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ABSTRACT 
 
The article compares two approaches to the description of 
ultrasound vocal tract images for application in a “silent 
speech interface,” one based on tongue contour modeling, 
and a second, global coding approach in which images are 
projected onto a feature space of Eigentongues. A curvature-
based lip profile feature extraction method is also presented. 
Extracted visual features are input to a neural network 
which learns the relation between the vocal tract 
configuration and line spectrum frequencies (LSF) 
contained in a one-hour speech corpus. An examination of 
the quality of LSF’s derived from the two approaches 
demonstrates that the eigentongues approach has a more 
efficient implementation and provides superior results based 
on a normalized mean squared error criterion.  

Index Terms— image processing, speech synthesis, 
neural network applications, communication systems, silent 
speech interface 
 

1. INTRODUCTION 
 
There has been significant interest recently in the notion of a 
“silent speech interface (SSI)” – a portable device used as an 
alternative to tracheo-oesophageal speech for larynx cancer 
patients, for situations where silence must be maintained, or 
for voice communication in noisy environments. 
Approaches based on electromyography [1], a non-audible 
murmur microphone [2], and ultrasound and optical imagery 
([3], [4]) have appeared in the literature.  

We present here results of a visuo-acoustic SSI study 
based on a one-hour corpus comprising ultrasound and 
optical imagery of the vocal tract. The use of a corpus of 
this size – which was motivated by the desire to interface to 
a concatenative speech synthesizer – has led to the 
development of robust feature extraction techniques in order 
to accommodate the wide variety of articulator 
configurations appearing in the corpus. In particular, an 
Eigentongues approach has been introduced in order to 
address the problem of ultrasound frames in which the 

tongue images poorly. Section 2 of the article details data 
acquisition and ultrasound image preprocessing, while 
section 3 describes the feature extraction techniques used in 
the image (ultrasound and optical) and speech signal 
analyses. Modeling of the link between visual and acoustic 
features is introduced in section 4, along with experimental 
results. 

  
2. DATA ACQUISITION AND PREPROCESSING 

 
2.1. Data acquisition 

 
Data were taken using a 30 Hz ultrasound machine and the 
Vocal Tract Visualization Lab HATS system [5], which 
maintains acoustic contact between the throat and the 
ultrasound transducer during speech. A lip profile image is 
embedded into the ultrasound image, as shown in figure 1. 

 

 
 

Figure 1. Example of an ultrasound vocal tract image with 
embedded lip profile : (a) tongue surface ; (b) hyoid bone ; (c) 

hyoid and mandible acoustic shadows ; (d) muscle, fat and 
connective tissue within the tongue. 

 



The speech dataset used consists of 720 sentences, 
organized in 10 lists, from the IEEE/Harvard corpus [6], 
spoken by a male native American English speaker. The 
IEEE sentences were chosen because they are constructed to 
have roughly equal intelligibility across lists and all have 
approximately the same duration, number of syllables, 
grammatical structure and intonation. After cleaning the 
database, the resulting speech was stored as 72473 JPEG 
frames and 720 WAV audio files sampled at 11025 Hz.     

 
2.2. Ultrasound image preprocessing 

  
In order to select a region of interest, the ultrasound images 
are first reduced to a 50 (radial angle) by 50 (azimuthal 
angle) semi-polar grid. To decrease the effects of speckle, 
the reduced images are filtered using the anisotropic 
diffusion filter proposed by Yu [7]. This iterative process 
introduces intra-region smoothing while inhibiting inter-
region smoothing [8], via a local coefficient of variation [9], 
so that speckle is removed without destroying important 
image features. A typical result after these two 
preprocessing steps is illustrated in figure 2(a).   

          

 
  

Figure 2. Reduced and filtered ultrasound image (a) 
and tongue surface contour fit by a 4th order spline (b) 

 
3. FEATURE EXTRACTION 

 
3.1. Ultrasound image feature extraction 
 
3.1.1. Tongue contour extraction  
 
As in [3] and [4], our first approach considers the tongue 
surface to be the only ultrasound image information relevant 
to the prediction of speech characteristics. Tongue contour 
candidate points are defined as maxima of the smoothed 
vertical intensity gradient. Then, in the present work, a Least 
Median Square (LMS, [10])-based spline interpolation 
method, tolerating up to 50% outlier points, is used in order 
to retain only relevant tongue contour candidates; this is an 

improvement over the contour extraction method 
implemented in [3] and [4].  

A typical tongue contour is shown in figure 2(b). Due to 
refraction, however, the tongue surface will be poorly 
imaged when the tongue surface is at angles nearly parallel 
to the ultrasound beam, as in the case of the phoneme /i/ for 
example. The contour extraction described previously fails 
in such frames – which are found to constitute some 15 % of 
our database – since the tongue surface is simply no longer 
visible in them. These “outlier frames” are detected 
automatically using the area of the convex hull of intensity 
gradient maxima. Below, we present a more global feature 
extraction approach which provides a solution to the missing 
contour problem.                
 
3.1.2. Eigentongue feature extraction 
 
The second approach features the use of Principal 
Component Analysis (PCA), or Karhunen-Loève expansion, 
for describing the ultrasound images. The first step is to 
create a finite set of orthogonal images, which constitutes, 
up to a certain accuracy, a subspace for the representation of 
all likely tongue configurations. These images are referred 
to as Eigentongues, a term inspired by the Eigenface method 
of Turk and Pentland [11]. The first three Eigentongues, 
obtained after a PCA on 1000 reduced and filtered 
ultrasound images, are shown in figure 3. 

  

 
 

Figure 3. The first three Eigentongues (1-3 from left to right) 
 

Once the set of Eigentongues has been created, the 
images of subsequent tongue configurations can be 
represented quite compactly in terms of their projections 
onto the set of Eigentongues, as shown in figure 4. 
    

 
 

Figure 4. A reduced ultrasound image (left) and its re-synthesis 
(right) using 20 Eigentongue components  

b 

a 



The Eigentongue components encode the maximum 
amount of relevant information in the images, mainly 
tongue position, of course, but also other structures such as 
the hyoid bone, muscles, etc.   
    
3.2. Optical image feature extraction 
 
The optical image feature extraction consists of a 
description of the lip profile. We propose an algorithm 
based on the observation of Attneave that information along 
a visual contour is concentrated in regions of high curvature, 
rather than distributed uniformly [12].  The lip edge profile 
is easily extracted using the Sobel method. The curvature of 
this two-dimensional curve is then computed using the 
Turning Angle introduced by Feldman [13]. Upper/lower lip 
and commissure positions coincide with extrema of the 
curvature, as shown as figure 5, while the values of the 
curvature at these points give local lip shape information. 

 
 

Figure  5. Lip profile description using curvature computation (left: 
lip contour; right: curvature of lip contour) 

 
3.3. Speech signal description 
 
For each 33 ms audio frame (dictated by the 30 Hz 
ultrasound rate), twelve LSF’s are calculated using a pre-
accentuation filter, linear predictive coding and a Hann 
window with a half-frame overlap. The robustness of LSF 
coefficients is known to assure the stability of the LPC filter 
[14]. A voiced/unvoiced flag and fundamental frequency 
(for voiced frames) are also computed, using a simple 
autocorrelation-based method. These last two features are 
not used in the visuo-acoustic modeling which follows, but 
allow a qualitative, audible comparison of our different 
results, if desired, via LPC synthesis using the predicted 
autoregressive filter coefficients and a realistic excitation 
function.  

 
4. VISUO-ACOUSTIC MODELING 

 
Our first feature extraction method, described in sections 3.2 
and 3.1.1, provides 15 features per frame, including 9 for the 
lips (position and curvature of upper/lower lips and 
commissure) and 6 for the tongue (4th order spline 
coefficients and interval of definition). The second, 
Eigentongue method gives 29 features per frame, the first 20 
Eigentongue components plus lip features. A multilayer 

perceptron (MLP) is used to perform the mapping between 
these input visual features and the 12 LSF’s [15]. A separate 
network is used for each LSF in order to limit the number of 
adjustable parameters in the model. A total of 71502 frames 
are used for training, with an independent set of 971 frames 
for model selection and validation. We now compare the 
LSF prediction obtained from the two methods. Because 
each LSF is defined upon its own interval, we introduce a 
normalized measure of the quality of the prediction α, along 
with an estimate of its standard deviation ε [16]: 
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where N is the number of examples in the validation 
database, y are the true LSF’s, and 

  
!y  the predicted LSF’s. 

 
4.1. Comparing Contour and Eigentongue approaches 
 
For the tongue contour method, in order to obtain reasonable 
training results, the “outlier frames” for which the automatic 
contour extraction algorithm (described in section 3.1.1) 
failed were removed from the training set. As the 
Eigentongue feature extraction approach does not restrict 
relevant information to a specific structure, no outlier is 
generated when that structure is not imaged, and thus all 
available frames may be used in the visuo-acoustic 
modeling with this method. Columns 1 and 2 of Table 1 
compare the results of the two approaches. 
 

Tongue 
Contour Eigentongue Eigentongue 

+ history LSF 
number Parameter α (% of total dynamic range) 

1 18.7 ± 0.4 16.9 ± 0.4 16.4 ± 0.4 
2 16.1 ± 0.4  14.4 ± 0.3 13.7 ± 0.3 
3 14.3 ± 0.3 12.4 ± 0.3 12.3 ± 0.3 
4 13.1 ± 0.3 11.8 ± 0.3 10.8 ± 0.2 
5 14.2 ± 0.3 11.5 ± 0.3 11.9 ± 0.3 
6 13.1 ± 0.3 11.8 ± 0.3 10.6 ± 0.2 
7 15.7 ± 0.4 13.7 ± 0.3 12.6 ± 0.3 
8 13.1 ± 0.3 11.8 ± 0.3 12.1 ± 0.3 
9 14.6 ± 0.3 12.8 ± 0.3 12.4 ± 0.3 

10 12.9 ± 0.3 11.2 ± 0.2 11.2 ± 0.2 
11 14.5 ± 0.3 13.7 ± 0.3 11.4 ± 0.2 
12 16.3 ± 0.4 14.5 ± 0.3 14.4 ± 0.3 

 

Table 1. Comparison of tongue contour based modeling and 
Eigentongue based modeling. Quoted errors, ε, are estimates of the 

standard deviation of α using a Gaussian assumption  
 

The table shows that LSF’s 4, 6, 8 and 10 are the best 
predicted by tongue contour and lip profile features, and that 
using Eigentongues provides an improvement in overall 
prediction quality which is small, but statistically 



significant. The filtering step described in section 2.2 is in 
fact not essential for the Eigentongue feature extraction, as 
image regions of high intensity variability will be associated 
with the higher order Eigentongues, which are not used. 
Similar results are obtained using Eigentongues obtained 
from unfiltered images.  
 
4.2. Introducing ‘history’ into the input variables 
 
The use of Eigentongues allows all of the video frames to 
participate in the training, which is not the case for the 
contour method due to the missing frames. We can then in a 
simple way take account of the intrinsically dynamic nature 
of speech production in our visuo-acoustic modeling by 
providing the training algorithm, at frame n, with the 
Eigentongue and lip variables of frames n-1 and n-2, as 
well. An additional small improvement in the prediction of 
LSF’s 2, 4, 6, 7 and 11 is seen, as compared to the static 
modeling.  
 

5. CONCLUSION AND PERSPECTIVES 
 
A new turning-angle algorithm for the description of lip 
profiles has been introduced, which, because curvature-
based, should hopefully make the method robust against the 
variability of lip shapes between speakers. Two methods for 
feature extraction from ultrasound images have been 
presented and compared. The visuo-acoustic modeling with 
Eigentongues gives better results than those obtained using 
tongue contours as input. The Eigentongue method is easier 
to implement, appears to take more information into 
account, and is not prone to failures due to instrumental 
effects, thus allowing the dynamic nature of speech to be 
taken into account in a natural way. It could be interesting, 
however, in future work, to combine the two approaches in 
the context of active appearance models [17]. The model we 
propose is at present able to predict an acoustical description 
of speech with errors ranging from 11% to 16%. Whether 
this performance is adequate for application in an SSI will 
only become apparent once a concatenative speech synthesis 
model using our predicted quantities as inputs has been 
experimented. The elaboration of such a test, as well as the 
use of alternative dynamic process modeling techniques 
(Hidden Markov Models, Time Delay Neural Networks 
[18]) are currently underway. 
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