithmetic coding is applied to the residuals of 2-D SPIHT
compression: First SPIHT encodes the wavelet coefficients till
the source loses its memory and behave as independent and
identically distributed (corresponding to the optimal bit-rate
Ro); next the residuals are encoded by means of single-context
arithmetic coding.

IV. EEG DATASETS

A. Dataset 1: MCIvs. Control

The first EEG data set has been analyzed in previous studies
concerning early diagnosis of AD [22]–[26].

Ag/AgCl electrodes (disks of diameter 8mm) were placed
on 21 sites according to 10–20 international system, with the
reference electrode on the right ear-lobe. EEG was recorded
with Biotop 6R12 (NEC San-ei, Tokyo, Japan) at a sampling
rate of 200Hz, with analog bandpass filtering in the frequency
range 0.5-250Hz and online digital bandpass filtering between
4 and 30Hz, using a third-order Butterworth filter. We used
a common reference for the data analysis (right ear-lobe),
and did not consider other reference schemes (e.g., average
or bipolar references).

The subjects comprise two study groups. The first consists
of 25 patients who had complained of memory problems.
These subjects were diagnosed as suffering from mild cogni-
tive impairment (MCI) when the EEG recordings were carried
out. Later on, they all developed mild AD, which was verified
through autopsy. The criteria for inclusion into the MCI group
were a mini mental state exam (MMSE) score = 24, though the
average score in the MCI group was 26 (SD of 1.8). The other
group is a control set consisting of 56 age-matched, healthy
subjects who had no memory or other cognitive impairments.
The average MMSE of this control group is 28.5 (SD of 1.6).
The ages of the two groups are 71.9± 10.2 and 71.7± 8.3,
respectively. Finally, it should be noted that the MMSE scores
of the MCI subjects studied here are quite high compared to
a number of other studies. For example, in [27] the inclusion
criterion was MMSE = 20, with a mean value of 23.7, while
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(a) Algorithm A: EEG compression using 1-D SPIHT.
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(b) Algorithm B: EEG compression using 2-D SPIHT.
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2-D Integer
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SPIHT
Algorithm

(Ro)

Residual
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EEG

Signal
Renc

Rw

Senc

(c) Algorithm C: EEG compression using 2-D SPIHT (at optimalrateRo), followed by arithmetic coding for the residuals.

Fig. 2. Lossless EEG compression algorithms apply wavelet transforms followed by Set Partitioning in Hierarchical Trees (SPIHT).

in [28], the criterion was MMSE = 22 (the mean value was
not provided); thus, the disparity in cognitive ability between
the MCI and control subjects is comparatively small, making
the classification task relatively difficult.

B. Dataset 2: Mild ADvs. Control

The second EEG data set also has been analyzed in previous
studies [29, 30]; these data were obtained using a strict
protocol from Derriford Hospital, Plymouth, U.K., and had
been collected using normal hospital practices [30]. EEGs
were recorded during a resting period with various states:
awake, drowsy, alert and resting states with eyes closed and
open. All recording sessions and experiments proceeded after
obtaining the informed consent of the subjects or the caregivers
and were approved by local institutional ethics committees.
EEG dataset is composed of 24 healthy control subjects (age:
69.4±11.5 years old; 10 males) and 17 patients with mild
AD (age: 77.6±10.0 years old; 9 males). The patient group
underwent full battery of cognitive tests (Mini Mental State
Examination, Rey Auditory Verbal Learning Test, Benton
Visual Retention Test, and memory recall tests). The EEG time
series were recorded using 19 electrodes positioned according
to Maudsley system, similar to the 10-20 international system,
at a sampling frequency of 128 Hz. EEGs were band-pass
filtered with digital third-order Butterworth filter (forward and
reverse filtering) between 0.5 and 30 Hz.

C. Recording Conditions Common to Both Datasets

In both data sets, all recording sessions were conducted with
the subjects in an awake but resting state with eyes closed,
and the length of the EEG recording was about 5 minutes,
for each subject. The EEG technicians prevented the subjects
from falling asleep (vigilance control). After recording,the
EEG data has been carefully inspected. Indeed, EEG record-
ings are prone to a variety of artifacts, for example due to
electronic smog, head movements, and muscular activity. For
each patient, an EEG expert selected by visual inspection one
segment of 20s artifact free EEG, blinded from the results
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Fig. 4. Relative power distribution in various frequency bands for all the
datasets, (a) Control group, (b) Mild cognitive impaired subjects
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Fig. 5. Relative power distribution in various frequency bands for all the
datasets, (a) Control group, (b) Mild Alzheimer’s disease subjects

of the present study. Only those subjects were retained in
the analysis whose EEG recordings contained at least 20s of
artifact-free data. Based on this requirement, the number of
subjects of EEG Dataset 1 was further reduced to 22 MCI
patients and 38 control subjects; in EEG Dataset 2 no such
reduction was required. From each subject in the two data
sets, one artifact-free EEG segment of 20s was analyzed.

V. RESULTS AND DISCUSSION

We compute relative power, compression ratios and LZ
complexity for the EEG signals of all subjects. More specif-
ically, we calculate those measures for all individual EEG
channels, and then the measures are averaged over all chan-
nels; this results in average measures for all subjects. Our
results are summarized in Table II and III and Figs. 6 and
7. In the analysis we also include two measures of EEG
synchrony: stochastic event synchrony (ρ) [31, 32] and a
Granger causality measure, i.e., full frequency directed transfer

function (ffDTF) [33]; in an earlier study we observed that
those two measures indicated statistically significant differ-
ences between MCI/MiAD and age-matched control subjects,
for the data sets described in Section IV [25, 26]. It is
noteworthy that, since the two data sets (MCI and MiAD) were
obtained through different recording systems and at different
hospitals, a direct comparison of the results obtained from
MCI with those from mild AD is not straightforward.

In Table II we list statistics of the average measures, includ-
ing the average computed across the entire subject groups and
the standard deviation. We apply the Mann-Whitney test for
the average measures between MCI and the reference subjects
(Dataset 1) and MiAD and reference subjects (Dataset 2). The
Mann-Whitney test allows us to investigate whether the statis-
tics at hand (EEG measures) take different values between two
subject populations. Low p-values indicate large difference in
the medians of the two populations. The resulting p-values are
listed in Table II. Since we conduct multiple statistical tests
simultaneously, we need to apply statistical post-correction.
We adopt Bonferroni post-correction [34], and multiply the
p-values by the number of tests (11). In Table II we indicate
which EEG measures remain statistically significant after post-
correction.

Theta relative power is significantly larger in MCI patients
compared to reference subjects, whereas beta power is sig-
nificantly larger. In the MiAD patients the perturbations on
EEG relative power are stronger: Delta and theta relative
power is significantly larger than in the reference subjects,
whereas alpha and beta power is significantly smaller. In other
words, slowing occurs in both the MCI and MiAD patients,
which is in agreement with earlier studies (see [10] for a
review). The slowing effect can also readily be seen from
the (normalized) EEG spectra, shown in Fig. 4 and 5 for
dataset 1 and 2 respectively. The effect of slowing in the MiAD
subjects is very clear from Fig. 5: Power is obviously more
concentrated in theta-band in MiAD patients than in the age-
matched control subjects. For the MCI patients (see Fig. 4),no
such clear effect can be observed from the spectra; this is no
surprise, since MCI is a less severe disease state than MiAD.
However, one may notice a slight increase (decrease) in theta
(beta) relative power in MCI patients. In both the MCI patients
and control subjects, power is concentrated in low-frequency
bands (delta and theta band) and in high-frequency band (beta
band); high-frequency power (beta band) is much smaller in
the MiAD patients. In summary, as in earlier studies (see [10]
for a review), we observe slowing in MCI and MiAD EEG.

No significant effect on the complexity and regularity mea-
sures can be observed in MCI patients. On the other hand, the
regularity measures and complexity measures are significantly
larger and smaller respectively for MiAD patients than for
control subject; in other words, the EEG signals of MiAD
patients are significantly less complex than in healthy subjects.
This observation is in agreement with several earlier studies
(see [10] for a review).

We also try to classify patients vs. control subjects by means
of the most discriminative EEG measures (p < 0.05). We test
those measures individually and jointly for their discriminative
ability. Table III shows the resulting classification performance
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TABLE II
MEAN AND STANDARD DEVIATION VALUES OF COMPRESSION RATIO, LZ

COMPLEXITY, RELATIVE POWER AND SYNCHRONY MEASURES.
SENSITIVITY OF THE MEASURES IN DISCRIMINATING BETWEENMCI AND

M ILD AD IS GIVEN IN LAST COLUMN. UNCORRECTED P-VALUES FROM

MANN-WHITNEY TEST, WHERE * AND ** INDICATE p < 0.05 AND

p < 0.005 RESPECTIVELY; † INDICATES P-VALUES THAT REMAIN
SIGNIFICANT AFTER POST-CORRECTION(BONFERRONI, p < 0.05).

MCI vs. Control

Measure Control MCI p-value

1-D SPIHT CR 1.34±0.04 1.35±0.03 0.3077

2-D SPIHT CR 1.36±0.04 1.37±0.03 0.3778

2-D SPIHT+AC 1.36±0.04 1.37±0.03 0.4477

LZ complexity 0.65±0.07 0.62±0.09 0.0830

ρ 0.25±0.07 0.36±0.10 0.00044** †

ffDTF 0.05±0.003 0.051±0.003 0.0012** †

delta 0.20±0.06 0.21±0.06 0.2934

theta 0.08±0.03 0.12±0.04 0.0001** †

alpha-1 0.07±0.03 0.08±0.03 0.1698

alpha-2 0.05±0.02 0.05±0.02 0.9939

beta 0.24±0.05 0.21±0.03 0.0116∗

Mild AD vs. Control

Measure Control Mild AD p-value

1-D SPIHT CR 1.09±0.01 1.12±0.04 3.45×10
−5** †

2-D SPIHT CR 1.11±0.02 1.15±0.04 6.09×10
−5** †

2-D SPIHT+AC 1.07±0.02 1.11±0.04 4.86×10
−5** †

LZ complexity 0.63±0.06 0.55±0.08 0.0024** †

ρ 0.46±0.04 0.49±0.03 0.0024** †

ffDTF 0.04±0.004 0.037±0.009 0.0001** †

delta 0.001±0.004 0.017±0.01 0.0029** †

theta 0.17±0.08 0.54±0.16 8 ×10
−7** †

alpha-1 0.32±0.12 0.18±0.10 0.0009** †

alpha-2 0.17±0.11 0.06±0.02 3.41×10
−6** †

beta 0.33±0.14 0.18±0.11 0.0006** †

with linear and quadratic discriminant analysis, and support
vector machine, determined through leaving-one-out crossval-
idation [35]. Only the best performing combinations of EEG
measures are listed. From Table III we can see that theta-
band relative power yields good performance when used sepa-
rately, and results in even better performance when combined
with the most discriminative lossless-compression ratio and
synchrony measure. The other relative power measures are
less discriminative, for both datasets (not shown here); this
observation is in agreement with the p-values listed in Table II.
The compression ratios and LZ complexity fail to discriminate
MCI patients from control subjects (not shown here). However,
those measures yield good classification performance for the
MiAD patients. Interestingly, the lossless-compression ratios
result in better classification rates than LZ complexity; this
may be explained as follows: LZ complexity is based on binary

TABLE III
CLASSIFICATION RATES FOR DISCRIMINANT ANALYSIS(DA) OF THE

LOSSLESS COMPRESSION RATIOS, LZ COMPLEXITY AND RELATIVE
POWER IN THETA BAND

MCI vs. Control

Measure Linear DA Quadratic DA SVM

theta 76.67% 76.67% 76.67%

ffDTF 63.33% 71.67% 78.33%

ρ 75% 75% 76.67%

ffDTF+ρ 76.67% 83.33% 80.00%

theta+ρ 78.33% 83.33% 80.00%

Mild AD vs. Control

Measure Linear DA Quadratic DA SVM

1-D SPIHT CR 80.49% 80.49% 80.49%

2-D SPIHT CR 82.93% 82.93% 85.37%

2-D SPIHT+AC CR 75.61% 80.49% 82.93%

LZ complexity 68.29% 68.29% 68.29%

theta 95.12% 95.12% 95.12%

ffDTF 58.54% 78.05% 82.93%

ρ 56.10% 63.41% 63.41%

ffDTF + ρ 65.85% 70.73% 78.05%

theta + ffDTF 95.12% 92.68% 95.12%

theta + ffDTF +

1-D SPIHT CR 95.12% 92.68% 97.56%

approximations of the continuous EEG signals, whereas the
former are derived from accurate representations of the EEG,
associated with lossless compression.

In order to gain more insight in the relationship between the
different measures, we calculate the correlation between those
measures (see Fig. 6). The correlation coefficient among each
pair of measures is calculated as follows:

rij =
1

Nsubject

Nsubject∑

k=1

mi(k) − m̄i

σi

mj(k) − m̄j

σj

, (2)

wheremi(k) andmj(k) is the average value of EEG measure
i and j respectively for subjectk, the sum is computed over
all subjects, andm̄i, m̄j , σi andσj are the mean and standard
deviation ofmi andmj respectively. The resulting correlation
coefficients are displayed in Fig. 6, for Dataset 1 and Dataset 2
separately. We also conduct the Pearson correlation test, to
verify whether the correlations or anti-correlations are statis-
tically significant. The resulting p-values are shown in Fig. 7
(logarithmic scale). Since we have multiple simultaneous
tests, statistical post-correction is required. Again we adopt
Bonferroni post-correction [34], and multiply the p-values by
the number of tests (55).

As expected, the compression measures are significantly
mutually correlated as all the schemes are based on the same
principle; they are also significantly anti-correlated with LZ
complexity in the MiAD dataset (Dataset 2).
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(b) Mild AD (Dataset 2)

Fig. 6. Correlation between the lossless compression ratios, LZ complexity,
relative power in different bands, Granger causality (ffDTF), and stochastic
event synchrony (ρ); red and blue indicate strong correlation and anti-
correlation respectively.

Interestingly, the compression ratios are significantly cor-
related with low-frequency relative power (delta and theta;
MiAD) and anti-correlated with high-frequency relative power
(beta; both data sets). Likewise LZ complexity is strongly anti-
correlated with low-frequency relative power (delta and theta;
both data sets) and correlated with high-frequency relative
power (beta; MiAD). Taken together, this observation strongly
suggests that slowing and loss of complexity in AD EEG are
not independentphenomena but are strongly related; to the
best of our knowledge, this observation has not been reported
before in the literature.

Perhaps surprisingly, Granger causality (ffDTF) [33] is sig-
nificantly correlated with LZ complexity and high-frequency
relative power (MiAD), and significantly anti-correlated with
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Fig. 7. Pearson correlation test between the lossless compression ratios, LZ
complexity, relative power in different bands, Granger causality (ffDTF), and
stochastic event synchrony (ρ). The (uncorrected) p-values are shown on a
logarithmic scale.

lossless compression ratios (MiAD) and low-frequency relative
power (both datasets). We believe that this observation hasnot
been documented yet. We conjecture that the observed statis-
tical (anti-)correlation between ffDTF and the other measures
is an artefact of the multivariate model underlying Granger
causality (and ffDTF in particular). More specifically, Granger
causality is derived from a multivariate autoregressive model
(MVAR). The order of the latter needs to be kept low, since
the coefficients of the MVAR need to be inferred from a short
EEG segment; high-order MVARs contain many coefficient,
which cannot be reliably inferred from the limited amount
of data. Low-order MVARs have short memory, and cannot
capture low-frequency components in the EEG. Consequently
Granger causality may underestimate the correlation among
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brain signals when the EEG contains strong low-frequency
components.

Stochastic event synchrony (ρ) [31, 32] seems to be uncor-
related with the other measures (both datasets), and therefore,
it may provide complementary information.

VI. CONCLUSION

In this study, we investigated the use of relative power, LZ
complexity, and lossless compression ratio as EEG markers for
MCI and Mild AD. Lossless compression ratio is shown to be
discriminative for Mild AD, whereas it is not discriminative
for MCI. On the other hand, theta-band relative power was
observed to be statistically larger in MCI and Mild AD
patients than in control subjects. Maximum discriminationis
obtained by combining the compression ratio, relative power
and synchrony measures (Granger causality and/or stochastic
event synchrony).

We would like to reiterate, however, that the two data sets
analyzed (MCI and MiAD) were obtained through different
recording systems and at different hospitals; a direct compar-
ison of the results obtained from MCI with those from mild
AD is therefore difficult. On the other hand, since the data
sets are independent, our observations are probably not dueto
particularities of the recording systems and/or procedures at
the hospitals.

Interestingly, compression ratios were found to be signif-
icantly correlated to delta and theta band relative power,
showing their strong correlation with relative power at low
frequencies; also strong anti-correlation between compression
ratios and beta relative power was observed. Therefore, slow-
ing and loss of complexity in the EEG of MCI and MiAD
patients may be strongly related phenomena.

More generally, this study also underlines the importance
of analyzing MCI and AD EEG by means of a variety
of statistical measures (relative power, complexity/regularity
measures, synchrony measures), in order to detect potential
correlations between various observed phenomena associated
with MCI and AD.
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