IEEE Trans. on Computer-Aided Design, to be published

A PROBLEM-INDEPENDENT PARALLEL IMPLEMENTATION OF SIMULATED
ANNEALING :
MODELS AND EXPERIMENTS

P. ROUSSEL-RAGOT and G. DREYFUS, SENIOR MEMBER, IEEE

ABSTRACT

We suggest a problem-independent parallel implementation of the simulated annealing algorithm
which is guaranteed to exhibit the same convergence behaviour as the serial algorithm. We
introduce two modes of parallelization, depending on the value of the temperature, and we derive
statistical models which can predict the speedup for any problem, as a function of the acceptance
rate and of the number of processors. The performances are evaluated on a simple placement
problem with a Transputer-based network, and the models are compared with experiments.

INTRODUCTION

The simulated annealing algorithm [1] is a flexible and powerful optimization method which has
proven successful in the search of optimal or near-optimal solutions for complex engineering
applications, such as the placement of components in integrated circuits. This nondeterministic
approach is particularly well adapted to problems for which conventional methods get trapped in
local minima, for it allows transitions of the system that increase the cost function to be minimized.
The probabxhty that such a transition will be accepted is controllcd by a parameter, called the
temperature. Finely tuned cooling schedules [2,3] may ensure fast convergence to near-optimal
solutions, but, as the complexity of the problem grows, the best schedule may still require a very
large computational time.

In this paper, we propose a problem-independent, parallel simulated annealing algorithm which
guarantees the same quality of convergence as the sequential algorithm, and a statistical model of its
behaviour is derived. This study provides a straightforward way to implement in parallel any
sequential schedule and to evaluate the expected acceleration factor as a function of the number of
processors used in parallel.

I. SUMMARY OF PREVIOUS APPROACHES TO PARALLEL SIMULATED ANNEALING.

In an optimization problem, one tries to find the best possible state, or configuration, of a system,
according to a given cost function, often referred to as the "energy”. The simulated annealing
algorithm is a variant of an iterative improvement method: starting with an initial state, the

algorithm generates a sequence of attempted perturbations, usually termed "clementary moves”.

The moves improving the cost function to be minimized are accepted (as they are in classical
methods), and the moves increasing the energy are accepted with a probability which depends on
the value of a control parameter, the temperature. The value of the temperature is decreased
stepwise; the length of each temperature step is controlled by rules which will be described below.
The implementation of simulated annealing on a multiprocessor is not straightforward, because of
the sequential nature of the method. Simulated annealing is commonly described as a sequence of
homogeneous Markov chains: each computation step of a chain starts only when the previous step
is completed. This is the condition for the whole process to lead to a unique feasible configuration.
In order to reduce the computation time required, two kinds of parallelism can be used:

i- a parallelism in the evaluation of each move: the computation of a given step of the Markov chain
depends only on the configuration of the system before the step and is performed without further
interaction with the other steps; therefore, each move evaluation can be parallelized inasmuch as the
computations of the variation of the cost function and of the acceptance criterion can be made
parallel. This kind of parallelism, which is completely problem-dependent, will not be discussed
here.

ii- a global paratlelism on the Markov chain level, which can obviously be combined with the first
kind of parallelism, if necessary.

Several attempts to parallelize the simulated annealing algorithm were reported in the literature, The
differences lie in the way in which the problem is implemented in parallel, and the main issues are
i- the convergence conditions of the parallel algorithm,

ii- the dependence of the parallelism on the problem to be solved.

The placement problem - which is used as a test example in the present paper - is of central
importance in Computer Aided Design. The approach to the parallel implementation of this problem
suggested by Casotto et al. [4] consists in partitioning the set of cells to be placed into a number of
subsets equal to the number of processors avalaible; each subset is assigned to a given processor.
The processors run asynchronously as long as the moves occur in a given set of cells; exchanges of
cells from different sets are allowed, but imply that one of the two processors involved stops. The
moves within a set of cells are translations, rotations or exchanges of the cells. This method is well
adapted to problems with short-range interactions. The asynchrony of the processors implies that
each processor never knows exactly what the current configuration is, which introduces some
chaos in the determination of the energy. This method was implemented on a Sequent Balance 80(()
with up to 8 processors running in parallel. Casotto et al, [5] also experimented massive
parallelization of the simulated annealing algorithm on the Connection Machine.

Clusters of cells are also used by Mallela and Grover [6] in order to reduce the number of cells to
be placed in each sub-problem. The placement of the cells in each cluster involves a reduced search
space, thus a reduced computation time, each cluster being evaluatrd in parallel if desired.

Another approach of the cell placement problem is suggested by Darema et al {7]; in this case, each

processor evaluates one perturbation of the Markov chain, under the condition that two processors

are not allowed to move the same cells simultaneously; therefore, there is no conflict between
processors and the final configuration is always a valid one. Whenever a perturbation is accepted,
the configuration of the cells is updated, regardless of the moves which are being computed. At low
temperature, when the acceptance ratio is low, this does not introduce a large bias as compared to
the sequential method. At higher temperature, the behaviour of the parallel method deviates
significantly from that of the sequential method. The measurements in this study were performed in

a parallel emulation environment, allowing simulation of a shared memory multiprocessor system

with up to 64 processors.

A comparable approach was suggested by Brouwer and Banerjee [8] for channel routing: sets of
adjacent tracks are assigned to parallel processors and nets are moved between tracks whiph are
assigned to a given processor; information about the moves are then broadcast to other processors
to update their data structures.

A different approach was used by Kravitz et al {9,10]; they introduce the notion of serializable
subset of moves. A set of moves is serializable if the moves do not interact with each other. If the
moves of such a subset are evaluated in parallel, the result is the same as it is in sequential. But the
determination of these subsets is more and more difficult and time consuming as the number of
processors increases. The suggested solution to this problem is the following: they consider the
“"simplest serializable subset”, where only one of the accepted moves is accepted, while all the
rejected moves are counted. Then, the parallel algorithm is quite different from the sequential one at
high temperature since the acceptance ratio is not the same. This issue will be discussed in detail in
the next section. The experiments were performed on a DEC VAX 11/784, consisting of four VAX
11/780 précessors connected to a shared 8Mbyte memory.

Yet another approach was suggested by Aarts et al {11] who used, at high temperature, different
processors to work on different short Markov chains. When the temperature is changed, one of the
{inal configurations is used as the initial configuration of the next temperature step. As the
temperature decreases, less and less Markov subchains are evaluated in parallel, while more and
more processors are used for the generation of each subchain. At low temperature, all processors
evaluate a single Markov chain. The behaviour of this method at high temperature is very different
from the behaviour of the sequential algorithm since the configurations transmitted from one
Markov chain to another are obtained after a shorter number of steps than in the sequential chain,
Aarts used a parallel machine consisting of fifteen Motorola 68000 microprocessors with local
memory and a shared 8 Mbyte memory.

1. PRINCIPLE AND MODELS.
The present section describes the principle of the parallel implementation of simulated annealing

that we suggest. We first explain and justify the principle of the parallelization. We subsequently
propose a statistical model of this stochastic parallel computation.

We first define the acceptance rate ¥(T) as the ratio of the number of accepted moves to the number
of attempted moves, averaged over a given temperatuere One of the salient features of simulated
annealing is the decrease of ¥(T) as the temperature is reduced. This is due to two facts: first, the
system approaches a minimum and it is unlikely that a move decreases the energy; moreover, the
value of exp(-AE/T), where AE is the variation of the cost function and T is the temperature,
becomes very small, so that the probability of accepting a move which increases the energy
vanishes. Most parallel simulated annealing methods take advantage of this fact: in the low
temperature regime, when the acceptance rate is small, one can use a number K of processor such
that K<1/y . Thus, at most one move will be accepted while K moves are evaluated, so that the
computation time in the paralle] mode can be expected to be smaller than the computation time in the
sequential mode by a factor of the order of K.

However, the computation time is not the only performance criterion. One wants, of course, to
obtain a valid solution, and hopefully the optimal one (or one of the optimal ones). Therefore, the
convergence of the algorithin is of central importance. Several theoretical studies of the sequential
algorithm have been published [12,13], but the theory is much less developed for parallel simulated
annealing. However, some parallelization schemes may hamper greatly the convergence of the
algorithm, and even make it impossible in some cases. For instance, in the context of massively
parallel implementations of simulated annealing for image processing, it was proved by A. Trouvé
(private communication), that the algorithm may converge towards states of high energy of the
system.Therefore, it seems desirable to design a parallel scheme which complies with the
convergence conditions of the sequential algorithm, so that one can capitalize on the accumulated
knowledge related to sequential simulated algorithm.

In the following, we suggest a paratlel simulated anncaling scheme which

i- is problem-independent

i~ has the same convergence properties as the sequential algorithm.

2) Principle

As stated above, we use K processors in parallel, each of them evaluating one move. Each
processor has its own memory. We want to design a parallel scheme which is equivalent to the
sequential one, as far as convergence is concerned.

The usual, sequential, Metropolis algorithm at fixed temperature T consists in generating a Markov
chain of states, the energies of which would have a Boltzmann distribution if the chain were
infinitely long; since the chain is of finite length L, the resulting distribution will actually be "close

to" the Boltzmann distribution, We want to find a parallel scheme which generates a Markov chain,

the states of which have the same probability distribution as the sequential chain, all other
parameters being equal. This guarantees that the convergence behaviour of the parallel algorithm
will be similar to the behaviour of the sequential one. We shall see in the next section that the
acceptance rate X(T) is of central importance. Its value leads us to consider two different regimes:

- a low temperature regime: if y(T)<1/K, !ess than one move out of K will be accepted; thus, the
scheme proceeds as follows: the processors attempt moves on their own, asynchronously, in
parallel, until one of the K processors accepts a move; when an accepted move is found, the
processors are synchronised, their memories are updated with the new configuration and the next
evaluation step takes place.)

- a high temperature regime (x(T)>1/K): in this regime, each processor is allowed to evaluate one
move only and waits until all the other processors complete their evaluation. Then, one of the
accepted moves is chosen at random, the processor memories are updated with the new
configuration and the next evaluation step takes place. The reason why we choose one of the
accepted move at random, instead of choosing the first accepted move, is the following: since the
computation time of a single move can vary substantially, choosing the first move would greatly
favour the short computations (for instance, moves of weakly connected blocks, or downhill
moves which do not require the computation of the exponential).

In addition to the above mentioned K "slave” processors, the scheme requires one “"master”
processor which monitors the annealing schedule, chooses the accepted move in the high
temperature regime, updates the memory of each processor and keeps track of statistics.

3) Models

In all the following, we use the standard annealing schedule, whereby the temperature is decreased
stepwise according to Ty ,1 =a T, , where T, is the nth temperature and o may range from (.9
t0 0.99. We denote by

L,, the maximum number of accepted moves at a given temperature,

Ly, the maximum number of attempts at a given temperature,

T, » the average computation time necessary to evaluate one move in the sequential mode.

The meaning of 1 is clear if only one type of elementary move is used; otherwise, it would
represent the average value of the computation time of the various types of moves occuring during
annealing. In both cases, it can be estimated as the duration of a temperature step divided by the
number of attempted moves. If the perturbations vary with the temperature (for example, if
exchanges of blocks occur mainly at high temperatures and translations mainly at low
temperatures), the value of 1., will vary with temperature.

The temperature is decreased either when the number of accepted moves at the current temperature
reaches L,, or when the number of attempted moves at the current temperature reaches Ly,
whichever limit is reached first.

6

Note that T, the average computation time to evaluate one move in the sequential mode, is not
exactly the same as that in parallel, because the master processor can take care of the necessary
statistics while the slave processors evaluate the moves. Therefore, T, is an upper limit of the
average computation time for one move in the parallel implementation.

a) Model of the high temperature mode

In the high temperature mode, each processor evaluates one move, and all processors are
synchronized at the end of each evaluation; we denote by T, the average overhead due to
communications with the K slaves and their synchronization: therefore, the average time necessary
for the K processors to perform one evaluation is T, + 1. Note that T, takes into account the fact

that the moves may be of different durations, so that the time to complete a parallel evaluation is
equal to the duration of the longest attempted move.

Since the length of the Markov chain depends on the number of accepted moves and/or on the
number of attempted moves, we first have to evaluate these quantities. Assume that, after one
parallel evaluation of K moves, r moves out of K are rejected; K-r moves are found acceptable, but
only one of them will actually be accepted in the Markov chain, the other ones being discarded. The
ratio of the number of accepted moves to the number of attempted moves, in the serial mode, would
be (K-1)/K; however, in the parallel mode, only one move is accepted. How do we construct a
chain which has the same acceptance ratio as the sequential one? The procedure is as follows: we
number the processors in an arbitrary, but definite order, from 1 to K. We denote by n, the number
of the first processor in the list which accepts a move and we construct the Markov chain with the n
first moves in the list. A Markov chain of n-1 rejected moves, followed by one accepted move,
would have been found with the same probability in the sequential mode. It can be shown that the
average value of n is equal to n*z(K+1)/(K-r+1) (see appendix). .

If all K processors reject their attempted moves, the number of the first processor cannot be found
using this approach, but since there is no accepted move, the number of attempted moves to be
taken into account is clearly K.

To summarize, when K evaluations are performed in parallel:

- if at least one move has been accepted, one of the accepted moves is chosen randomly and we
consider that n*s(KH)/(K-r+1) moves have been attempted,

- if no move has been accepted, we consider that K moves have been attempted.

This provides a good estimate of the effective number of attempted moves since, on the average,
the ratio of the number of accepted moves to the effective number of attempted moves in the parallel
mode is equal to the sequential acceptance rate. This can be shown as follows. .
The average number "*a of accepted moves for one parallel evaluation is equal to the ratio of the
number of parallel evaluations for which at least one move is accepted (since, in this case, one

move is taken into account) to the total number of parallel evaluations. The probability that i moves

out of K are accepted is equal to

K -i i.

(). okt

the probability that all K moves are rejected is (l-x)K, Thus,

K
ok = 20 (g = 10K

i=1

When i moves out of K are accepted, the number of attempted moves is taken equal to K+1/(i+1),
. * .
so that the effective number of attempted moves n" in the parallel mode is equal to

~afKe S i KeL
i=1

Therefore, the acceptance rate in the parallel mode is equal to

ime%W‘

i=1

(ke 20k Kl
i=1
This ratio can be shown after some algebra to be equal to x. Thus, we obtain the same convergence

behaviour in the parallel mode and in the sequential mode since the parallel algorithm has the same
transition probability matrix as the sequential one.

We now evaluate the total effective number of attempted moves N*‘, and the total number of
accepted moves, actually taken into account, N*a, once N parallel evaluations of K moves have
been performed.

The average effective number of attempts is given by

N; N (K SR KA

k i+1
i=1
or equivalently

. K
N N, L a®

The limit of L attempted moves is reached after a number N, of parallel evaluations of K moves
which is given by

X
Ne= Ly ——
1-(1-%)

. s . .
The number N*, of accepted moves actually taken into account is equal to the number of parallel

evaluations of K moves leading to at least one acceptable move, hence
*
N, =N[1- (1-)OX] .
Therefore, the limit of 1., accepted moves is reached after a number N, of parallel evaluations of K
moves which is given by

K
L-(1-%)
Therefore, in the high temperature mode, the number of parallel evaluations at a given temperature
is
Np =min (N, Np) .
The corresponding computation time is
tp:Np (T + T,)

In the serial mode, the computation time is
=151,/ % if the L, limit is reached first,
to=1T, .1, if the Lt limit is reached first.

Therefore, whichever limit Lo or L is reached first,

T

EE=W7.,(: (1+-1)).
lg K T
I=(1-x) 0

Note that lim (tp ft §)= 1+ 1/t when x--->1 and lim (tp ftg) = I/K.(l~+»*cr/to) when y ---> 0.

At high temperature, the efficiency is low because the parallel mode skips rejected moves and only
few moves are rejected at high temperatures when the acceptance rate is hi gh; at Jow temperature,
the computation time is roughly divided by the number of processors, as expected, if the overhead
time Ty is small compared to 1,

The average value of T, is known from the serial implementation of the simulated annealing
algorithm. The determination of 1, is not straightforward and depends on the problem. If Ty s
constant, T, may be approximated conservatively by K times the communication time: if the K
parallel computations end at the same time, K successive communications will be required for the
master to know all the results and restart the slaves.

b) Model of the low temperature mode
In the low temperature mode, each processor evaluates moves independently until one processor

out of K accepts a move. At the end of each individual evaluation, the processors send

asynchronously to the master the result of their attempt; if no move was accepted by any processor

since the previous communication, another move is attempted. If one move was accepted, the
memories of the slave processors are updated and the processors are synchronized. In this mode,
all the rejected moves are counted as steps towards equilibrium.

In order to model the behaviour of this low temperature mode, it is necessary to evaluate the
number of moves required for one move to be accepted. This can be done in two ways: Aarts et al
{11] evaluate the number of parallel calculations required. Their estimation leads to a number of
parallel calculations equal, on the average, to 1/ 1-(1-)X. Since it is easier to estimate the time
characteristics of individual moves from the sequential results, we find it preferable to evaluate the
number of such moves. One configuration is accepted on the average when 1/x moves are
evaluated. The process has then performed 1/y, steps towards equilibrium in the serial mode. Since
we want to obtain a feasible configuration of the system, if another move isaccepted by one of the
K-1 other processors, we do not take it into account: the perturbations are chosen at random and,
if, for example, one block is exchanged in two different moves, the resulting configuration is not a
valid one since this block would be placed in two different locations. When the processors are
synchronized, 1/y, + K-1 moves have been evaluated and, on the average (1/x + K-1).x have been
accepted. Since we discard all the accepted moves, but one, we count only

(U +K-1) - (K- + 1= 1y + (K-D.(1-p)

steps in the Markov chain .

If T, is the time required to obtain one accepted move in parallel, we can model the behaviour of
the low temperature mode as follows:

i- when L, is reached first,
tp = La Ty and tg = Ly/x. 7, , thus

Doym @.

S S (3).
" kenpap ™

and
g = Lt.to, thus
1 T

m

1+ (K-D(1-p) 1,

Note that for K=1, one has 1, = 1,/ , so that tp =g as expected.

Sl

Here again, the average value of 1, is known, but the determination of Ty, IS not an easy task and
depends on the problem. If 7, is constant and if 1/ is much larger than K, the value of T, can be

10

approximated by (T, +T,)/ Ky , T, being the time required by one slave to communicate its result
to the master.

L RESULTS

1) A simple placement problem

We tested our parallel methods and models on a simple placement problem. It consists of a two
dimensional array of b2 chips arranged on a square grid. In the ground state configuration of the
system, each chip is connected to its nearest neighbours by two-terminal connections. The
elementary move is the exchange of two chips, chosen at random; the cost function is equal to the
total length of the wires. The parameters of the standard sequential annealing schedule are the
following:

- the initial configuration is chosen at random,

- the initial temperature is chosen so that the acceptance rate is larger than 0.9,

- the temperature is modified when 5‘b2.(b2 -1) moves have been evaluated or when b2‘(b2 -1)/2
moves have been accepted,

- the cooling parameter o is equal 10 (.9,

- the simulated annealing process is stopped when the temperature reaches the value 0.2 or when no
move is accepted at a given temperature.

This annealing schedule was not intended to be optimal: we only wanted to evaluate the

performances of the parallel algorithm as compared to those of the serial algorithm, subject to the
same conditions.

2) The Transputers

We implemented the parallel algorithm on a network of Transputers. A Transputer is a 32-bit
processor with its own memory. Communications occur only through four hi gh-speed serial links,
so that each Transputer can communicate with four neighbour Transputers. One link is used for
communications between two Transputers only, so that parallel architectures are implemented
simply by connecting the serial links between the pairs of communicating Transputers. T800
Transputers have an on-chip floating-point processor, which T414 Transputers have not.
Instructions for communications are available in the software (OCCAM) and no data can be lost
since these communications are synchronized. We use one Transputer as the master processor and
we perform the computations on Transputers linked to the master. The architecture can be improved
so that no Transputer has to be used only for communications, but this does not restrict the validity

of our model.

Experiments were performed with 25, 49 and 81 chips on 3 and 6 Transputers. We shall present

11

the most relevant results here, obtained on 81 chips in two cases: the communication time T, is
small as compared to the computation time 1, (t, = 4.2 msec and T, = 0.5 msec), and the

communication and computation times are of the same order of magnitude (1, = 0.6 msec and 1.2
0.3 msec).

3) Numerical results

Both temperature modes were investigated independently on a complete annealing, although they
are not intended to be actually used on the whole temperature range.

We compared the behaviour of the high and low temperature modes to the behaviour of the
sequential mode, on 100 different initial configurations. Figure la is a plot of the average final
energy of each temperature step as a function of temperature; it can be seen that the high
temperature mode behaves similarly to the sequential mode, whereas the low temperature mode
decreases the energy quickly for high temperature values. This is due to the fact that, in the low
temperature mode, the first accepted move is taken into account for updating the system. Since we
used T414 Transputers without floating-point computations, the computation of the exponential is
very long as compared to the execution of a simple instruction; thus, the first accepted move often
happens to be a move which decreases the energy. In addition, the low-temperature mode is not
expected to have the same acceptance rate as the sequential algorithm at high temperature: since all
rejected moves are counted as steps of the Markov chain, and since the total number of moves at a
given temperature is the same as in the sequential mode, the number of accepted moves is lower
than in the sequential computation; therefore, the probability of escaping from a local minimum is
lower than it should be at the considered temperature, thus the average energy is lower. This
introduces a bias which does not affect the final result in this problem, but might do in others,
therefore, it is definitely not desirable, in general, to use the low-temperature mode at high
temperature. At low temperature, the annealing curve is the same for the three modes. This allows
us to switch from high to low temperature mode when the low temperature mode becomes more
efficient, still complying with the quality of convergence of the sequential algorithm. The final and
initial energy distributions are shown on Figure 1b: no significant difference between the three
modes can be observed because of the nature of the problem we investigated; a difference should
appear when using finely tuned annealing schedules, since the low temperature mode exhibits
signiﬁcanf deviation at high temperature.

The computation times, averaged over 10 experiments, for each temperature step of the annealing
process for the sequential and the parallel algorithms, are shown on Figure 2. On all diagrams, the
upper three curves are the average duration of a temperature step measured if the temperature is
decreased when Ly moves have been attempted; the lower three curves are the average duration of a

12

temperature step if the temperature is decreased when L, moves have been accepted. As expected,
the duration of a temperature step in the sequential mode is virtually constant in the first case and
increases sharply at low temperature in the second case. We find that the acceleration is poor at high
temperature: the time required for the parallel algorithms is even higher than the time required for
the sequential algorithm when the communication and synchronization time is close to the
computation time (Figures 2b and 2c). This results from the high value of the acceptance rate: few
moves are rejected, so that the parallel mode is not efficient. In contrast, at low temperature, the
duration is almost divided by the number of processors. It can be seen on Figure 2c that the avera ge
duration of a temperature step, when the limit L is used, is small at high temperature for the low
temperature mode; this is due to the fact that, in this mode, as mentioned before, the energy
decreases quickly at high temperature; thus, the acceptance rate decreases t0o, and the number of
rejected moves is high. Moreover, in this mode, all the rejected moves are counted as steps of the
Markov chain. When the L:\ limit is used, the overall annealing time is divided by 2 with 3
processors when the communication time is large, and by 2.5 when it is small. This value depends
strongly on the annealing schedule: if more time is spent at low temperature, as is frequently the
case in real optimization problems, the overall speedup factor is higher.

Since we use a linear scale for temperature, whereas the decrease of the temperature is geometric,
the overall gain in annealing time does not appear clearly; thus we present, on Figure 3, the
cumulated annealing time for the sequential algorithm and for the parallel algorithm, using the L,
limit in the case where 1. is close to 1. The total time is divided by 2 with this parallel method
when 3 Transputers are used and by 3 when 6 Transputers are used.

Figure 4 exhibits a very good agreement between the measurements performed in the parallel
temperature mode and the estimated values of tp/tS when the L, limit is reached first (relations 1 and
2), and when the L limit is reached first (relations 1 and 3). The acceleration is higher when the Ly
limit is used in the low temperature mode, but, since each temperature step is much longer than in
the case of the L, limit, it is definitively worthwhile using the L, limit when it is reached first. To
compute the estimates from the model, we evaluated Ty + Tp as the average duration of a
temperature step divided by the number of parallel evaluations, and T, s the average duration of a
temperature step divided by the number of accepted moves. The average value of x(T) was
estimated from the sequential results,

In the low temperature mode, communications were implemented between the workin £ Processors
and the master processor each time a move is attempted. This was required for measuring the
number of moves actually attempted in order to evaluate the model. For real implementation of this
parallel algorithm, only synchronization on the accepted moves is required, so that the accelerations
obtained in our example are the worst case. A further modification of the parallel mode can be used:

13

the low temperature mode is not used at high temperature because the first accepted move is the
shortest to compute, which may introduce a bias, as observed in our experiments. If the processors
are not synchronized when a move is accepted, that is, if the processors communicate the result of
the move they have evaluated and start a new move as soon as their configuration is actualized,
then, the computations become asynchronous, and the first accepted move may not be the one
which is the shortest to compute, since the processors start their individual evaluations at different
times. Thus, the bias observed in our experiments should vanish. This asynchronous mode could
then be used for the whole temperature range and this method should further reduce the
computation time, because no synchronization time is required. Nevertheless, only the rejected
moves evaluated before one move is accepted should be counted in the Markov chain in order to

preserve the quality of convergence of annealing, since the acceptance rate must be preserved.

CONCLUSION

We propose a problem-independent parallel implementation of the simulated annealing algorithm,
which guarantees the same quality of convergence as the sequential algorithm. The parallel
algorithm consists of two modes: one is intended to be used at high temperature (at least one move
is accepted when K moves are evaluated) and the other one is to be used at low temperature (at
most one move is accepted). Statistical models of both modes are derived and compared to
experiments on a simple placement problem, implemented on a network of Transputers; the
architecture of the system consists of a "master" processor linked to K "slaves” processors. These
models are expressed as functions of the acceptance rate, which enables an estimation of the
acceleration for any optimization problem. They take into account the fact that, depending on the
implementation of the sequential algorithm, the length of the Markov chain for each temperature
step may be taken either equal to a given number of accepted moves or equal to a given number of
attempted moves. The condition for switching from the high temperature mode to the low
temperature mode will depend on the number of processors used, and on the length of the Markov
chains.

As mentioned above, it is possible to increase the speedup if the synchronization between the slaves
is used only when a move is accepted. Thus, the speedup evaluated from the models is the worst
case and can be improved for real implementations.

Acknowledgments: The authors are very grateful to A. Trouvé and O. Catoni for their critical
comments on the derivation of the effective number of moves. They wish to thank the Groupe de
Soutien aux Utilisateurs of the CIRCE Computer Center.

Appendix.

We denote by K the number of processors numbered from 1 to K, and by i, the number of accepted

moves among the K moves attempted in parallel. We show in the following that the average value

of the number of the first processor in the list which accepts a move is equal to n*=(K+])/(K—rH)

[14].

We denote by o the number of the first processor in the list which accepts a move.

The probability that ¢ is equal or higher than n is

Po>n) = (iK‘"”’ _(K-n+1)K-n) (KnHz)
[]K) K(K-1) ..(K-i+1)

Thus,
K-n+1) {K-
P(o=n) =P{o=n) - Plox(n+1)) = (fene (i’ (Lw”,)
i
which can be written as follows
i(K-nYK-n-1) .. (K-n-i+2)

Plo=n) = Ry (ki)

+ . *
The expectation value of &, n’, is equal to
K-i+1 K-i+l

n* = Z n.P(o=n) = Z Plo=n)
n=1 n=1
Thus,
K-i+1 . K
. (K-n+1(K-n) . (K-n-i+2) 1 .
nE ; K(K-T) .(K-ie1) T K(K) .“(Kvi-fl)z m(m-1) (i)

m=i

The summation

K

z m(m-1) .. (m-i+1)

m=i

is equal to the ith derivative for x=1 of
K Kel ;

2, xn =LKL N Ky

=0 Ix 3

Thus, the expectation value is

If we denote by r, the number of rejected moves, we have i=K-r, and
n* = K+l

K-r+1 -’

il

2]

131

{41

151

Lol

171

[8]

11

110}

[11]

(1]

2]

(13]

S. Kirkpatrick, C. Gelatt,Jr. and M. Vecchi, "Optimization by Simulated
Annealing”, Science, Vol 220, 671-680, 1983.

J. Lam and J-M. Delosme, "Performance of a new annealing schedule", Proceedings of
the 25th IEEE Design Automation Conference, 306-311, 1988.

R. Otten and L. van Ginneken, "Stop criteria in simulated annealing”, Proceedings of
the IEEE International Conference on Computer Design, 549-552, 1988.

A. Casotto, F. Romeo and A. Sangiovanni-Vincentelli, " A paralle]l simulated
annealing algorithm for the placement of macro-cells", IEEE Transactions on CAD, Vol
CAD-6, NO 5, 838- 847, 1987.

A. Casotto and A. Sangiovanni-Vincentelli, "Placement of standard cells using
simulated annealing on the connection machine”, Proceedings of the IEEE International
Conference on Computer Design, 350-353, 1987.

5. Mallela and L. Grover, "Clustering based simulated annealing for standard cell
placement”, Proceedings of the 25th IEEE Design Automation Conference, 312-317,
1988.

F. Darema, S. Kirkpatrick and V. A. Norton, "Parallel algorithms for chip
placement by simulated annealing", IBM J. Res. Develop., Vol. 31, No 3, 391-402,
1987.

R. Brouwer and P. Banerjee, "A paralle! simulated annealing algorithm for channel
routing on a hypercube multiprocessor”, Proceedings of the IEEE International
Conference on Computer Design, 4-7, 1988.

S. Kravitz and R. Rutenbar, "Multiprocessor-based placement by
simulated annealing", Proceedings of the 23th TEEE Design Automation Conference,
1986.

R. Rutenbar and S. Kravitz, "Layout by annealing in a parallel environment",
Proceedings of the IEEE International Conference on Computer Design, 434-437,
1986.

R. Jayaraman and R. Rutenbar, "Floorplanning by annealing on a hypercube

multiprocessor”, Proceedings of the IEEE International Conference on Com uter
p g p

Aided Design, 346-349, 1987,

E. Aarts, F. de Bont, E. Habers and P. van Laarhoven, "'Parallel
implementations of the statistical cooling algorithm”, Integration, the VLSI
journal, Vol. 4, 209-238, 1986.

E. Aarts and P. van Laarhoven, "Statistical cooling: a general approach to combinatorial
optimization problems", Philips Journal of Research, Vol. 40, No 4, 193-226, 1985.

'S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian

(4]

restoration of images", IEEE Proceedings on Pattern analysis and machine intelligence,
722-741, 1984,

0. Catoni and A. Trouvé, "A propos du recuit simulé synchrone”, unpublished.

energy value

900

700]

500

300 -

100
1071

100 101 102
log(temperature)

Figure 1a .

Final value of the energy for a temperature step

for the sequential mode (squares)
and the high temperature (dots)
and low temperature (crosses) modes.

number of configurations

140 160 180 200 220 240
energy value

Figure 1b .
Energy distribution of the initial configurations (right-hand peak),
and energy distributions of the configurations
after annealing (left-hand peaks).

Figures 2. Average duration of a temperature step versus temperature;
results obtained in the sequential mode (squares),
high temperature mode (dots)and low-temperature mode (crosses);
upper three curves : temperature decreased when Lt moves have been attempted;
lower three curves : temperature decreased when La moves have been accepted.

40 8
~ MOOOoo0O0O0ooo0onn = =
3 s0d @ oooooooog S 6 - St
3) ;++ @ n} mnnunnnnuunugauu —
p . 0
& " ,'r++ g ?E@Euumn
.n H *] "
) 20 - ++ 8 4 . +F
e o+t 3 +F
©] ++ P] o, -+
& PR L. = iiiiisdiitto
5 10 7 - 5 24 4+ Hbiteit . o
c% i ’ "!'.g..uﬂ c?s ++E
R T T P s ik
0 L] L) L] lllfll Ll A ""'l[¥ L] LA B I) 0) L] L] Illl" ¥ ¥ L l|l[l‘ L ¥ LA L)
107 100 10 102 107" 100 10 102
log(temperature) log(temperature)
Figure 2a. Figure 2b.

Overhead time much smaller than computation time;

measurements performed with three T414 Transputers.

Overhead time of the same order of magnitude
as computation time;
measurements performed with three T4 14 Transputers.

average duration (sec)

4
3 .
U'ﬂﬂﬂUnuunnnunnugnnmnnnnnnn
27 o
o*n
+
. +
i +
1 u ++++
+ +++++++++++++*+§5!wam&ﬁsaﬁ
0 e e s e
1071 100 101
log(temperature)
Figure 2c.

102

Overhead time of the same order of magnitude

as computation time;

measurements performed with six T800 Transputers.

80 "
]
s [}
Q [u]
\% 60 - o
8 %]
Og U
_]

g 40 a .
3 o
ks . '-+++++
= 20 - o g+t
£ adet?
o L

Oﬁmaﬁ L S i

0 10 2 0 30 40 50 60
number of temperature steps performed

Figure 3.
Cumulated duration of a complete annealing
in the sequential mode (squares)
and in the parallel mode with three (dots) and six (crosses) Transputers;
temperature decreased when La moves have been accepted.

tpar/tseq

Figures 4. Ratio of the duration of a temperature step in the parallel mode
to the duration of a temperature step in the sequential mode;
measurements performed with three Transputers;
overhead of the same order of magnitude as computation time;
squares: measurements results; +: results computed from the model when the La limit is used;
black squares: measurements results; x: results computed from the model when the Lt limit is used.

1,5
"] Fa
1,1 - ot
1 .
0o b
T]
@
0,7 -
, *&ﬁ
| g}
0,5-: _-d!l%
0,3 T T T T v T v T y
0,0 0,2 0,4 0,6 0,8
acceptance rate

Figure 4a. High-temperature mode.

1,0

tpar/tseq

1,5
1,3 Fh
] mmﬁ
11 - s ”
B E .'
m 3¢
0,9 - & th Lt
) ﬁm x
0,7 - L R
B0 . =R
B
0,5__‘ uﬁ a -*
”.I ‘x
" K' x
03 w1 L .
0,0 0,2 0,4 0,6 0,8
acceptance rate

Figure 4b. Low-temperature mode.

1,0

